Step | Hyp | Ref
| Expression |
1 | | nfv 1918 |
. . . . 5
⊢
Ⅎℎ𝜑 |
2 | | vex 3426 |
. . . . . . . 8
⊢ ℎ ∈ V |
3 | 2 | mptex 7081 |
. . . . . . 7
⊢ (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ V |
4 | 3 | rnex 7733 |
. . . . . 6
⊢ ran
(𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ V |
5 | 4 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ ℎ ∈ 𝑆) → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ V) |
6 | | nsgmgc.e |
. . . . 5
⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) |
7 | 1, 5, 6 | fnmptd 6558 |
. . . 4
⊢ (𝜑 → 𝐸 Fn 𝑆) |
8 | | nsgmgc.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐺) |
9 | | nsgmgc.q |
. . . . . . . 8
⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) |
10 | | nsgmgc.p |
. . . . . . . 8
⊢ ⊕ =
(LSSum‘𝐺) |
11 | | mpteq1 5163 |
. . . . . . . . . . 11
⊢ (ℎ = 𝑘 → (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) = (𝑥 ∈ 𝑘 ↦ ({𝑥} ⊕ 𝑁))) |
12 | 11 | rneqd 5836 |
. . . . . . . . . 10
⊢ (ℎ = 𝑘 → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) = ran (𝑥 ∈ 𝑘 ↦ ({𝑥} ⊕ 𝑁))) |
13 | 12 | cbvmptv 5183 |
. . . . . . . . 9
⊢ (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) = (𝑘 ∈ 𝑆 ↦ ran (𝑥 ∈ 𝑘 ↦ ({𝑥} ⊕ 𝑁))) |
14 | 6, 13 | eqtri 2766 |
. . . . . . . 8
⊢ 𝐸 = (𝑘 ∈ 𝑆 ↦ ran (𝑥 ∈ 𝑘 ↦ ({𝑥} ⊕ 𝑁))) |
15 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) |
16 | | nsgmgc.n |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) |
17 | 16 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ℎ ∈ 𝑆) → 𝑁 ∈ (NrmSGrp‘𝐺)) |
18 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ ℎ ∈ 𝑆) → ℎ ∈ 𝑆) |
19 | | nsgmgc.s |
. . . . . . . . . 10
⊢ 𝑆 = {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ} |
20 | 19 | ssrab3 4011 |
. . . . . . . . 9
⊢ 𝑆 ⊆ (SubGrp‘𝐺) |
21 | 20 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ ℎ ∈ 𝑆) → 𝑆 ⊆ (SubGrp‘𝐺)) |
22 | 8, 9, 10, 14, 15, 17, 18, 21 | qusima 31496 |
. . . . . . 7
⊢ ((𝜑 ∧ ℎ ∈ 𝑆) → (𝐸‘ℎ) = ((𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) “ ℎ)) |
23 | 8, 9, 15 | qusghm 18786 |
. . . . . . . . 9
⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ∈ (𝐺 GrpHom 𝑄)) |
24 | 17, 23 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ ℎ ∈ 𝑆) → (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ∈ (𝐺 GrpHom 𝑄)) |
25 | 20 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝐺)) |
26 | 25 | sselda 3917 |
. . . . . . . 8
⊢ ((𝜑 ∧ ℎ ∈ 𝑆) → ℎ ∈ (SubGrp‘𝐺)) |
27 | | ghmima 18770 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ∈ (𝐺 GrpHom 𝑄) ∧ ℎ ∈ (SubGrp‘𝐺)) → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) “ ℎ) ∈ (SubGrp‘𝑄)) |
28 | 24, 26, 27 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ ℎ ∈ 𝑆) → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) “ ℎ) ∈ (SubGrp‘𝑄)) |
29 | 22, 28 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝜑 ∧ ℎ ∈ 𝑆) → (𝐸‘ℎ) ∈ (SubGrp‘𝑄)) |
30 | | nsgmgc.t |
. . . . . 6
⊢ 𝑇 = (SubGrp‘𝑄) |
31 | 29, 30 | eleqtrrdi 2850 |
. . . . 5
⊢ ((𝜑 ∧ ℎ ∈ 𝑆) → (𝐸‘ℎ) ∈ 𝑇) |
32 | 31 | ralrimiva 3107 |
. . . 4
⊢ (𝜑 → ∀ℎ ∈ 𝑆 (𝐸‘ℎ) ∈ 𝑇) |
33 | | ffnfv 6974 |
. . . 4
⊢ (𝐸:𝑆⟶𝑇 ↔ (𝐸 Fn 𝑆 ∧ ∀ℎ ∈ 𝑆 (𝐸‘ℎ) ∈ 𝑇)) |
34 | 7, 32, 33 | sylanbrc 582 |
. . 3
⊢ (𝜑 → 𝐸:𝑆⟶𝑇) |
35 | | sseq2 3943 |
. . . . . 6
⊢ (ℎ = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} → (𝑁 ⊆ ℎ ↔ 𝑁 ⊆ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓})) |
36 | 16 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → 𝑁 ∈ (NrmSGrp‘𝐺)) |
37 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → 𝑓 ∈ 𝑇) |
38 | 37, 30 | eleqtrdi 2849 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → 𝑓 ∈ (SubGrp‘𝑄)) |
39 | 8, 9, 10, 36, 38 | nsgmgclem 31498 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ∈ (SubGrp‘𝐺)) |
40 | | nsgsubg 18701 |
. . . . . . . . . 10
⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺)) |
41 | 16, 40 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ (SubGrp‘𝐺)) |
42 | 8 | subgss 18671 |
. . . . . . . . 9
⊢ (𝑁 ∈ (SubGrp‘𝐺) → 𝑁 ⊆ 𝐵) |
43 | 41, 42 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ⊆ 𝐵) |
44 | 43 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → 𝑁 ⊆ 𝐵) |
45 | 41 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑇) ∧ 𝑎 ∈ 𝑁) → 𝑁 ∈ (SubGrp‘𝐺)) |
46 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑇) ∧ 𝑎 ∈ 𝑁) → 𝑎 ∈ 𝑁) |
47 | 10 | grplsmid 31494 |
. . . . . . . . 9
⊢ ((𝑁 ∈ (SubGrp‘𝐺) ∧ 𝑎 ∈ 𝑁) → ({𝑎} ⊕ 𝑁) = 𝑁) |
48 | 45, 46, 47 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑇) ∧ 𝑎 ∈ 𝑁) → ({𝑎} ⊕ 𝑁) = 𝑁) |
49 | 16 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑇) ∧ 𝑎 ∈ 𝑁) → 𝑁 ∈ (NrmSGrp‘𝐺)) |
50 | 38 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑇) ∧ 𝑎 ∈ 𝑁) → 𝑓 ∈ (SubGrp‘𝑄)) |
51 | 9 | nsgqus0 31497 |
. . . . . . . . 9
⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑓 ∈ (SubGrp‘𝑄)) → 𝑁 ∈ 𝑓) |
52 | 49, 50, 51 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑇) ∧ 𝑎 ∈ 𝑁) → 𝑁 ∈ 𝑓) |
53 | 48, 52 | eqeltrd 2839 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑇) ∧ 𝑎 ∈ 𝑁) → ({𝑎} ⊕ 𝑁) ∈ 𝑓) |
54 | 44, 53 | ssrabdv 4003 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → 𝑁 ⊆ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) |
55 | 35, 39, 54 | elrabd 3619 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ∈ {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ}) |
56 | 55, 19 | eleqtrrdi 2850 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ∈ 𝑆) |
57 | | nsgmgc.f |
. . . 4
⊢ 𝐹 = (𝑓 ∈ 𝑇 ↦ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) |
58 | 56, 57 | fmptd 6970 |
. . 3
⊢ (𝜑 → 𝐹:𝑇⟶𝑆) |
59 | 34, 58 | jca 511 |
. 2
⊢ (𝜑 → (𝐸:𝑆⟶𝑇 ∧ 𝐹:𝑇⟶𝑆)) |
60 | 8 | subgss 18671 |
. . . . . . . . . 10
⊢ (ℎ ∈ (SubGrp‘𝐺) → ℎ ⊆ 𝐵) |
61 | 26, 60 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ℎ ∈ 𝑆) → ℎ ⊆ 𝐵) |
62 | 61 | ad2antrr 722 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ (𝐸‘ℎ) ⊆ 𝑓) → ℎ ⊆ 𝐵) |
63 | 6 | fvmpt2 6868 |
. . . . . . . . . . . 12
⊢ ((ℎ ∈ 𝑆 ∧ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ V) → (𝐸‘ℎ) = ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) |
64 | 18, 4, 63 | sylancl 585 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ℎ ∈ 𝑆) → (𝐸‘ℎ) = ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) |
65 | 64 | ad5ant12 752 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ (𝐸‘ℎ) ⊆ 𝑓) ∧ 𝑎 ∈ ℎ) → (𝐸‘ℎ) = ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) |
66 | | simplr 765 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ (𝐸‘ℎ) ⊆ 𝑓) ∧ 𝑎 ∈ ℎ) → (𝐸‘ℎ) ⊆ 𝑓) |
67 | 65, 66 | eqsstrrd 3956 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ (𝐸‘ℎ) ⊆ 𝑓) ∧ 𝑎 ∈ ℎ) → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ⊆ 𝑓) |
68 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) = (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) |
69 | | simpr 484 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ (𝐸‘ℎ) ⊆ 𝑓) ∧ 𝑎 ∈ ℎ) → 𝑎 ∈ ℎ) |
70 | | sneq 4568 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑎 → {𝑥} = {𝑎}) |
71 | 70 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑎 → ({𝑥} ⊕ 𝑁) = ({𝑎} ⊕ 𝑁)) |
72 | 71 | eqeq2d 2749 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑎 → (({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁) ↔ ({𝑎} ⊕ 𝑁) = ({𝑎} ⊕ 𝑁))) |
73 | 72 | adantl 481 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ (𝐸‘ℎ) ⊆ 𝑓) ∧ 𝑎 ∈ ℎ) ∧ 𝑥 = 𝑎) → (({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁) ↔ ({𝑎} ⊕ 𝑁) = ({𝑎} ⊕ 𝑁))) |
74 | | eqidd 2739 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ (𝐸‘ℎ) ⊆ 𝑓) ∧ 𝑎 ∈ ℎ) → ({𝑎} ⊕ 𝑁) = ({𝑎} ⊕ 𝑁)) |
75 | 69, 73, 74 | rspcedvd 3555 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ (𝐸‘ℎ) ⊆ 𝑓) ∧ 𝑎 ∈ ℎ) → ∃𝑥 ∈ ℎ ({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁)) |
76 | | ovexd 7290 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ (𝐸‘ℎ) ⊆ 𝑓) ∧ 𝑎 ∈ ℎ) → ({𝑎} ⊕ 𝑁) ∈ V) |
77 | 68, 75, 76 | elrnmptd 5859 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ (𝐸‘ℎ) ⊆ 𝑓) ∧ 𝑎 ∈ ℎ) → ({𝑎} ⊕ 𝑁) ∈ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) |
78 | 67, 77 | sseldd 3918 |
. . . . . . . 8
⊢
(((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ (𝐸‘ℎ) ⊆ 𝑓) ∧ 𝑎 ∈ ℎ) → ({𝑎} ⊕ 𝑁) ∈ 𝑓) |
79 | 62, 78 | ssrabdv 4003 |
. . . . . . 7
⊢ ((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ (𝐸‘ℎ) ⊆ 𝑓) → ℎ ⊆ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) |
80 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) → 𝑓 ∈ 𝑇) |
81 | 8 | fvexi 6770 |
. . . . . . . . . 10
⊢ 𝐵 ∈ V |
82 | 81 | rabex 5251 |
. . . . . . . . 9
⊢ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ∈ V |
83 | 57 | fvmpt2 6868 |
. . . . . . . . 9
⊢ ((𝑓 ∈ 𝑇 ∧ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ∈ V) → (𝐹‘𝑓) = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) |
84 | 80, 82, 83 | sylancl 585 |
. . . . . . . 8
⊢ (((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) → (𝐹‘𝑓) = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) |
85 | 84 | adantr 480 |
. . . . . . 7
⊢ ((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ (𝐸‘ℎ) ⊆ 𝑓) → (𝐹‘𝑓) = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) |
86 | 79, 85 | sseqtrrd 3958 |
. . . . . 6
⊢ ((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ (𝐸‘ℎ) ⊆ 𝑓) → ℎ ⊆ (𝐹‘𝑓)) |
87 | 64 | ad2antrr 722 |
. . . . . . 7
⊢ ((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ ℎ ⊆ (𝐹‘𝑓)) → (𝐸‘ℎ) = ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) |
88 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ ℎ ⊆ (𝐹‘𝑓)) → ℎ ⊆ (𝐹‘𝑓)) |
89 | 88 | sselda 3917 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ ℎ ⊆ (𝐹‘𝑓)) ∧ 𝑥 ∈ ℎ) → 𝑥 ∈ (𝐹‘𝑓)) |
90 | 84 | ad2antrr 722 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ ℎ ⊆ (𝐹‘𝑓)) ∧ 𝑥 ∈ ℎ) → (𝐹‘𝑓) = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) |
91 | 89, 90 | eleqtrd 2841 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ ℎ ⊆ (𝐹‘𝑓)) ∧ 𝑥 ∈ ℎ) → 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) |
92 | | sneq 4568 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑥 → {𝑎} = {𝑥}) |
93 | 92 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑥 → ({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁)) |
94 | 93 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑥 → (({𝑎} ⊕ 𝑁) ∈ 𝑓 ↔ ({𝑥} ⊕ 𝑁) ∈ 𝑓)) |
95 | 94 | elrab 3617 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ↔ (𝑥 ∈ 𝐵 ∧ ({𝑥} ⊕ 𝑁) ∈ 𝑓)) |
96 | 95 | simprbi 496 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} → ({𝑥} ⊕ 𝑁) ∈ 𝑓) |
97 | 91, 96 | syl 17 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ ℎ ⊆ (𝐹‘𝑓)) ∧ 𝑥 ∈ ℎ) → ({𝑥} ⊕ 𝑁) ∈ 𝑓) |
98 | 97 | ralrimiva 3107 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ ℎ ⊆ (𝐹‘𝑓)) → ∀𝑥 ∈ ℎ ({𝑥} ⊕ 𝑁) ∈ 𝑓) |
99 | 68 | rnmptss 6978 |
. . . . . . . 8
⊢
(∀𝑥 ∈
ℎ ({𝑥} ⊕ 𝑁) ∈ 𝑓 → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ⊆ 𝑓) |
100 | 98, 99 | syl 17 |
. . . . . . 7
⊢ ((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ ℎ ⊆ (𝐹‘𝑓)) → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ⊆ 𝑓) |
101 | 87, 100 | eqsstrd 3955 |
. . . . . 6
⊢ ((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ ℎ ⊆ (𝐹‘𝑓)) → (𝐸‘ℎ) ⊆ 𝑓) |
102 | 86, 101 | impbida 797 |
. . . . 5
⊢ (((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) → ((𝐸‘ℎ) ⊆ 𝑓 ↔ ℎ ⊆ (𝐹‘𝑓))) |
103 | 30 | fvexi 6770 |
. . . . . 6
⊢ 𝑇 ∈ V |
104 | | nsgmgc.w |
. . . . . . 7
⊢ 𝑊 = (toInc‘𝑇) |
105 | | eqid 2738 |
. . . . . . 7
⊢
(le‘𝑊) =
(le‘𝑊) |
106 | 104, 105 | ipole 18167 |
. . . . . 6
⊢ ((𝑇 ∈ V ∧ (𝐸‘ℎ) ∈ 𝑇 ∧ 𝑓 ∈ 𝑇) → ((𝐸‘ℎ)(le‘𝑊)𝑓 ↔ (𝐸‘ℎ) ⊆ 𝑓)) |
107 | 103, 31, 80, 106 | mp3an2ani 1466 |
. . . . 5
⊢ (((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) → ((𝐸‘ℎ)(le‘𝑊)𝑓 ↔ (𝐸‘ℎ) ⊆ 𝑓)) |
108 | | fvex 6769 |
. . . . . . 7
⊢
(SubGrp‘𝐺)
∈ V |
109 | 19, 108 | rabex2 5253 |
. . . . . 6
⊢ 𝑆 ∈ V |
110 | 58 | ffvelrnda 6943 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → (𝐹‘𝑓) ∈ 𝑆) |
111 | 110 | adantlr 711 |
. . . . . 6
⊢ (((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) → (𝐹‘𝑓) ∈ 𝑆) |
112 | | nsgmgc.v |
. . . . . . 7
⊢ 𝑉 = (toInc‘𝑆) |
113 | | eqid 2738 |
. . . . . . 7
⊢
(le‘𝑉) =
(le‘𝑉) |
114 | 112, 113 | ipole 18167 |
. . . . . 6
⊢ ((𝑆 ∈ V ∧ ℎ ∈ 𝑆 ∧ (𝐹‘𝑓) ∈ 𝑆) → (ℎ(le‘𝑉)(𝐹‘𝑓) ↔ ℎ ⊆ (𝐹‘𝑓))) |
115 | 109, 18, 111, 114 | mp3an2ani 1466 |
. . . . 5
⊢ (((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) → (ℎ(le‘𝑉)(𝐹‘𝑓) ↔ ℎ ⊆ (𝐹‘𝑓))) |
116 | 102, 107,
115 | 3bitr4d 310 |
. . . 4
⊢ (((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) → ((𝐸‘ℎ)(le‘𝑊)𝑓 ↔ ℎ(le‘𝑉)(𝐹‘𝑓))) |
117 | 116 | anasss 466 |
. . 3
⊢ ((𝜑 ∧ (ℎ ∈ 𝑆 ∧ 𝑓 ∈ 𝑇)) → ((𝐸‘ℎ)(le‘𝑊)𝑓 ↔ ℎ(le‘𝑉)(𝐹‘𝑓))) |
118 | 117 | ralrimivva 3114 |
. 2
⊢ (𝜑 → ∀ℎ ∈ 𝑆 ∀𝑓 ∈ 𝑇 ((𝐸‘ℎ)(le‘𝑊)𝑓 ↔ ℎ(le‘𝑉)(𝐹‘𝑓))) |
119 | 112 | ipobas 18164 |
. . . 4
⊢ (𝑆 ∈ V → 𝑆 = (Base‘𝑉)) |
120 | 109, 119 | ax-mp 5 |
. . 3
⊢ 𝑆 = (Base‘𝑉) |
121 | 104 | ipobas 18164 |
. . . 4
⊢ (𝑇 ∈ V → 𝑇 = (Base‘𝑊)) |
122 | 103, 121 | ax-mp 5 |
. . 3
⊢ 𝑇 = (Base‘𝑊) |
123 | | nsgmgc.j |
. . 3
⊢ 𝐽 = (𝑉MGalConn𝑊) |
124 | 112 | ipopos 18169 |
. . . 4
⊢ 𝑉 ∈ Poset |
125 | | posprs 17949 |
. . . 4
⊢ (𝑉 ∈ Poset → 𝑉 ∈ Proset
) |
126 | 124, 125 | mp1i 13 |
. . 3
⊢ (𝜑 → 𝑉 ∈ Proset ) |
127 | 104 | ipopos 18169 |
. . . 4
⊢ 𝑊 ∈ Poset |
128 | | posprs 17949 |
. . . 4
⊢ (𝑊 ∈ Poset → 𝑊 ∈ Proset
) |
129 | 127, 128 | mp1i 13 |
. . 3
⊢ (𝜑 → 𝑊 ∈ Proset ) |
130 | 120, 122,
113, 105, 123, 126, 129 | mgcval 31167 |
. 2
⊢ (𝜑 → (𝐸𝐽𝐹 ↔ ((𝐸:𝑆⟶𝑇 ∧ 𝐹:𝑇⟶𝑆) ∧ ∀ℎ ∈ 𝑆 ∀𝑓 ∈ 𝑇 ((𝐸‘ℎ)(le‘𝑊)𝑓 ↔ ℎ(le‘𝑉)(𝐹‘𝑓))))) |
131 | 59, 118, 130 | mpbir2and 709 |
1
⊢ (𝜑 → 𝐸𝐽𝐹) |