| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abssdv | Structured version Visualization version GIF version | ||
| Description: Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) (Proof shortened by SN, 22-Dec-2024.) |
| Ref | Expression |
|---|---|
| abssdv.1 | ⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) |
| Ref | Expression |
|---|---|
| abssdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abssdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) | |
| 2 | 1 | ss2abdv 4012 | . 2 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴}) |
| 3 | abid1 2867 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
| 4 | 2, 3 | sseqtrrdi 3971 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 {cab 2709 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ss 3914 |
| This theorem is referenced by: dfopif 4819 opabssxpd 5661 fmpt 7043 fabexd 7867 eroprf 8739 cfslb2n 10159 rankcf 10668 genpv 10890 genpdm 10893 fimaxre3 12068 supadd 12090 supmul 12094 hashf1lem2 14363 mertenslem2 15792 4sqlem11 16867 lss1d 20896 lspsn 20935 lpval 23054 lpsscls 23056 ptuni2 23491 ptbasfi 23496 prdstopn 23543 xkopt 23570 tgpconncompeqg 24027 metrest 24439 mbfeqalem1 25569 limcfval 25800 nosupno 27642 nosupbday 27644 noinfno 27657 noinfbday 27659 addsproplem2 27913 addsuniflem 27944 addsbdaylem 27959 negsid 27983 mulsproplem9 28063 ssltmul1 28086 ssltmul2 28087 precsexlem8 28152 precsexlem11 28155 onaddscl 28210 onmulscl 28211 recut 28398 0reno 28399 nmosetre 30744 nmopsetretALT 31843 nmfnsetre 31857 sigaclcuni 34131 bnj849 34937 deranglem 35210 derangsn 35214 liness 36189 mblfinlem3 37709 ismblfin 37711 itg2addnclem 37721 areacirclem2 37759 sdclem2 37792 sdclem1 37793 ismtyval 37850 heibor1lem 37859 heibor1 37860 pmapglbx 39878 eldiophb 42860 hbtlem2 43227 oaun3lem1 43477 oaun3lem2 43478 upbdrech 45416 |
| Copyright terms: Public domain | W3C validator |