![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abssdv | Structured version Visualization version GIF version |
Description: Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) (Proof shortened by SN, 22-Dec-2024.) |
Ref | Expression |
---|---|
abssdv.1 | ⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) |
Ref | Expression |
---|---|
abssdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abssdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) | |
2 | 1 | ss2abdv 4089 | . 2 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴}) |
3 | abid1 2881 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
4 | 2, 3 | sseqtrrdi 4060 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 {cab 2717 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ss 3993 |
This theorem is referenced by: dfopif 4894 opabssxpd 5747 fmpt 7144 fabexd 7975 eroprf 8873 cfslb2n 10337 rankcf 10846 genpv 11068 genpdm 11071 fimaxre3 12241 supadd 12263 supmul 12267 hashf1lem2 14505 mertenslem2 15933 4sqlem11 17002 lss1d 20984 lspsn 21023 lpval 23168 lpsscls 23170 ptuni2 23605 ptbasfi 23610 prdstopn 23657 xkopt 23684 tgpconncompeqg 24141 metrest 24558 mbfeqalem1 25695 limcfval 25927 nosupno 27766 nosupbday 27768 noinfno 27781 noinfbday 27783 addsproplem2 28021 addsuniflem 28052 addsbdaylem 28067 negsid 28091 mulsproplem9 28168 ssltmul1 28191 ssltmul2 28192 precsexlem8 28256 precsexlem11 28259 onaddscl 28304 onmulscl 28305 recut 28446 0reno 28447 nmosetre 30796 nmopsetretALT 31895 nmfnsetre 31909 sigaclcuni 34082 bnj849 34901 deranglem 35134 derangsn 35138 liness 36109 mblfinlem3 37619 ismblfin 37621 itg2addnclem 37631 areacirclem2 37669 sdclem2 37702 sdclem1 37703 ismtyval 37760 heibor1lem 37769 heibor1 37770 pmapglbx 39726 eldiophb 42713 hbtlem2 43081 oaun3lem1 43336 oaun3lem2 43337 upbdrech 45220 |
Copyright terms: Public domain | W3C validator |