| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abssdv | Structured version Visualization version GIF version | ||
| Description: Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) (Proof shortened by SN, 22-Dec-2024.) |
| Ref | Expression |
|---|---|
| abssdv.1 | ⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) |
| Ref | Expression |
|---|---|
| abssdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abssdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) | |
| 2 | 1 | ss2abdv 4026 | . 2 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴}) |
| 3 | abid1 2864 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
| 4 | 2, 3 | sseqtrrdi 3985 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {cab 2707 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3928 |
| This theorem is referenced by: dfopif 4830 opabssxpd 5678 fmpt 7064 fabexd 7893 eroprf 8765 cfslb2n 10197 rankcf 10706 genpv 10928 genpdm 10931 fimaxre3 12105 supadd 12127 supmul 12131 hashf1lem2 14397 mertenslem2 15827 4sqlem11 16902 lss1d 20901 lspsn 20940 lpval 23059 lpsscls 23061 ptuni2 23496 ptbasfi 23501 prdstopn 23548 xkopt 23575 tgpconncompeqg 24032 metrest 24445 mbfeqalem1 25575 limcfval 25806 nosupno 27648 nosupbday 27650 noinfno 27663 noinfbday 27665 addsproplem2 27917 addsuniflem 27948 addsbdaylem 27963 negsid 27987 mulsproplem9 28067 ssltmul1 28090 ssltmul2 28091 precsexlem8 28156 precsexlem11 28159 onaddscl 28214 onmulscl 28215 recut 28400 0reno 28401 nmosetre 30743 nmopsetretALT 31842 nmfnsetre 31856 sigaclcuni 34101 bnj849 34908 deranglem 35146 derangsn 35150 liness 36126 mblfinlem3 37646 ismblfin 37648 itg2addnclem 37658 areacirclem2 37696 sdclem2 37729 sdclem1 37730 ismtyval 37787 heibor1lem 37796 heibor1 37797 pmapglbx 39756 eldiophb 42738 hbtlem2 43106 oaun3lem1 43356 oaun3lem2 43357 upbdrech 45296 |
| Copyright terms: Public domain | W3C validator |