| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abssdv | Structured version Visualization version GIF version | ||
| Description: Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) (Proof shortened by SN, 22-Dec-2024.) |
| Ref | Expression |
|---|---|
| abssdv.1 | ⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) |
| Ref | Expression |
|---|---|
| abssdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abssdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) | |
| 2 | 1 | ss2abdv 4041 | . 2 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴}) |
| 3 | abid1 2871 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
| 4 | 2, 3 | sseqtrrdi 4000 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 {cab 2713 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ss 3943 |
| This theorem is referenced by: dfopif 4846 opabssxpd 5701 fmpt 7100 fabexd 7933 eroprf 8829 cfslb2n 10282 rankcf 10791 genpv 11013 genpdm 11016 fimaxre3 12188 supadd 12210 supmul 12214 hashf1lem2 14474 mertenslem2 15901 4sqlem11 16975 lss1d 20920 lspsn 20959 lpval 23077 lpsscls 23079 ptuni2 23514 ptbasfi 23519 prdstopn 23566 xkopt 23593 tgpconncompeqg 24050 metrest 24463 mbfeqalem1 25594 limcfval 25825 nosupno 27667 nosupbday 27669 noinfno 27682 noinfbday 27684 addsproplem2 27929 addsuniflem 27960 addsbdaylem 27975 negsid 27999 mulsproplem9 28079 ssltmul1 28102 ssltmul2 28103 precsexlem8 28168 precsexlem11 28171 onaddscl 28226 onmulscl 28227 recut 28399 0reno 28400 nmosetre 30745 nmopsetretALT 31844 nmfnsetre 31858 sigaclcuni 34149 bnj849 34956 deranglem 35188 derangsn 35192 liness 36163 mblfinlem3 37683 ismblfin 37685 itg2addnclem 37695 areacirclem2 37733 sdclem2 37766 sdclem1 37767 ismtyval 37824 heibor1lem 37833 heibor1 37834 pmapglbx 39788 eldiophb 42780 hbtlem2 43148 oaun3lem1 43398 oaun3lem2 43399 upbdrech 45334 |
| Copyright terms: Public domain | W3C validator |