MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad5ant12 Structured version   Visualization version   GIF version

Theorem ad5ant12 752
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.)
Hypothesis
Ref Expression
ad5ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad5ant12 (((((𝜑𝜓) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜒)

Proof of Theorem ad5ant12
StepHypRef Expression
1 ad5ant2.1 . 2 ((𝜑𝜓) → 𝜒)
21ad3antrrr 726 1 (((((𝜑𝜓) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  fpwwe2  10330  swrdccatin1  14366  lo1bdd2  15161  funcpropd  17532  curf2ndf  17881  metcnp3  23602  perpneq  26979  nsgmgc  31499  fmla1  33249  fnchoice  42461  hoidmvle  44028  isomuspgrlem1  45167
  Copyright terms: Public domain W3C validator