![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abssdv | Structured version Visualization version GIF version |
Description: Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) (Proof shortened by SN, 22-Dec-2024.) |
Ref | Expression |
---|---|
abssdv.1 | ⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) |
Ref | Expression |
---|---|
abssdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abssdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) | |
2 | 1 | ss2abdv 4057 | . 2 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴}) |
3 | abid1 2866 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
4 | 2, 3 | sseqtrrdi 4030 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 {cab 2705 ⊆ wss 3945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3472 df-in 3952 df-ss 3962 |
This theorem is referenced by: dfopif 4867 opabssxpd 5720 fmpt 7115 eroprf 8828 cfslb2n 10286 rankcf 10795 genpv 11017 genpdm 11020 fimaxre3 12185 supadd 12207 supmul 12211 hashfacenOLD 14441 hashf1lem1OLD 14443 hashf1lem2 14444 mertenslem2 15858 4sqlem11 16918 lss1d 20841 lspsn 20880 lpval 23037 lpsscls 23039 ptuni2 23474 ptbasfi 23479 prdstopn 23526 xkopt 23553 tgpconncompeqg 24010 metrest 24427 mbfeqalem1 25564 limcfval 25795 nosupno 27630 nosupbday 27632 noinfno 27645 noinfbday 27647 addsproplem2 27881 addsuniflem 27912 negsid 27947 mulsproplem9 28018 ssltmul1 28041 ssltmul2 28042 precsexlem8 28106 precsexlem11 28109 recut 28218 0reno 28219 nmosetre 30568 nmopsetretALT 31667 nmfnsetre 31681 sigaclcuni 33732 bnj849 34551 deranglem 34771 derangsn 34775 liness 35736 mblfinlem3 37127 ismblfin 37129 itg2addnclem 37139 areacirclem2 37177 sdclem2 37210 sdclem1 37211 ismtyval 37268 heibor1lem 37277 heibor1 37278 pmapglbx 39237 eldiophb 42168 hbtlem2 42539 oaun3lem1 42794 oaun3lem2 42795 upbdrech 44678 |
Copyright terms: Public domain | W3C validator |