Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nsgmgc Structured version   Visualization version   GIF version

Theorem nsgmgc 31130
Description: There is a monotone Galois connection between the lattice of subgroups of a group 𝐺 containing a normal subgroup 𝑁 and the lattice of subgroups of the quotient group 𝐺 / 𝑁. This is sometimes called the lattice theorem. (Contributed by Thierry Arnoux, 27-Jul-2024.)
Hypotheses
Ref Expression
nsgmgc.b 𝐵 = (Base‘𝐺)
nsgmgc.s 𝑆 = { ∈ (SubGrp‘𝐺) ∣ 𝑁}
nsgmgc.t 𝑇 = (SubGrp‘𝑄)
nsgmgc.j 𝐽 = (𝑉MGalConn𝑊)
nsgmgc.v 𝑉 = (toInc‘𝑆)
nsgmgc.w 𝑊 = (toInc‘𝑇)
nsgmgc.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
nsgmgc.p = (LSSum‘𝐺)
nsgmgc.e 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
nsgmgc.f 𝐹 = (𝑓𝑇 ↦ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
nsgmgc.n (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
Assertion
Ref Expression
nsgmgc (𝜑𝐸𝐽𝐹)
Distinct variable groups:   ,𝑎,,𝑥   𝐵,𝑎,,𝑥   𝐸,𝑎,𝑓,,𝑥   𝑓,𝐹,,𝑥   𝐺,𝑎,𝑓,,𝑥   𝑁,𝑎,,𝑥   𝑄,𝑎,𝑓,,𝑥   𝑆,𝑎,𝑓,,𝑥   𝑇,𝑎,𝑓,,𝑥   𝑓,𝑉,   𝑓,𝑊,   𝜑,𝑎,𝑓,,𝑥
Allowed substitution hints:   𝐵(𝑓)   (𝑓)   𝐹(𝑎)   𝐽(𝑥,𝑓,,𝑎)   𝑁(𝑓)   𝑉(𝑥,𝑎)   𝑊(𝑥,𝑎)

Proof of Theorem nsgmgc
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . . . 5 𝜑
2 vex 3413 . . . . . . . 8 ∈ V
32mptex 6983 . . . . . . 7 (𝑥 ↦ ({𝑥} 𝑁)) ∈ V
43rnex 7628 . . . . . 6 ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ V
54a1i 11 . . . . 5 ((𝜑𝑆) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ V)
6 nsgmgc.e . . . . 5 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
71, 5, 6fnmptd 6477 . . . 4 (𝜑𝐸 Fn 𝑆)
8 nsgmgc.b . . . . . . . 8 𝐵 = (Base‘𝐺)
9 nsgmgc.q . . . . . . . 8 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
10 nsgmgc.p . . . . . . . 8 = (LSSum‘𝐺)
11 mpteq1 5124 . . . . . . . . . . 11 ( = 𝑘 → (𝑥 ↦ ({𝑥} 𝑁)) = (𝑥𝑘 ↦ ({𝑥} 𝑁)))
1211rneqd 5784 . . . . . . . . . 10 ( = 𝑘 → ran (𝑥 ↦ ({𝑥} 𝑁)) = ran (𝑥𝑘 ↦ ({𝑥} 𝑁)))
1312cbvmptv 5139 . . . . . . . . 9 (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁))) = (𝑘𝑆 ↦ ran (𝑥𝑘 ↦ ({𝑥} 𝑁)))
146, 13eqtri 2781 . . . . . . . 8 𝐸 = (𝑘𝑆 ↦ ran (𝑥𝑘 ↦ ({𝑥} 𝑁)))
15 eqid 2758 . . . . . . . 8 (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁))
16 nsgmgc.n . . . . . . . . 9 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
1716adantr 484 . . . . . . . 8 ((𝜑𝑆) → 𝑁 ∈ (NrmSGrp‘𝐺))
18 simpr 488 . . . . . . . 8 ((𝜑𝑆) → 𝑆)
19 nsgmgc.s . . . . . . . . . 10 𝑆 = { ∈ (SubGrp‘𝐺) ∣ 𝑁}
2019ssrab3 3988 . . . . . . . . 9 𝑆 ⊆ (SubGrp‘𝐺)
2120a1i 11 . . . . . . . 8 ((𝜑𝑆) → 𝑆 ⊆ (SubGrp‘𝐺))
228, 9, 10, 14, 15, 17, 18, 21qusima 31127 . . . . . . 7 ((𝜑𝑆) → (𝐸) = ((𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) “ ))
238, 9, 15qusghm 18475 . . . . . . . . 9 (𝑁 ∈ (NrmSGrp‘𝐺) → (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ∈ (𝐺 GrpHom 𝑄))
2417, 23syl 17 . . . . . . . 8 ((𝜑𝑆) → (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ∈ (𝐺 GrpHom 𝑄))
2520a1i 11 . . . . . . . . 9 (𝜑𝑆 ⊆ (SubGrp‘𝐺))
2625sselda 3894 . . . . . . . 8 ((𝜑𝑆) → ∈ (SubGrp‘𝐺))
27 ghmima 18459 . . . . . . . 8 (((𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ∈ (𝐺 GrpHom 𝑄) ∧ ∈ (SubGrp‘𝐺)) → ((𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) “ ) ∈ (SubGrp‘𝑄))
2824, 26, 27syl2anc 587 . . . . . . 7 ((𝜑𝑆) → ((𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) “ ) ∈ (SubGrp‘𝑄))
2922, 28eqeltrd 2852 . . . . . 6 ((𝜑𝑆) → (𝐸) ∈ (SubGrp‘𝑄))
30 nsgmgc.t . . . . . 6 𝑇 = (SubGrp‘𝑄)
3129, 30eleqtrrdi 2863 . . . . 5 ((𝜑𝑆) → (𝐸) ∈ 𝑇)
3231ralrimiva 3113 . . . 4 (𝜑 → ∀𝑆 (𝐸) ∈ 𝑇)
33 ffnfv 6879 . . . 4 (𝐸:𝑆𝑇 ↔ (𝐸 Fn 𝑆 ∧ ∀𝑆 (𝐸) ∈ 𝑇))
347, 32, 33sylanbrc 586 . . 3 (𝜑𝐸:𝑆𝑇)
35 sseq2 3920 . . . . . 6 ( = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} → (𝑁𝑁 ⊆ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}))
3616adantr 484 . . . . . . 7 ((𝜑𝑓𝑇) → 𝑁 ∈ (NrmSGrp‘𝐺))
37 simpr 488 . . . . . . . 8 ((𝜑𝑓𝑇) → 𝑓𝑇)
3837, 30eleqtrdi 2862 . . . . . . 7 ((𝜑𝑓𝑇) → 𝑓 ∈ (SubGrp‘𝑄))
398, 9, 10, 36, 38nsgmgclem 31129 . . . . . 6 ((𝜑𝑓𝑇) → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ (SubGrp‘𝐺))
40 nsgsubg 18390 . . . . . . . . . 10 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
4116, 40syl 17 . . . . . . . . 9 (𝜑𝑁 ∈ (SubGrp‘𝐺))
428subgss 18360 . . . . . . . . 9 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁𝐵)
4341, 42syl 17 . . . . . . . 8 (𝜑𝑁𝐵)
4443adantr 484 . . . . . . 7 ((𝜑𝑓𝑇) → 𝑁𝐵)
4541ad2antrr 725 . . . . . . . . 9 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → 𝑁 ∈ (SubGrp‘𝐺))
46 simpr 488 . . . . . . . . 9 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → 𝑎𝑁)
4710grplsmid 31125 . . . . . . . . 9 ((𝑁 ∈ (SubGrp‘𝐺) ∧ 𝑎𝑁) → ({𝑎} 𝑁) = 𝑁)
4845, 46, 47syl2anc 587 . . . . . . . 8 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → ({𝑎} 𝑁) = 𝑁)
4916ad2antrr 725 . . . . . . . . 9 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → 𝑁 ∈ (NrmSGrp‘𝐺))
5038adantr 484 . . . . . . . . 9 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → 𝑓 ∈ (SubGrp‘𝑄))
519nsgqus0 31128 . . . . . . . . 9 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑓 ∈ (SubGrp‘𝑄)) → 𝑁𝑓)
5249, 50, 51syl2anc 587 . . . . . . . 8 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → 𝑁𝑓)
5348, 52eqeltrd 2852 . . . . . . 7 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → ({𝑎} 𝑁) ∈ 𝑓)
5444, 53ssrabdv 3980 . . . . . 6 ((𝜑𝑓𝑇) → 𝑁 ⊆ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
5535, 39, 54elrabd 3606 . . . . 5 ((𝜑𝑓𝑇) → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ { ∈ (SubGrp‘𝐺) ∣ 𝑁})
5655, 19eleqtrrdi 2863 . . . 4 ((𝜑𝑓𝑇) → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ 𝑆)
57 nsgmgc.f . . . 4 𝐹 = (𝑓𝑇 ↦ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
5856, 57fmptd 6875 . . 3 (𝜑𝐹:𝑇𝑆)
5934, 58jca 515 . 2 (𝜑 → (𝐸:𝑆𝑇𝐹:𝑇𝑆))
608subgss 18360 . . . . . . . . . 10 ( ∈ (SubGrp‘𝐺) → 𝐵)
6126, 60syl 17 . . . . . . . . 9 ((𝜑𝑆) → 𝐵)
6261ad2antrr 725 . . . . . . . 8 ((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) → 𝐵)
636fvmpt2 6775 . . . . . . . . . . . 12 ((𝑆 ∧ ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ V) → (𝐸) = ran (𝑥 ↦ ({𝑥} 𝑁)))
6418, 4, 63sylancl 589 . . . . . . . . . . 11 ((𝜑𝑆) → (𝐸) = ran (𝑥 ↦ ({𝑥} 𝑁)))
6564ad5ant12 755 . . . . . . . . . 10 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) ∧ 𝑎) → (𝐸) = ran (𝑥 ↦ ({𝑥} 𝑁)))
66 simplr 768 . . . . . . . . . 10 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) ∧ 𝑎) → (𝐸) ⊆ 𝑓)
6765, 66eqsstrrd 3933 . . . . . . . . 9 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) ∧ 𝑎) → ran (𝑥 ↦ ({𝑥} 𝑁)) ⊆ 𝑓)
68 eqid 2758 . . . . . . . . . 10 (𝑥 ↦ ({𝑥} 𝑁)) = (𝑥 ↦ ({𝑥} 𝑁))
69 simpr 488 . . . . . . . . . . 11 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) ∧ 𝑎) → 𝑎)
70 sneq 4535 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → {𝑥} = {𝑎})
7170oveq1d 7171 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → ({𝑥} 𝑁) = ({𝑎} 𝑁))
7271eqeq2d 2769 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (({𝑎} 𝑁) = ({𝑥} 𝑁) ↔ ({𝑎} 𝑁) = ({𝑎} 𝑁)))
7372adantl 485 . . . . . . . . . . 11 ((((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) ∧ 𝑎) ∧ 𝑥 = 𝑎) → (({𝑎} 𝑁) = ({𝑥} 𝑁) ↔ ({𝑎} 𝑁) = ({𝑎} 𝑁)))
74 eqidd 2759 . . . . . . . . . . 11 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) ∧ 𝑎) → ({𝑎} 𝑁) = ({𝑎} 𝑁))
7569, 73, 74rspcedvd 3546 . . . . . . . . . 10 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) ∧ 𝑎) → ∃𝑥 ({𝑎} 𝑁) = ({𝑥} 𝑁))
76 ovexd 7191 . . . . . . . . . 10 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) ∧ 𝑎) → ({𝑎} 𝑁) ∈ V)
7768, 75, 76elrnmptd 5807 . . . . . . . . 9 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) ∧ 𝑎) → ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
7867, 77sseldd 3895 . . . . . . . 8 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) ∧ 𝑎) → ({𝑎} 𝑁) ∈ 𝑓)
7962, 78ssrabdv 3980 . . . . . . 7 ((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) → ⊆ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
80 simpr 488 . . . . . . . . 9 (((𝜑𝑆) ∧ 𝑓𝑇) → 𝑓𝑇)
818fvexi 6677 . . . . . . . . . 10 𝐵 ∈ V
8281rabex 5206 . . . . . . . . 9 {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ V
8357fvmpt2 6775 . . . . . . . . 9 ((𝑓𝑇 ∧ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ V) → (𝐹𝑓) = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
8480, 82, 83sylancl 589 . . . . . . . 8 (((𝜑𝑆) ∧ 𝑓𝑇) → (𝐹𝑓) = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
8584adantr 484 . . . . . . 7 ((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) → (𝐹𝑓) = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
8679, 85sseqtrrd 3935 . . . . . 6 ((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) → ⊆ (𝐹𝑓))
8764ad2antrr 725 . . . . . . 7 ((((𝜑𝑆) ∧ 𝑓𝑇) ∧ ⊆ (𝐹𝑓)) → (𝐸) = ran (𝑥 ↦ ({𝑥} 𝑁)))
88 simpr 488 . . . . . . . . . . . 12 ((((𝜑𝑆) ∧ 𝑓𝑇) ∧ ⊆ (𝐹𝑓)) → ⊆ (𝐹𝑓))
8988sselda 3894 . . . . . . . . . . 11 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ ⊆ (𝐹𝑓)) ∧ 𝑥) → 𝑥 ∈ (𝐹𝑓))
9084ad2antrr 725 . . . . . . . . . . 11 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ ⊆ (𝐹𝑓)) ∧ 𝑥) → (𝐹𝑓) = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
9189, 90eleqtrd 2854 . . . . . . . . . 10 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ ⊆ (𝐹𝑓)) ∧ 𝑥) → 𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
92 sneq 4535 . . . . . . . . . . . . . 14 (𝑎 = 𝑥 → {𝑎} = {𝑥})
9392oveq1d 7171 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → ({𝑎} 𝑁) = ({𝑥} 𝑁))
9493eleq1d 2836 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (({𝑎} 𝑁) ∈ 𝑓 ↔ ({𝑥} 𝑁) ∈ 𝑓))
9594elrab 3604 . . . . . . . . . . 11 (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↔ (𝑥𝐵 ∧ ({𝑥} 𝑁) ∈ 𝑓))
9695simprbi 500 . . . . . . . . . 10 (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} → ({𝑥} 𝑁) ∈ 𝑓)
9791, 96syl 17 . . . . . . . . 9 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ ⊆ (𝐹𝑓)) ∧ 𝑥) → ({𝑥} 𝑁) ∈ 𝑓)
9897ralrimiva 3113 . . . . . . . 8 ((((𝜑𝑆) ∧ 𝑓𝑇) ∧ ⊆ (𝐹𝑓)) → ∀𝑥 ({𝑥} 𝑁) ∈ 𝑓)
9968rnmptss 6883 . . . . . . . 8 (∀𝑥 ({𝑥} 𝑁) ∈ 𝑓 → ran (𝑥 ↦ ({𝑥} 𝑁)) ⊆ 𝑓)
10098, 99syl 17 . . . . . . 7 ((((𝜑𝑆) ∧ 𝑓𝑇) ∧ ⊆ (𝐹𝑓)) → ran (𝑥 ↦ ({𝑥} 𝑁)) ⊆ 𝑓)
10187, 100eqsstrd 3932 . . . . . 6 ((((𝜑𝑆) ∧ 𝑓𝑇) ∧ ⊆ (𝐹𝑓)) → (𝐸) ⊆ 𝑓)
10286, 101impbida 800 . . . . 5 (((𝜑𝑆) ∧ 𝑓𝑇) → ((𝐸) ⊆ 𝑓 ⊆ (𝐹𝑓)))
10330fvexi 6677 . . . . . 6 𝑇 ∈ V
104 nsgmgc.w . . . . . . 7 𝑊 = (toInc‘𝑇)
105 eqid 2758 . . . . . . 7 (le‘𝑊) = (le‘𝑊)
106104, 105ipole 17847 . . . . . 6 ((𝑇 ∈ V ∧ (𝐸) ∈ 𝑇𝑓𝑇) → ((𝐸)(le‘𝑊)𝑓 ↔ (𝐸) ⊆ 𝑓))
107103, 31, 80, 106mp3an2ani 1465 . . . . 5 (((𝜑𝑆) ∧ 𝑓𝑇) → ((𝐸)(le‘𝑊)𝑓 ↔ (𝐸) ⊆ 𝑓))
108 fvex 6676 . . . . . . 7 (SubGrp‘𝐺) ∈ V
10919, 108rabex2 5208 . . . . . 6 𝑆 ∈ V
11058ffvelrnda 6848 . . . . . . 7 ((𝜑𝑓𝑇) → (𝐹𝑓) ∈ 𝑆)
111110adantlr 714 . . . . . 6 (((𝜑𝑆) ∧ 𝑓𝑇) → (𝐹𝑓) ∈ 𝑆)
112 nsgmgc.v . . . . . . 7 𝑉 = (toInc‘𝑆)
113 eqid 2758 . . . . . . 7 (le‘𝑉) = (le‘𝑉)
114112, 113ipole 17847 . . . . . 6 ((𝑆 ∈ V ∧ 𝑆 ∧ (𝐹𝑓) ∈ 𝑆) → ((le‘𝑉)(𝐹𝑓) ↔ ⊆ (𝐹𝑓)))
115109, 18, 111, 114mp3an2ani 1465 . . . . 5 (((𝜑𝑆) ∧ 𝑓𝑇) → ((le‘𝑉)(𝐹𝑓) ↔ ⊆ (𝐹𝑓)))
116102, 107, 1153bitr4d 314 . . . 4 (((𝜑𝑆) ∧ 𝑓𝑇) → ((𝐸)(le‘𝑊)𝑓(le‘𝑉)(𝐹𝑓)))
117116anasss 470 . . 3 ((𝜑 ∧ (𝑆𝑓𝑇)) → ((𝐸)(le‘𝑊)𝑓(le‘𝑉)(𝐹𝑓)))
118117ralrimivva 3120 . 2 (𝜑 → ∀𝑆𝑓𝑇 ((𝐸)(le‘𝑊)𝑓(le‘𝑉)(𝐹𝑓)))
119112ipobas 17844 . . . 4 (𝑆 ∈ V → 𝑆 = (Base‘𝑉))
120109, 119ax-mp 5 . . 3 𝑆 = (Base‘𝑉)
121104ipobas 17844 . . . 4 (𝑇 ∈ V → 𝑇 = (Base‘𝑊))
122103, 121ax-mp 5 . . 3 𝑇 = (Base‘𝑊)
123 nsgmgc.j . . 3 𝐽 = (𝑉MGalConn𝑊)
124112ipopos 17849 . . . 4 𝑉 ∈ Poset
125 posprs 17638 . . . 4 (𝑉 ∈ Poset → 𝑉 ∈ Proset )
126124, 125mp1i 13 . . 3 (𝜑𝑉 ∈ Proset )
127104ipopos 17849 . . . 4 𝑊 ∈ Poset
128 posprs 17638 . . . 4 (𝑊 ∈ Poset → 𝑊 ∈ Proset )
129127, 128mp1i 13 . . 3 (𝜑𝑊 ∈ Proset )
130120, 122, 113, 105, 123, 126, 129mgcval 30803 . 2 (𝜑 → (𝐸𝐽𝐹 ↔ ((𝐸:𝑆𝑇𝐹:𝑇𝑆) ∧ ∀𝑆𝑓𝑇 ((𝐸)(le‘𝑊)𝑓(le‘𝑉)(𝐹𝑓)))))
13159, 118, 130mpbir2and 712 1 (𝜑𝐸𝐽𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3070  {crab 3074  Vcvv 3409  wss 3860  {csn 4525   class class class wbr 5036  cmpt 5116  ran crn 5529  cima 5531   Fn wfn 6335  wf 6336  cfv 6340  (class class class)co 7156  [cec 8303  Basecbs 16554  lecple 16643   /s cqus 16849   Proset cproset 17615  Posetcpo 17629  toInccipo 17840  SubGrpcsubg 18353  NrmSGrpcnsg 18354   ~QG cqg 18355   GrpHom cghm 18435  LSSumclsm 18839  MGalConncmgc 30795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-tpos 7908  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-ec 8307  df-qs 8311  df-map 8424  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-sup 8952  df-inf 8953  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-z 12034  df-dec 12151  df-uz 12296  df-fz 12953  df-struct 16556  df-ndx 16557  df-slot 16558  df-base 16560  df-sets 16561  df-ress 16562  df-plusg 16649  df-mulr 16650  df-sca 16652  df-vsca 16653  df-ip 16654  df-tset 16655  df-ple 16656  df-ocomp 16657  df-ds 16658  df-0g 16786  df-imas 16852  df-qus 16853  df-proset 17617  df-poset 17635  df-ipo 17841  df-mgm 17931  df-sgrp 17980  df-mnd 17991  df-submnd 18036  df-grp 18185  df-minusg 18186  df-subg 18356  df-nsg 18357  df-eqg 18358  df-ghm 18436  df-oppg 18554  df-lsm 18841  df-mgc 30797
This theorem is referenced by:  nsgqusf1o  31134
  Copyright terms: Public domain W3C validator