MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad5ant12 Structured version   Visualization version   GIF version

Theorem ad5ant12 756
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.)
Hypothesis
Ref Expression
ad5ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad5ant12 (((((𝜑𝜓) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜒)

Proof of Theorem ad5ant12
StepHypRef Expression
1 ad5ant2.1 . 2 ((𝜑𝜓) → 𝜒)
21ad3antrrr 730 1 (((((𝜑𝜓) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  fpwwe2  10681  swrdccatin1  14760  lo1bdd2  15557  funcpropd  17954  curf2ndf  18304  metcnp3  24569  perpneq  28737  rloccring  33257  nsgmgc  33420  drngmxidlr  33486  fmla1  35372  omabs2  43322  fnchoice  44967  hoidmvle  46556  isuspgrimlem  47812
  Copyright terms: Public domain W3C validator