MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abss Structured version   Visualization version   GIF version

Theorem abss 4029
Description: Class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
abss ({𝑥𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑𝑥𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem abss
StepHypRef Expression
1 abid2 2866 . . 3 {𝑥𝑥𝐴} = 𝐴
21sseq2i 3979 . 2 ({𝑥𝜑} ⊆ {𝑥𝑥𝐴} ↔ {𝑥𝜑} ⊆ 𝐴)
3 ss2ab 4028 . 2 ({𝑥𝜑} ⊆ {𝑥𝑥𝐴} ↔ ∀𝑥(𝜑𝑥𝐴))
42, 3bitr3i 277 1 ({𝑥𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wcel 2109  {cab 2708  wss 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ss 3934
This theorem is referenced by:  abssdvOLD  4035  rabss  4038  uniiunlem  4053  iunssf  5011  iunss  5012  abexd  5283  abex  5284  moabex  5422  reliun  5782  axdc2lem  10408  mptelee  28829  fpwrelmap  32663  hoidmvlelem1  46600
  Copyright terms: Public domain W3C validator