![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abssdv | Structured version Visualization version GIF version |
Description: Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) (Proof shortened by SN, 22-Dec-2024.) |
Ref | Expression |
---|---|
abssdv.1 | ⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) |
Ref | Expression |
---|---|
abssdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abssdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) | |
2 | 1 | ss2abdv 4076 | . 2 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴}) |
3 | abid1 2876 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
4 | 2, 3 | sseqtrrdi 4047 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 {cab 2712 ⊆ wss 3963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ss 3980 |
This theorem is referenced by: dfopif 4875 opabssxpd 5736 fmpt 7130 fabexd 7958 eroprf 8854 cfslb2n 10306 rankcf 10815 genpv 11037 genpdm 11040 fimaxre3 12212 supadd 12234 supmul 12238 hashf1lem2 14492 mertenslem2 15918 4sqlem11 16989 lss1d 20979 lspsn 21018 lpval 23163 lpsscls 23165 ptuni2 23600 ptbasfi 23605 prdstopn 23652 xkopt 23679 tgpconncompeqg 24136 metrest 24553 mbfeqalem1 25690 limcfval 25922 nosupno 27763 nosupbday 27765 noinfno 27778 noinfbday 27780 addsproplem2 28018 addsuniflem 28049 addsbdaylem 28064 negsid 28088 mulsproplem9 28165 ssltmul1 28188 ssltmul2 28189 precsexlem8 28253 precsexlem11 28256 onaddscl 28301 onmulscl 28302 recut 28443 0reno 28444 nmosetre 30793 nmopsetretALT 31892 nmfnsetre 31906 sigaclcuni 34099 bnj849 34918 deranglem 35151 derangsn 35155 liness 36127 mblfinlem3 37646 ismblfin 37648 itg2addnclem 37658 areacirclem2 37696 sdclem2 37729 sdclem1 37730 ismtyval 37787 heibor1lem 37796 heibor1 37797 pmapglbx 39752 eldiophb 42745 hbtlem2 43113 oaun3lem1 43364 oaun3lem2 43365 upbdrech 45256 |
Copyright terms: Public domain | W3C validator |