Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abssdv | Structured version Visualization version GIF version |
Description: Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) |
Ref | Expression |
---|---|
abssdv.1 | ⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) |
Ref | Expression |
---|---|
abssdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abssdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) | |
2 | 1 | alrimiv 1931 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → 𝑥 ∈ 𝐴)) |
3 | abss 3990 | . 2 ⊢ ({𝑥 ∣ 𝜓} ⊆ 𝐴 ↔ ∀𝑥(𝜓 → 𝑥 ∈ 𝐴)) | |
4 | 2, 3 | sylibr 233 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∈ wcel 2108 {cab 2715 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: dfopifOLD 4798 opabssxpd 5625 fmpt 6966 eroprf 8562 cfslb2n 9955 rankcf 10464 genpv 10686 genpdm 10689 fimaxre3 11851 supadd 11873 supmul 11877 hashfacenOLD 14095 hashf1lem1OLD 14097 hashf1lem2 14098 mertenslem2 15525 4sqlem11 16584 lss1d 20140 lspsn 20179 lpval 22198 lpsscls 22200 ptuni2 22635 ptbasfi 22640 prdstopn 22687 xkopt 22714 tgpconncompeqg 23171 metrest 23586 mbfeqalem1 24710 limcfval 24941 nmosetre 29027 nmopsetretALT 30126 nmfnsetre 30140 sigaclcuni 31986 bnj849 32805 deranglem 33028 derangsn 33032 nosupno 33833 nosupbday 33835 noinfno 33848 noinfbday 33850 liness 34374 mblfinlem3 35743 ismblfin 35745 itg2addnclem 35755 areacirclem2 35793 sdclem2 35827 sdclem1 35828 ismtyval 35885 heibor1lem 35894 heibor1 35895 pmapglbx 37710 eldiophb 40495 hbtlem2 40865 upbdrech 42734 |
Copyright terms: Public domain | W3C validator |