Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nsgmgc Structured version   Visualization version   GIF version

Theorem nsgmgc 33405
Description: There is a monotone Galois connection between the lattice of subgroups of a group 𝐺 containing a normal subgroup 𝑁 and the lattice of subgroups of the quotient group 𝐺 / 𝑁. This is sometimes called the lattice theorem. (Contributed by Thierry Arnoux, 27-Jul-2024.)
Hypotheses
Ref Expression
nsgmgc.b 𝐵 = (Base‘𝐺)
nsgmgc.s 𝑆 = { ∈ (SubGrp‘𝐺) ∣ 𝑁}
nsgmgc.t 𝑇 = (SubGrp‘𝑄)
nsgmgc.j 𝐽 = (𝑉MGalConn𝑊)
nsgmgc.v 𝑉 = (toInc‘𝑆)
nsgmgc.w 𝑊 = (toInc‘𝑇)
nsgmgc.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
nsgmgc.p = (LSSum‘𝐺)
nsgmgc.e 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
nsgmgc.f 𝐹 = (𝑓𝑇 ↦ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
nsgmgc.n (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
Assertion
Ref Expression
nsgmgc (𝜑𝐸𝐽𝐹)
Distinct variable groups:   ,𝑎,,𝑥   𝐵,𝑎,,𝑥   𝐸,𝑎,𝑓,,𝑥   𝑓,𝐹,,𝑥   𝐺,𝑎,𝑓,,𝑥   𝑁,𝑎,,𝑥   𝑄,𝑎,𝑓,,𝑥   𝑆,𝑎,𝑓,,𝑥   𝑇,𝑎,𝑓,,𝑥   𝑓,𝑉,   𝑓,𝑊,   𝜑,𝑎,𝑓,,𝑥
Allowed substitution hints:   𝐵(𝑓)   (𝑓)   𝐹(𝑎)   𝐽(𝑥,𝑓,,𝑎)   𝑁(𝑓)   𝑉(𝑥,𝑎)   𝑊(𝑥,𝑎)

Proof of Theorem nsgmgc
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nfv 1913 . . . . 5 𝜑
2 vex 3492 . . . . . . . 8 ∈ V
32mptex 7260 . . . . . . 7 (𝑥 ↦ ({𝑥} 𝑁)) ∈ V
43rnex 7950 . . . . . 6 ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ V
54a1i 11 . . . . 5 ((𝜑𝑆) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ V)
6 nsgmgc.e . . . . 5 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
71, 5, 6fnmptd 6721 . . . 4 (𝜑𝐸 Fn 𝑆)
8 nsgmgc.b . . . . . . . 8 𝐵 = (Base‘𝐺)
9 nsgmgc.q . . . . . . . 8 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
10 nsgmgc.p . . . . . . . 8 = (LSSum‘𝐺)
11 mpteq1 5259 . . . . . . . . . . 11 ( = 𝑘 → (𝑥 ↦ ({𝑥} 𝑁)) = (𝑥𝑘 ↦ ({𝑥} 𝑁)))
1211rneqd 5963 . . . . . . . . . 10 ( = 𝑘 → ran (𝑥 ↦ ({𝑥} 𝑁)) = ran (𝑥𝑘 ↦ ({𝑥} 𝑁)))
1312cbvmptv 5279 . . . . . . . . 9 (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁))) = (𝑘𝑆 ↦ ran (𝑥𝑘 ↦ ({𝑥} 𝑁)))
146, 13eqtri 2768 . . . . . . . 8 𝐸 = (𝑘𝑆 ↦ ran (𝑥𝑘 ↦ ({𝑥} 𝑁)))
15 eqid 2740 . . . . . . . 8 (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁))
16 nsgmgc.n . . . . . . . . 9 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
1716adantr 480 . . . . . . . 8 ((𝜑𝑆) → 𝑁 ∈ (NrmSGrp‘𝐺))
18 simpr 484 . . . . . . . 8 ((𝜑𝑆) → 𝑆)
19 nsgmgc.s . . . . . . . . . 10 𝑆 = { ∈ (SubGrp‘𝐺) ∣ 𝑁}
2019ssrab3 4105 . . . . . . . . 9 𝑆 ⊆ (SubGrp‘𝐺)
2120a1i 11 . . . . . . . 8 ((𝜑𝑆) → 𝑆 ⊆ (SubGrp‘𝐺))
228, 9, 10, 14, 15, 17, 18, 21qusima 33401 . . . . . . 7 ((𝜑𝑆) → (𝐸) = ((𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) “ ))
238, 9, 15qusghm 19295 . . . . . . . . 9 (𝑁 ∈ (NrmSGrp‘𝐺) → (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ∈ (𝐺 GrpHom 𝑄))
2417, 23syl 17 . . . . . . . 8 ((𝜑𝑆) → (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ∈ (𝐺 GrpHom 𝑄))
2520a1i 11 . . . . . . . . 9 (𝜑𝑆 ⊆ (SubGrp‘𝐺))
2625sselda 4008 . . . . . . . 8 ((𝜑𝑆) → ∈ (SubGrp‘𝐺))
27 ghmima 19277 . . . . . . . 8 (((𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ∈ (𝐺 GrpHom 𝑄) ∧ ∈ (SubGrp‘𝐺)) → ((𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) “ ) ∈ (SubGrp‘𝑄))
2824, 26, 27syl2anc 583 . . . . . . 7 ((𝜑𝑆) → ((𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) “ ) ∈ (SubGrp‘𝑄))
2922, 28eqeltrd 2844 . . . . . 6 ((𝜑𝑆) → (𝐸) ∈ (SubGrp‘𝑄))
30 nsgmgc.t . . . . . 6 𝑇 = (SubGrp‘𝑄)
3129, 30eleqtrrdi 2855 . . . . 5 ((𝜑𝑆) → (𝐸) ∈ 𝑇)
3231ralrimiva 3152 . . . 4 (𝜑 → ∀𝑆 (𝐸) ∈ 𝑇)
33 ffnfv 7153 . . . 4 (𝐸:𝑆𝑇 ↔ (𝐸 Fn 𝑆 ∧ ∀𝑆 (𝐸) ∈ 𝑇))
347, 32, 33sylanbrc 582 . . 3 (𝜑𝐸:𝑆𝑇)
35 sseq2 4035 . . . . . 6 ( = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} → (𝑁𝑁 ⊆ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}))
3616adantr 480 . . . . . . 7 ((𝜑𝑓𝑇) → 𝑁 ∈ (NrmSGrp‘𝐺))
37 simpr 484 . . . . . . . 8 ((𝜑𝑓𝑇) → 𝑓𝑇)
3837, 30eleqtrdi 2854 . . . . . . 7 ((𝜑𝑓𝑇) → 𝑓 ∈ (SubGrp‘𝑄))
398, 9, 10, 36, 38nsgmgclem 33404 . . . . . 6 ((𝜑𝑓𝑇) → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ (SubGrp‘𝐺))
40 nsgsubg 19198 . . . . . . . . . 10 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
4116, 40syl 17 . . . . . . . . 9 (𝜑𝑁 ∈ (SubGrp‘𝐺))
428subgss 19167 . . . . . . . . 9 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁𝐵)
4341, 42syl 17 . . . . . . . 8 (𝜑𝑁𝐵)
4443adantr 480 . . . . . . 7 ((𝜑𝑓𝑇) → 𝑁𝐵)
4541ad2antrr 725 . . . . . . . . 9 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → 𝑁 ∈ (SubGrp‘𝐺))
46 simpr 484 . . . . . . . . 9 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → 𝑎𝑁)
4710grplsmid 33397 . . . . . . . . 9 ((𝑁 ∈ (SubGrp‘𝐺) ∧ 𝑎𝑁) → ({𝑎} 𝑁) = 𝑁)
4845, 46, 47syl2anc 583 . . . . . . . 8 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → ({𝑎} 𝑁) = 𝑁)
4916ad2antrr 725 . . . . . . . . 9 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → 𝑁 ∈ (NrmSGrp‘𝐺))
5038adantr 480 . . . . . . . . 9 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → 𝑓 ∈ (SubGrp‘𝑄))
519nsgqus0 33403 . . . . . . . . 9 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑓 ∈ (SubGrp‘𝑄)) → 𝑁𝑓)
5249, 50, 51syl2anc 583 . . . . . . . 8 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → 𝑁𝑓)
5348, 52eqeltrd 2844 . . . . . . 7 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → ({𝑎} 𝑁) ∈ 𝑓)
5444, 53ssrabdv 4097 . . . . . 6 ((𝜑𝑓𝑇) → 𝑁 ⊆ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
5535, 39, 54elrabd 3710 . . . . 5 ((𝜑𝑓𝑇) → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ { ∈ (SubGrp‘𝐺) ∣ 𝑁})
5655, 19eleqtrrdi 2855 . . . 4 ((𝜑𝑓𝑇) → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ 𝑆)
57 nsgmgc.f . . . 4 𝐹 = (𝑓𝑇 ↦ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
5856, 57fmptd 7148 . . 3 (𝜑𝐹:𝑇𝑆)
5934, 58jca 511 . 2 (𝜑 → (𝐸:𝑆𝑇𝐹:𝑇𝑆))
608subgss 19167 . . . . . . . . . 10 ( ∈ (SubGrp‘𝐺) → 𝐵)
6126, 60syl 17 . . . . . . . . 9 ((𝜑𝑆) → 𝐵)
6261ad2antrr 725 . . . . . . . 8 ((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) → 𝐵)
636fvmpt2 7040 . . . . . . . . . . . 12 ((𝑆 ∧ ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ V) → (𝐸) = ran (𝑥 ↦ ({𝑥} 𝑁)))
6418, 4, 63sylancl 585 . . . . . . . . . . 11 ((𝜑𝑆) → (𝐸) = ran (𝑥 ↦ ({𝑥} 𝑁)))
6564ad5ant12 755 . . . . . . . . . 10 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) ∧ 𝑎) → (𝐸) = ran (𝑥 ↦ ({𝑥} 𝑁)))
66 simplr 768 . . . . . . . . . 10 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) ∧ 𝑎) → (𝐸) ⊆ 𝑓)
6765, 66eqsstrrd 4048 . . . . . . . . 9 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) ∧ 𝑎) → ran (𝑥 ↦ ({𝑥} 𝑁)) ⊆ 𝑓)
68 eqid 2740 . . . . . . . . . 10 (𝑥 ↦ ({𝑥} 𝑁)) = (𝑥 ↦ ({𝑥} 𝑁))
69 simpr 484 . . . . . . . . . . 11 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) ∧ 𝑎) → 𝑎)
70 sneq 4658 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → {𝑥} = {𝑎})
7170oveq1d 7463 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → ({𝑥} 𝑁) = ({𝑎} 𝑁))
7271eqeq2d 2751 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (({𝑎} 𝑁) = ({𝑥} 𝑁) ↔ ({𝑎} 𝑁) = ({𝑎} 𝑁)))
7372adantl 481 . . . . . . . . . . 11 ((((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) ∧ 𝑎) ∧ 𝑥 = 𝑎) → (({𝑎} 𝑁) = ({𝑥} 𝑁) ↔ ({𝑎} 𝑁) = ({𝑎} 𝑁)))
74 eqidd 2741 . . . . . . . . . . 11 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) ∧ 𝑎) → ({𝑎} 𝑁) = ({𝑎} 𝑁))
7569, 73, 74rspcedvd 3637 . . . . . . . . . 10 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) ∧ 𝑎) → ∃𝑥 ({𝑎} 𝑁) = ({𝑥} 𝑁))
76 ovexd 7483 . . . . . . . . . 10 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) ∧ 𝑎) → ({𝑎} 𝑁) ∈ V)
7768, 75, 76elrnmptd 5986 . . . . . . . . 9 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) ∧ 𝑎) → ({𝑎} 𝑁) ∈ ran (𝑥 ↦ ({𝑥} 𝑁)))
7867, 77sseldd 4009 . . . . . . . 8 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) ∧ 𝑎) → ({𝑎} 𝑁) ∈ 𝑓)
7962, 78ssrabdv 4097 . . . . . . 7 ((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) → ⊆ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
80 simpr 484 . . . . . . . . 9 (((𝜑𝑆) ∧ 𝑓𝑇) → 𝑓𝑇)
818fvexi 6934 . . . . . . . . . 10 𝐵 ∈ V
8281rabex 5357 . . . . . . . . 9 {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ V
8357fvmpt2 7040 . . . . . . . . 9 ((𝑓𝑇 ∧ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ V) → (𝐹𝑓) = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
8480, 82, 83sylancl 585 . . . . . . . 8 (((𝜑𝑆) ∧ 𝑓𝑇) → (𝐹𝑓) = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
8584adantr 480 . . . . . . 7 ((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) → (𝐹𝑓) = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
8679, 85sseqtrrd 4050 . . . . . 6 ((((𝜑𝑆) ∧ 𝑓𝑇) ∧ (𝐸) ⊆ 𝑓) → ⊆ (𝐹𝑓))
8764ad2antrr 725 . . . . . . 7 ((((𝜑𝑆) ∧ 𝑓𝑇) ∧ ⊆ (𝐹𝑓)) → (𝐸) = ran (𝑥 ↦ ({𝑥} 𝑁)))
88 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑆) ∧ 𝑓𝑇) ∧ ⊆ (𝐹𝑓)) → ⊆ (𝐹𝑓))
8988sselda 4008 . . . . . . . . . . 11 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ ⊆ (𝐹𝑓)) ∧ 𝑥) → 𝑥 ∈ (𝐹𝑓))
9084ad2antrr 725 . . . . . . . . . . 11 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ ⊆ (𝐹𝑓)) ∧ 𝑥) → (𝐹𝑓) = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
9189, 90eleqtrd 2846 . . . . . . . . . 10 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ ⊆ (𝐹𝑓)) ∧ 𝑥) → 𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
92 sneq 4658 . . . . . . . . . . . . . 14 (𝑎 = 𝑥 → {𝑎} = {𝑥})
9392oveq1d 7463 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → ({𝑎} 𝑁) = ({𝑥} 𝑁))
9493eleq1d 2829 . . . . . . . . . . . 12 (𝑎 = 𝑥 → (({𝑎} 𝑁) ∈ 𝑓 ↔ ({𝑥} 𝑁) ∈ 𝑓))
9594elrab 3708 . . . . . . . . . . 11 (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↔ (𝑥𝐵 ∧ ({𝑥} 𝑁) ∈ 𝑓))
9695simprbi 496 . . . . . . . . . 10 (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} → ({𝑥} 𝑁) ∈ 𝑓)
9791, 96syl 17 . . . . . . . . 9 (((((𝜑𝑆) ∧ 𝑓𝑇) ∧ ⊆ (𝐹𝑓)) ∧ 𝑥) → ({𝑥} 𝑁) ∈ 𝑓)
9897ralrimiva 3152 . . . . . . . 8 ((((𝜑𝑆) ∧ 𝑓𝑇) ∧ ⊆ (𝐹𝑓)) → ∀𝑥 ({𝑥} 𝑁) ∈ 𝑓)
9968rnmptss 7157 . . . . . . . 8 (∀𝑥 ({𝑥} 𝑁) ∈ 𝑓 → ran (𝑥 ↦ ({𝑥} 𝑁)) ⊆ 𝑓)
10098, 99syl 17 . . . . . . 7 ((((𝜑𝑆) ∧ 𝑓𝑇) ∧ ⊆ (𝐹𝑓)) → ran (𝑥 ↦ ({𝑥} 𝑁)) ⊆ 𝑓)
10187, 100eqsstrd 4047 . . . . . 6 ((((𝜑𝑆) ∧ 𝑓𝑇) ∧ ⊆ (𝐹𝑓)) → (𝐸) ⊆ 𝑓)
10286, 101impbida 800 . . . . 5 (((𝜑𝑆) ∧ 𝑓𝑇) → ((𝐸) ⊆ 𝑓 ⊆ (𝐹𝑓)))
10330fvexi 6934 . . . . . 6 𝑇 ∈ V
104 nsgmgc.w . . . . . . 7 𝑊 = (toInc‘𝑇)
105 eqid 2740 . . . . . . 7 (le‘𝑊) = (le‘𝑊)
106104, 105ipole 18604 . . . . . 6 ((𝑇 ∈ V ∧ (𝐸) ∈ 𝑇𝑓𝑇) → ((𝐸)(le‘𝑊)𝑓 ↔ (𝐸) ⊆ 𝑓))
107103, 31, 80, 106mp3an2ani 1468 . . . . 5 (((𝜑𝑆) ∧ 𝑓𝑇) → ((𝐸)(le‘𝑊)𝑓 ↔ (𝐸) ⊆ 𝑓))
108 fvex 6933 . . . . . . 7 (SubGrp‘𝐺) ∈ V
10919, 108rabex2 5359 . . . . . 6 𝑆 ∈ V
11058ffvelcdmda 7118 . . . . . . 7 ((𝜑𝑓𝑇) → (𝐹𝑓) ∈ 𝑆)
111110adantlr 714 . . . . . 6 (((𝜑𝑆) ∧ 𝑓𝑇) → (𝐹𝑓) ∈ 𝑆)
112 nsgmgc.v . . . . . . 7 𝑉 = (toInc‘𝑆)
113 eqid 2740 . . . . . . 7 (le‘𝑉) = (le‘𝑉)
114112, 113ipole 18604 . . . . . 6 ((𝑆 ∈ V ∧ 𝑆 ∧ (𝐹𝑓) ∈ 𝑆) → ((le‘𝑉)(𝐹𝑓) ↔ ⊆ (𝐹𝑓)))
115109, 18, 111, 114mp3an2ani 1468 . . . . 5 (((𝜑𝑆) ∧ 𝑓𝑇) → ((le‘𝑉)(𝐹𝑓) ↔ ⊆ (𝐹𝑓)))
116102, 107, 1153bitr4d 311 . . . 4 (((𝜑𝑆) ∧ 𝑓𝑇) → ((𝐸)(le‘𝑊)𝑓(le‘𝑉)(𝐹𝑓)))
117116anasss 466 . . 3 ((𝜑 ∧ (𝑆𝑓𝑇)) → ((𝐸)(le‘𝑊)𝑓(le‘𝑉)(𝐹𝑓)))
118117ralrimivva 3208 . 2 (𝜑 → ∀𝑆𝑓𝑇 ((𝐸)(le‘𝑊)𝑓(le‘𝑉)(𝐹𝑓)))
119112ipobas 18601 . . . 4 (𝑆 ∈ V → 𝑆 = (Base‘𝑉))
120109, 119ax-mp 5 . . 3 𝑆 = (Base‘𝑉)
121104ipobas 18601 . . . 4 (𝑇 ∈ V → 𝑇 = (Base‘𝑊))
122103, 121ax-mp 5 . . 3 𝑇 = (Base‘𝑊)
123 nsgmgc.j . . 3 𝐽 = (𝑉MGalConn𝑊)
124112ipopos 18606 . . . 4 𝑉 ∈ Poset
125 posprs 18386 . . . 4 (𝑉 ∈ Poset → 𝑉 ∈ Proset )
126124, 125mp1i 13 . . 3 (𝜑𝑉 ∈ Proset )
127104ipopos 18606 . . . 4 𝑊 ∈ Poset
128 posprs 18386 . . . 4 (𝑊 ∈ Poset → 𝑊 ∈ Proset )
129127, 128mp1i 13 . . 3 (𝜑𝑊 ∈ Proset )
130120, 122, 113, 105, 123, 126, 129mgcval 32960 . 2 (𝜑 → (𝐸𝐽𝐹 ↔ ((𝐸:𝑆𝑇𝐹:𝑇𝑆) ∧ ∀𝑆𝑓𝑇 ((𝐸)(le‘𝑊)𝑓(le‘𝑉)(𝐹𝑓)))))
13159, 118, 130mpbir2and 712 1 (𝜑𝐸𝐽𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  Vcvv 3488  wss 3976  {csn 4648   class class class wbr 5166  cmpt 5249  ran crn 5701  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  [cec 8761  Basecbs 17258  lecple 17318   /s cqus 17565   Proset cproset 18363  Posetcpo 18377  toInccipo 18597  SubGrpcsubg 19160  NrmSGrpcnsg 19161   ~QG cqg 19162   GrpHom cghm 19252  LSSumclsm 19676  MGalConncmgc 32952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ocomp 17332  df-ds 17333  df-0g 17501  df-imas 17568  df-qus 17569  df-proset 18365  df-poset 18383  df-ipo 18598  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-subg 19163  df-nsg 19164  df-eqg 19165  df-ghm 19253  df-oppg 19386  df-lsm 19678  df-mgc 32954
This theorem is referenced by:  nsgqusf1o  33409
  Copyright terms: Public domain W3C validator