Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nsgmgc Structured version   Visualization version   GIF version

Theorem nsgmgc 33349
Description: There is a monotone Galois connection between the lattice of subgroups of a group 𝐺 containing a normal subgroup 𝑁 and the lattice of subgroups of the quotient group 𝐺 / 𝑁. This is sometimes called the lattice theorem. (Contributed by Thierry Arnoux, 27-Jul-2024.)
Hypotheses
Ref Expression
nsgmgc.b 𝐵 = (Base‘𝐺)
nsgmgc.s 𝑆 = { ∈ (SubGrp‘𝐺) ∣ 𝑁}
nsgmgc.t 𝑇 = (SubGrp‘𝑄)
nsgmgc.j 𝐽 = (𝑉MGalConn𝑊)
nsgmgc.v 𝑉 = (toInc‘𝑆)
nsgmgc.w 𝑊 = (toInc‘𝑇)
nsgmgc.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
nsgmgc.p = (LSSum‘𝐺)
nsgmgc.e 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
nsgmgc.f 𝐹 = (𝑓𝑇 ↦ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
nsgmgc.n (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
Assertion
Ref Expression
nsgmgc (𝜑𝐸𝐽𝐹)
Distinct variable groups:   ,𝑎,,𝑥   𝐵,𝑎,,𝑥   𝐸,𝑎,𝑓,,𝑥   𝑓,𝐹,,𝑥   𝐺,𝑎,𝑓,,𝑥   𝑁,𝑎,,𝑥   𝑄,𝑎,𝑓,,𝑥   𝑆,𝑎,𝑓,,𝑥   𝑇,𝑎,𝑓,,𝑥   𝑓,𝑉,   𝑓,𝑊,   𝜑,𝑎,𝑓,,𝑥
Allowed substitution hints:   𝐵(𝑓)   (𝑓)   𝐹(𝑎)   𝐽(𝑥,𝑓,,𝑎)   𝑁(𝑓)   𝑉(𝑥,𝑎)   𝑊(𝑥,𝑎)

Proof of Theorem nsgmgc
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . . 5 𝜑
2 vex 3440 . . . . . . . 8 ∈ V
32mptex 7159 . . . . . . 7 (𝑥 ↦ ({𝑥} 𝑁)) ∈ V
43rnex 7843 . . . . . 6 ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ V
54a1i 11 . . . . 5 ((𝜑𝑆) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ V)
6 nsgmgc.e . . . . 5 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
71, 5, 6fnmptd 6623 . . . 4 (𝜑𝐸 Fn 𝑆)
8 nsgmgc.b . . . . . . . 8 𝐵 = (Base‘𝐺)
9 nsgmgc.q . . . . . . . 8 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
10 nsgmgc.p . . . . . . . 8 = (LSSum‘𝐺)
11 mpteq1 5181 . . . . . . . . . . 11 ( = 𝑘 → (𝑥 ↦ ({𝑥} 𝑁)) = (𝑥𝑘 ↦ ({𝑥} 𝑁)))
1211rneqd 5880 . . . . . . . . . 10 ( = 𝑘 → ran (𝑥 ↦ ({𝑥} 𝑁)) = ran (𝑥𝑘 ↦ ({𝑥} 𝑁)))
1312cbvmptv 5196 . . . . . . . . 9 (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁))) = (𝑘𝑆 ↦ ran (𝑥𝑘 ↦ ({𝑥} 𝑁)))
146, 13eqtri 2752 . . . . . . . 8 𝐸 = (𝑘𝑆 ↦ ran (𝑥𝑘 ↦ ({𝑥} 𝑁)))
15 eqid 2729 . . . . . . . 8 (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁))
16 nsgmgc.n . . . . . . . . 9 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
1716adantr 480 . . . . . . . 8 ((𝜑𝑆) → 𝑁 ∈ (NrmSGrp‘𝐺))
18 simpr 484 . . . . . . . 8 ((𝜑𝑆) → 𝑆)
19 nsgmgc.s . . . . . . . . . 10 𝑆 = { ∈ (SubGrp‘𝐺) ∣ 𝑁}
2019ssrab3 4033 . . . . . . . . 9 𝑆 ⊆ (SubGrp‘𝐺)
2120a1i 11 . . . . . . . 8 ((𝜑𝑆) → 𝑆 ⊆ (SubGrp‘𝐺))
228, 9, 10, 14, 15, 17, 18, 21qusima 33345 . . . . . . 7 ((𝜑𝑆) → (𝐸) = ((𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) “ ))
238, 9, 15qusghm 19134 . . . . . . . . 9 (𝑁 ∈ (NrmSGrp‘𝐺) → (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ∈ (𝐺 GrpHom 𝑄))
2417, 23syl 17 . . . . . . . 8 ((𝜑𝑆) → (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ∈ (𝐺 GrpHom 𝑄))
2520a1i 11 . . . . . . . . 9 (𝜑𝑆 ⊆ (SubGrp‘𝐺))
2625sselda 3935 . . . . . . . 8 ((𝜑𝑆) → ∈ (SubGrp‘𝐺))
27 ghmima 19116 . . . . . . . 8 (((𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ∈ (𝐺 GrpHom 𝑄) ∧ ∈ (SubGrp‘𝐺)) → ((𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) “ ) ∈ (SubGrp‘𝑄))
2824, 26, 27syl2anc 584 . . . . . . 7 ((𝜑𝑆) → ((𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) “ ) ∈ (SubGrp‘𝑄))
2922, 28eqeltrd 2828 . . . . . 6 ((𝜑𝑆) → (𝐸) ∈ (SubGrp‘𝑄))
30 nsgmgc.t . . . . . 6 𝑇 = (SubGrp‘𝑄)
3129, 30eleqtrrdi 2839 . . . . 5 ((𝜑𝑆) → (𝐸) ∈ 𝑇)
3231ralrimiva 3121 . . . 4 (𝜑 → ∀𝑆 (𝐸) ∈ 𝑇)
33 ffnfv 7053 . . . 4 (𝐸:𝑆𝑇 ↔ (𝐸 Fn 𝑆 ∧ ∀𝑆 (𝐸) ∈ 𝑇))
347, 32, 33sylanbrc 583 . . 3 (𝜑𝐸:𝑆𝑇)
35 sseq2 3962 . . . . . 6 ( = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} → (𝑁𝑁 ⊆ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}))
3616adantr 480 . . . . . . 7 ((𝜑𝑓𝑇) → 𝑁 ∈ (NrmSGrp‘𝐺))
37 simpr 484 . . . . . . . 8 ((𝜑𝑓𝑇) → 𝑓𝑇)
3837, 30eleqtrdi 2838 . . . . . . 7 ((𝜑𝑓𝑇) → 𝑓 ∈ (SubGrp‘𝑄))
398, 9, 10, 36, 38nsgmgclem 33348 . . . . . 6 ((𝜑𝑓𝑇) → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ (SubGrp‘𝐺))
40 nsgsubg 19037 . . . . . . . . . 10 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
4116, 40syl 17 . . . . . . . . 9 (𝜑𝑁 ∈ (SubGrp‘𝐺))
428subgss 19006 . . . . . . . . 9 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁𝐵)
4341, 42syl 17 . . . . . . . 8 (𝜑𝑁𝐵)
4443adantr 480 . . . . . . 7 ((𝜑𝑓𝑇) → 𝑁𝐵)
4541ad2antrr 726 . . . . . . . . 9 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → 𝑁 ∈ (SubGrp‘𝐺))
46 simpr 484 . . . . . . . . 9 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → 𝑎𝑁)
4710grplsmid 33341 . . . . . . . . 9 ((𝑁 ∈ (SubGrp‘𝐺) ∧ 𝑎𝑁) → ({𝑎} 𝑁) = 𝑁)
4845, 46, 47syl2anc 584 . . . . . . . 8 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → ({𝑎} 𝑁) = 𝑁)
4916ad2antrr 726 . . . . . . . . 9 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → 𝑁 ∈ (NrmSGrp‘𝐺))
5038adantr 480 . . . . . . . . 9 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → 𝑓 ∈ (SubGrp‘𝑄))
519nsgqus0 33347 . . . . . . . . 9 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑓 ∈ (SubGrp‘𝑄)) → 𝑁𝑓)
5249, 50, 51syl2anc 584 . . . . . . . 8 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → 𝑁𝑓)
5348, 52eqeltrd 2828 . . . . . . 7 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → ({𝑎} 𝑁) ∈ 𝑓)
5444, 53ssrabdv 4025 . . . . . 6 ((𝜑𝑓𝑇) → 𝑁 ⊆ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
5535, 39, 54elrabd 3650 . . . . 5 ((𝜑𝑓𝑇) → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ { ∈ (SubGrp‘𝐺) ∣ 𝑁})
5655, 19eleqtrrdi 2839 . . . 4 ((𝜑𝑓𝑇) → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ 𝑆)
57 nsgmgc.f . . . 4 𝐹 = (𝑓𝑇 ↦ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
5856, 57fmptd 7048 . . 3 (𝜑𝐹:𝑇𝑆)
5934, 58jca 511 . 2 (𝜑 → (𝐸:𝑆𝑇𝐹:𝑇𝑆))
608subgss 19006 . . . . . . . . . 10 ( ∈ (SubGrp‘𝐺) → 𝐵)
6126, 60syl 17 . . . . . . . . 9 ((𝜑𝑆) → 𝐵)
6261ad2antrr 726 . . . . . . . 8 ((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) → 𝐵)
636fvmpt2 6941 . . . . . . . . . . . 12 ((𝑆 ∧ ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ V) → (𝐸) = ran (𝑥 ↦ ({𝑥} 𝑁)))
6418, 4, 63sylancl 586 . . . . . . . . . . 11 ((𝜑𝑆) → (𝐸) = ran (𝑥 ↦ ({𝑥} 𝑁)))
6564ad3antrrr 730 . . . . . . . . . 10 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) ∧ 𝑎) → (𝐸) = ran (𝑥 ↦ ({𝑥} 𝑁)))
66 simplr 768 . . . . . . . . . 10 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) ∧ 𝑎) → (𝐸) ⊆ 𝑓)
6765, 66eqsstrrd 3971 . . . . . . . . 9 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) ∧ 𝑎) → ran (𝑥 ↦ ({𝑥} 𝑁)) ⊆ 𝑓)
68 eqid 2729 . . . . . . . . . 10 (𝑥 ↦ ({𝑥} 𝑁)) = (𝑥 ↦ ({𝑥} 𝑁))
69 simpr 484 . . . . . . . . . . 11 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) ∧ 𝑎) → 𝑎)
70 sneq 4587 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → {𝑥} = {𝑎})
7170oveq1d 7364 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → ({𝑥} 𝑁) = ({𝑎} 𝑁))
7271eqeq2d 2740 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (({𝑎} 𝑁) = ({𝑥} 𝑁) ↔ ({𝑎} 𝑁) = ({𝑎} 𝑁)))
7372adantl 481 . . . . . . . . . . 11 ((((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) ∧ 𝑎) ∧ 𝑥 = 𝑎) → (({𝑎} 𝑁) = ({𝑥} 𝑁) ↔ ({𝑎} 𝑁) = ({𝑎} 𝑁)))
74 eqidd 2730 . . . . . . . . . . 11 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) ∧ 𝑎) → ({𝑎} 𝑁) = ({𝑎} 𝑁))
7569, 73, 74rspcedvd 3579 . . . . . . . . . 10 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) ∧ 𝑎) → ∃𝑥 ({𝑎} 𝑁) = ({𝑥} 𝑁))
76 ovexd 7384 . . . . . . . . . 10 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) ∧ 𝑎) → ({𝑎} 𝑁) ∈ V)
7768, 75, 76elrnmptd 5905 . . . . . . . . 9 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) ∧ 𝑎) → ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
7867, 77sseldd 3936 . . . . . . . 8 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) ∧ 𝑎) → ({𝑎} 𝑁) ∈ 𝑓)
7962, 78ssrabdv 4025 . . . . . . 7 ((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) → ⊆ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
80 simpr 484 . . . . . . . . 9 (((𝜑𝑆) ∧ 𝑓𝑇) → 𝑓𝑇)
818fvexi 6836 . . . . . . . . . 10 𝐵 ∈ V
8281rabex 5278 . . . . . . . . 9 {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ V
8357fvmpt2 6941 . . . . . . . . 9 ((𝑓𝑇 ∧ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ V) → (𝐹𝑓) = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
8480, 82, 83sylancl 586 . . . . . . . 8 (((𝜑𝑆) ∧ 𝑓𝑇) → (𝐹𝑓) = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
8584adantr 480 . . . . . . 7 ((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) → (𝐹𝑓) = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
8679, 85sseqtrrd 3973 . . . . . 6 ((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) → ⊆ (𝐹𝑓))
8764ad2antrr 726 . . . . . . 7 ((((𝜑𝑆) ∧ 𝑓𝑇) ∧ ⊆ (𝐹𝑓)) → (𝐸) = ran (𝑥 ↦ ({𝑥} 𝑁)))
88 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑆) ∧ 𝑓𝑇) ∧ ⊆ (𝐹𝑓)) → ⊆ (𝐹𝑓))
8988sselda 3935 . . . . . . . . . . 11 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ ⊆ (𝐹𝑓)) ∧ 𝑥) → 𝑥 ∈ (𝐹𝑓))
9084ad2antrr 726 . . . . . . . . . . 11 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ ⊆ (𝐹𝑓)) ∧ 𝑥) → (𝐹𝑓) = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
9189, 90eleqtrd 2830 . . . . . . . . . 10 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ ⊆ (𝐹𝑓)) ∧ 𝑥) → 𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
92 sneq 4587 . . . . . . . . . . . . . 14 (𝑎 = 𝑥 → {𝑎} = {𝑥})
9392oveq1d 7364 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → ({𝑎} 𝑁) = ({𝑥} 𝑁))
9493eleq1d 2813 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (({𝑎} 𝑁) ∈ 𝑓 ↔ ({𝑥} 𝑁) ∈ 𝑓))
9594elrab 3648 . . . . . . . . . . 11 (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↔ (𝑥𝐵 ∧ ({𝑥} 𝑁) ∈ 𝑓))
9695simprbi 496 . . . . . . . . . 10 (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} → ({𝑥} 𝑁) ∈ 𝑓)
9791, 96syl 17 . . . . . . . . 9 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ ⊆ (𝐹𝑓)) ∧ 𝑥) → ({𝑥} 𝑁) ∈ 𝑓)
9897ralrimiva 3121 . . . . . . . 8 ((((𝜑𝑆) ∧ 𝑓𝑇) ∧ ⊆ (𝐹𝑓)) → ∀𝑥 ({𝑥} 𝑁) ∈ 𝑓)
9968rnmptss 7057 . . . . . . . 8 (∀𝑥 ({𝑥} 𝑁) ∈ 𝑓 → ran (𝑥 ↦ ({𝑥} 𝑁)) ⊆ 𝑓)
10098, 99syl 17 . . . . . . 7 ((((𝜑𝑆) ∧ 𝑓𝑇) ∧ ⊆ (𝐹𝑓)) → ran (𝑥 ↦ ({𝑥} 𝑁)) ⊆ 𝑓)
10187, 100eqsstrd 3970 . . . . . 6 ((((𝜑𝑆) ∧ 𝑓𝑇) ∧ ⊆ (𝐹𝑓)) → (𝐸) ⊆ 𝑓)
10286, 101impbida 800 . . . . 5 (((𝜑𝑆) ∧ 𝑓𝑇) → ((𝐸) ⊆ 𝑓 ⊆ (𝐹𝑓)))
10330fvexi 6836 . . . . . 6 𝑇 ∈ V
104 nsgmgc.w . . . . . . 7 𝑊 = (toInc‘𝑇)
105 eqid 2729 . . . . . . 7 (le‘𝑊) = (le‘𝑊)
106104, 105ipole 18440 . . . . . 6 ((𝑇 ∈ V ∧ (𝐸) ∈ 𝑇𝑓𝑇) → ((𝐸)(le‘𝑊)𝑓 ↔ (𝐸) ⊆ 𝑓))
107103, 31, 80, 106mp3an2ani 1470 . . . . 5 (((𝜑𝑆) ∧ 𝑓𝑇) → ((𝐸)(le‘𝑊)𝑓 ↔ (𝐸) ⊆ 𝑓))
108 fvex 6835 . . . . . . 7 (SubGrp‘𝐺) ∈ V
10919, 108rabex2 5280 . . . . . 6 𝑆 ∈ V
11058ffvelcdmda 7018 . . . . . . 7 ((𝜑𝑓𝑇) → (𝐹𝑓) ∈ 𝑆)
111110adantlr 715 . . . . . 6 (((𝜑𝑆) ∧ 𝑓𝑇) → (𝐹𝑓) ∈ 𝑆)
112 nsgmgc.v . . . . . . 7 𝑉 = (toInc‘𝑆)
113 eqid 2729 . . . . . . 7 (le‘𝑉) = (le‘𝑉)
114112, 113ipole 18440 . . . . . 6 ((𝑆 ∈ V ∧ 𝑆 ∧ (𝐹𝑓) ∈ 𝑆) → ((le‘𝑉)(𝐹𝑓) ↔ ⊆ (𝐹𝑓)))
115109, 18, 111, 114mp3an2ani 1470 . . . . 5 (((𝜑𝑆) ∧ 𝑓𝑇) → ((le‘𝑉)(𝐹𝑓) ↔ ⊆ (𝐹𝑓)))
116102, 107, 1153bitr4d 311 . . . 4 (((𝜑𝑆) ∧ 𝑓𝑇) → ((𝐸)(le‘𝑊)𝑓(le‘𝑉)(𝐹𝑓)))
117116anasss 466 . . 3 ((𝜑 ∧ (𝑆𝑓𝑇)) → ((𝐸)(le‘𝑊)𝑓(le‘𝑉)(𝐹𝑓)))
118117ralrimivva 3172 . 2 (𝜑 → ∀𝑆𝑓𝑇 ((𝐸)(le‘𝑊)𝑓(le‘𝑉)(𝐹𝑓)))
119112ipobas 18437 . . . 4 (𝑆 ∈ V → 𝑆 = (Base‘𝑉))
120109, 119ax-mp 5 . . 3 𝑆 = (Base‘𝑉)
121104ipobas 18437 . . . 4 (𝑇 ∈ V → 𝑇 = (Base‘𝑊))
122103, 121ax-mp 5 . . 3 𝑇 = (Base‘𝑊)
123 nsgmgc.j . . 3 𝐽 = (𝑉MGalConn𝑊)
124112ipopos 18442 . . . 4 𝑉 ∈ Poset
125 posprs 18222 . . . 4 (𝑉 ∈ Poset → 𝑉 ∈ Proset )
126124, 125mp1i 13 . . 3 (𝜑𝑉 ∈ Proset )
127104ipopos 18442 . . . 4 𝑊 ∈ Poset
128 posprs 18222 . . . 4 (𝑊 ∈ Poset → 𝑊 ∈ Proset )
129127, 128mp1i 13 . . 3 (𝜑𝑊 ∈ Proset )
130120, 122, 113, 105, 123, 126, 129mgcval 32929 . 2 (𝜑 → (𝐸𝐽𝐹 ↔ ((𝐸:𝑆𝑇𝐹:𝑇𝑆) ∧ ∀𝑆𝑓𝑇 ((𝐸)(le‘𝑊)𝑓(le‘𝑉)(𝐹𝑓)))))
13159, 118, 130mpbir2and 713 1 (𝜑𝐸𝐽𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3394  Vcvv 3436  wss 3903  {csn 4577   class class class wbr 5092  cmpt 5173  ran crn 5620  cima 5622   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  [cec 8623  Basecbs 17120  lecple 17168   /s cqus 17409   Proset cproset 18198  Posetcpo 18213  toInccipo 18433  SubGrpcsubg 18999  NrmSGrpcnsg 19000   ~QG cqg 19001   GrpHom cghm 19091  LSSumclsm 19513  MGalConncmgc 32921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-ec 8627  df-qs 8631  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ocomp 17182  df-ds 17183  df-0g 17345  df-imas 17412  df-qus 17413  df-proset 18200  df-poset 18219  df-ipo 18434  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-subg 19002  df-nsg 19003  df-eqg 19004  df-ghm 19092  df-oppg 19225  df-lsm 19515  df-mgc 32923
This theorem is referenced by:  nsgqusf1o  33353
  Copyright terms: Public domain W3C validator