| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abssdv | Structured version Visualization version GIF version | ||
| Description: Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) (Proof shortened by SN, 22-Dec-2024.) |
| Ref | Expression |
|---|---|
| abssdv.1 | ⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) |
| Ref | Expression |
|---|---|
| abssdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abssdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) | |
| 2 | 1 | ss2abdv 4032 | . 2 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴}) |
| 3 | abid1 2865 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
| 4 | 2, 3 | sseqtrrdi 3991 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {cab 2708 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ss 3934 |
| This theorem is referenced by: dfopif 4837 opabssxpd 5688 fmpt 7085 fabexd 7916 eroprf 8791 cfslb2n 10228 rankcf 10737 genpv 10959 genpdm 10962 fimaxre3 12136 supadd 12158 supmul 12162 hashf1lem2 14428 mertenslem2 15858 4sqlem11 16933 lss1d 20876 lspsn 20915 lpval 23033 lpsscls 23035 ptuni2 23470 ptbasfi 23475 prdstopn 23522 xkopt 23549 tgpconncompeqg 24006 metrest 24419 mbfeqalem1 25549 limcfval 25780 nosupno 27622 nosupbday 27624 noinfno 27637 noinfbday 27639 addsproplem2 27884 addsuniflem 27915 addsbdaylem 27930 negsid 27954 mulsproplem9 28034 ssltmul1 28057 ssltmul2 28058 precsexlem8 28123 precsexlem11 28126 onaddscl 28181 onmulscl 28182 recut 28354 0reno 28355 nmosetre 30700 nmopsetretALT 31799 nmfnsetre 31813 sigaclcuni 34115 bnj849 34922 deranglem 35160 derangsn 35164 liness 36140 mblfinlem3 37660 ismblfin 37662 itg2addnclem 37672 areacirclem2 37710 sdclem2 37743 sdclem1 37744 ismtyval 37801 heibor1lem 37810 heibor1 37811 pmapglbx 39770 eldiophb 42752 hbtlem2 43120 oaun3lem1 43370 oaun3lem2 43371 upbdrech 45310 |
| Copyright terms: Public domain | W3C validator |