| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abssdv | Structured version Visualization version GIF version | ||
| Description: Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) (Proof shortened by SN, 22-Dec-2024.) |
| Ref | Expression |
|---|---|
| abssdv.1 | ⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) |
| Ref | Expression |
|---|---|
| abssdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abssdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) | |
| 2 | 1 | ss2abdv 4026 | . 2 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴}) |
| 3 | abid1 2864 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
| 4 | 2, 3 | sseqtrrdi 3985 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {cab 2707 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3928 |
| This theorem is referenced by: dfopif 4830 opabssxpd 5678 fmpt 7064 fabexd 7893 eroprf 8765 cfslb2n 10197 rankcf 10706 genpv 10928 genpdm 10931 fimaxre3 12105 supadd 12127 supmul 12131 hashf1lem2 14397 mertenslem2 15827 4sqlem11 16902 lss1d 20845 lspsn 20884 lpval 23002 lpsscls 23004 ptuni2 23439 ptbasfi 23444 prdstopn 23491 xkopt 23518 tgpconncompeqg 23975 metrest 24388 mbfeqalem1 25518 limcfval 25749 nosupno 27591 nosupbday 27593 noinfno 27606 noinfbday 27608 addsproplem2 27853 addsuniflem 27884 addsbdaylem 27899 negsid 27923 mulsproplem9 28003 ssltmul1 28026 ssltmul2 28027 precsexlem8 28092 precsexlem11 28095 onaddscl 28150 onmulscl 28151 recut 28323 0reno 28324 nmosetre 30666 nmopsetretALT 31765 nmfnsetre 31779 sigaclcuni 34081 bnj849 34888 deranglem 35126 derangsn 35130 liness 36106 mblfinlem3 37626 ismblfin 37628 itg2addnclem 37638 areacirclem2 37676 sdclem2 37709 sdclem1 37710 ismtyval 37767 heibor1lem 37776 heibor1 37777 pmapglbx 39736 eldiophb 42718 hbtlem2 43086 oaun3lem1 43336 oaun3lem2 43337 upbdrech 45276 |
| Copyright terms: Public domain | W3C validator |