| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abss | Structured version Visualization version GIF version | ||
| Description: Class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.) |
| Ref | Expression |
|---|---|
| abss | ⊢ ({𝑥 ∣ 𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abid2 2872 | . . 3 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
| 2 | 1 | sseq2i 3988 | . 2 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴} ↔ {𝑥 ∣ 𝜑} ⊆ 𝐴) |
| 3 | ss2ab 4037 | . 2 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴} ↔ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) | |
| 4 | 2, 3 | bitr3i 277 | 1 ⊢ ({𝑥 ∣ 𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∈ wcel 2108 {cab 2713 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ss 3943 |
| This theorem is referenced by: abssdvOLD 4044 rabss 4047 uniiunlem 4062 iunssf 5020 iunss 5021 abexd 5295 abex 5296 moabex 5434 reliun 5795 axdc2lem 10462 mptelee 28874 fpwrelmap 32710 hoidmvlelem1 46624 |
| Copyright terms: Public domain | W3C validator |