| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abssdv | Structured version Visualization version GIF version | ||
| Description: Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) (Proof shortened by SN, 22-Dec-2024.) |
| Ref | Expression |
|---|---|
| abssdv.1 | ⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) |
| Ref | Expression |
|---|---|
| abssdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abssdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) | |
| 2 | 1 | ss2abdv 4018 | . 2 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴}) |
| 3 | abid1 2864 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
| 4 | 2, 3 | sseqtrrdi 3977 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {cab 2707 ⊆ wss 3903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3920 |
| This theorem is referenced by: dfopif 4821 opabssxpd 5666 fmpt 7044 fabexd 7870 eroprf 8742 cfslb2n 10162 rankcf 10671 genpv 10893 genpdm 10896 fimaxre3 12071 supadd 12093 supmul 12097 hashf1lem2 14363 mertenslem2 15792 4sqlem11 16867 lss1d 20866 lspsn 20905 lpval 23024 lpsscls 23026 ptuni2 23461 ptbasfi 23466 prdstopn 23513 xkopt 23540 tgpconncompeqg 23997 metrest 24410 mbfeqalem1 25540 limcfval 25771 nosupno 27613 nosupbday 27615 noinfno 27628 noinfbday 27630 addsproplem2 27882 addsuniflem 27913 addsbdaylem 27928 negsid 27952 mulsproplem9 28032 ssltmul1 28055 ssltmul2 28056 precsexlem8 28121 precsexlem11 28124 onaddscl 28179 onmulscl 28180 recut 28365 0reno 28366 nmosetre 30708 nmopsetretALT 31807 nmfnsetre 31821 sigaclcuni 34085 bnj849 34892 deranglem 35143 derangsn 35147 liness 36123 mblfinlem3 37643 ismblfin 37645 itg2addnclem 37655 areacirclem2 37693 sdclem2 37726 sdclem1 37727 ismtyval 37784 heibor1lem 37793 heibor1 37794 pmapglbx 39752 eldiophb 42734 hbtlem2 43101 oaun3lem1 43351 oaun3lem2 43352 upbdrech 45291 |
| Copyright terms: Public domain | W3C validator |