| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abssdv | Structured version Visualization version GIF version | ||
| Description: Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) (Proof shortened by SN, 22-Dec-2024.) |
| Ref | Expression |
|---|---|
| abssdv.1 | ⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) |
| Ref | Expression |
|---|---|
| abssdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abssdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) | |
| 2 | 1 | ss2abdv 4039 | . 2 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴}) |
| 3 | abid1 2870 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
| 4 | 2, 3 | sseqtrrdi 3998 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 {cab 2712 ⊆ wss 3924 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ss 3941 |
| This theorem is referenced by: dfopif 4843 opabssxpd 5698 fmpt 7096 fabexd 7927 eroprf 8823 cfslb2n 10274 rankcf 10783 genpv 11005 genpdm 11008 fimaxre3 12180 supadd 12202 supmul 12206 hashf1lem2 14462 mertenslem2 15888 4sqlem11 16960 lss1d 20905 lspsn 20944 lpval 23062 lpsscls 23064 ptuni2 23499 ptbasfi 23504 prdstopn 23551 xkopt 23578 tgpconncompeqg 24035 metrest 24448 mbfeqalem1 25579 limcfval 25810 nosupno 27651 nosupbday 27653 noinfno 27666 noinfbday 27668 addsproplem2 27906 addsuniflem 27937 addsbdaylem 27952 negsid 27976 mulsproplem9 28053 ssltmul1 28076 ssltmul2 28077 precsexlem8 28141 precsexlem11 28144 onaddscl 28189 onmulscl 28190 recut 28331 0reno 28332 nmosetre 30677 nmopsetretALT 31776 nmfnsetre 31790 sigaclcuni 34057 bnj849 34877 deranglem 35109 derangsn 35113 liness 36084 mblfinlem3 37604 ismblfin 37606 itg2addnclem 37616 areacirclem2 37654 sdclem2 37687 sdclem1 37688 ismtyval 37745 heibor1lem 37754 heibor1 37755 pmapglbx 39709 eldiophb 42705 hbtlem2 43073 oaun3lem1 43323 oaun3lem2 43324 upbdrech 45261 |
| Copyright terms: Public domain | W3C validator |