MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad5ant12 Structured version   Visualization version   GIF version

Theorem ad5ant12 755
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.)
Hypothesis
Ref Expression
ad5ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad5ant12 (((((𝜑𝜓) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜒)

Proof of Theorem ad5ant12
StepHypRef Expression
1 ad5ant2.1 . 2 ((𝜑𝜓) → 𝜒)
21ad3antrrr 729 1 (((((𝜑𝜓) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  fpwwe2  10712  swrdccatin1  14773  lo1bdd2  15570  funcpropd  17967  curf2ndf  18317  metcnp3  24574  perpneq  28740  rloccring  33242  nsgmgc  33405  drngmxidlr  33471  fmla1  35355  omabs2  43294  fnchoice  44929  hoidmvle  46521  isuspgrimlem  47758
  Copyright terms: Public domain W3C validator