| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abssdv | Structured version Visualization version GIF version | ||
| Description: Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) (Proof shortened by SN, 22-Dec-2024.) |
| Ref | Expression |
|---|---|
| abssdv.1 | ⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) |
| Ref | Expression |
|---|---|
| abssdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abssdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) | |
| 2 | 1 | ss2abdv 4029 | . 2 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴}) |
| 3 | abid1 2864 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
| 4 | 2, 3 | sseqtrrdi 3988 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {cab 2707 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3931 |
| This theorem is referenced by: dfopif 4834 opabssxpd 5685 fmpt 7082 fabexd 7913 eroprf 8788 cfslb2n 10221 rankcf 10730 genpv 10952 genpdm 10955 fimaxre3 12129 supadd 12151 supmul 12155 hashf1lem2 14421 mertenslem2 15851 4sqlem11 16926 lss1d 20869 lspsn 20908 lpval 23026 lpsscls 23028 ptuni2 23463 ptbasfi 23468 prdstopn 23515 xkopt 23542 tgpconncompeqg 23999 metrest 24412 mbfeqalem1 25542 limcfval 25773 nosupno 27615 nosupbday 27617 noinfno 27630 noinfbday 27632 addsproplem2 27877 addsuniflem 27908 addsbdaylem 27923 negsid 27947 mulsproplem9 28027 ssltmul1 28050 ssltmul2 28051 precsexlem8 28116 precsexlem11 28119 onaddscl 28174 onmulscl 28175 recut 28347 0reno 28348 nmosetre 30693 nmopsetretALT 31792 nmfnsetre 31806 sigaclcuni 34108 bnj849 34915 deranglem 35153 derangsn 35157 liness 36133 mblfinlem3 37653 ismblfin 37655 itg2addnclem 37665 areacirclem2 37703 sdclem2 37736 sdclem1 37737 ismtyval 37794 heibor1lem 37803 heibor1 37804 pmapglbx 39763 eldiophb 42745 hbtlem2 43113 oaun3lem1 43363 oaun3lem2 43364 upbdrech 45303 |
| Copyright terms: Public domain | W3C validator |