MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abss Structured version   Visualization version   GIF version

Theorem abss 4058
Description: Class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
abss ({𝑥𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑𝑥𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem abss
StepHypRef Expression
1 abid2 2869 . . 3 {𝑥𝑥𝐴} = 𝐴
21sseq2i 4012 . 2 ({𝑥𝜑} ⊆ {𝑥𝑥𝐴} ↔ {𝑥𝜑} ⊆ 𝐴)
3 ss2ab 4057 . 2 ({𝑥𝜑} ⊆ {𝑥𝑥𝐴} ↔ ∀𝑥(𝜑𝑥𝐴))
42, 3bitr3i 276 1 ({𝑥𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wcel 2104  {cab 2707  wss 3949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-tru 1542  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-v 3474  df-in 3956  df-ss 3966
This theorem is referenced by:  abssdvOLD  4067  rabss  4070  uniiunlem  4085  iunssf  5048  iunss  5049  moabex  5460  reliun  5817  axdc2lem  10447  mptelee  28418  fpwrelmap  32223  hoidmvlelem1  45611
  Copyright terms: Public domain W3C validator