| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nfv 1913 | . . . . 5
⊢
Ⅎℎ𝜑 | 
| 2 |  | vex 3483 | . . . . . . . 8
⊢ ℎ ∈ V | 
| 3 | 2 | mptex 7244 | . . . . . . 7
⊢ (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ V | 
| 4 | 3 | rnex 7933 | . . . . . 6
⊢ ran
(𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ V | 
| 5 | 4 | a1i 11 | . . . . 5
⊢ ((𝜑 ∧ ℎ ∈ 𝑆) → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ V) | 
| 6 |  | nsgmgc.e | . . . . 5
⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) | 
| 7 | 1, 5, 6 | fnmptd 6708 | . . . 4
⊢ (𝜑 → 𝐸 Fn 𝑆) | 
| 8 |  | nsgmgc.b | . . . . . . . 8
⊢ 𝐵 = (Base‘𝐺) | 
| 9 |  | nsgmgc.q | . . . . . . . 8
⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) | 
| 10 |  | nsgmgc.p | . . . . . . . 8
⊢  ⊕ =
(LSSum‘𝐺) | 
| 11 |  | mpteq1 5234 | . . . . . . . . . . 11
⊢ (ℎ = 𝑘 → (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) = (𝑥 ∈ 𝑘 ↦ ({𝑥} ⊕ 𝑁))) | 
| 12 | 11 | rneqd 5948 | . . . . . . . . . 10
⊢ (ℎ = 𝑘 → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) = ran (𝑥 ∈ 𝑘 ↦ ({𝑥} ⊕ 𝑁))) | 
| 13 | 12 | cbvmptv 5254 | . . . . . . . . 9
⊢ (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) = (𝑘 ∈ 𝑆 ↦ ran (𝑥 ∈ 𝑘 ↦ ({𝑥} ⊕ 𝑁))) | 
| 14 | 6, 13 | eqtri 2764 | . . . . . . . 8
⊢ 𝐸 = (𝑘 ∈ 𝑆 ↦ ran (𝑥 ∈ 𝑘 ↦ ({𝑥} ⊕ 𝑁))) | 
| 15 |  | eqid 2736 | . . . . . . . 8
⊢ (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) | 
| 16 |  | nsgmgc.n | . . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) | 
| 17 | 16 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ ℎ ∈ 𝑆) → 𝑁 ∈ (NrmSGrp‘𝐺)) | 
| 18 |  | simpr 484 | . . . . . . . 8
⊢ ((𝜑 ∧ ℎ ∈ 𝑆) → ℎ ∈ 𝑆) | 
| 19 |  | nsgmgc.s | . . . . . . . . . 10
⊢ 𝑆 = {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ} | 
| 20 | 19 | ssrab3 4081 | . . . . . . . . 9
⊢ 𝑆 ⊆ (SubGrp‘𝐺) | 
| 21 | 20 | a1i 11 | . . . . . . . 8
⊢ ((𝜑 ∧ ℎ ∈ 𝑆) → 𝑆 ⊆ (SubGrp‘𝐺)) | 
| 22 | 8, 9, 10, 14, 15, 17, 18, 21 | qusima 33437 | . . . . . . 7
⊢ ((𝜑 ∧ ℎ ∈ 𝑆) → (𝐸‘ℎ) = ((𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) “ ℎ)) | 
| 23 | 8, 9, 15 | qusghm 19274 | . . . . . . . . 9
⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ∈ (𝐺 GrpHom 𝑄)) | 
| 24 | 17, 23 | syl 17 | . . . . . . . 8
⊢ ((𝜑 ∧ ℎ ∈ 𝑆) → (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ∈ (𝐺 GrpHom 𝑄)) | 
| 25 | 20 | a1i 11 | . . . . . . . . 9
⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝐺)) | 
| 26 | 25 | sselda 3982 | . . . . . . . 8
⊢ ((𝜑 ∧ ℎ ∈ 𝑆) → ℎ ∈ (SubGrp‘𝐺)) | 
| 27 |  | ghmima 19256 | . . . . . . . 8
⊢ (((𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) ∈ (𝐺 GrpHom 𝑄) ∧ ℎ ∈ (SubGrp‘𝐺)) → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) “ ℎ) ∈ (SubGrp‘𝑄)) | 
| 28 | 24, 26, 27 | syl2anc 584 | . . . . . . 7
⊢ ((𝜑 ∧ ℎ ∈ 𝑆) → ((𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝑁)) “ ℎ) ∈ (SubGrp‘𝑄)) | 
| 29 | 22, 28 | eqeltrd 2840 | . . . . . 6
⊢ ((𝜑 ∧ ℎ ∈ 𝑆) → (𝐸‘ℎ) ∈ (SubGrp‘𝑄)) | 
| 30 |  | nsgmgc.t | . . . . . 6
⊢ 𝑇 = (SubGrp‘𝑄) | 
| 31 | 29, 30 | eleqtrrdi 2851 | . . . . 5
⊢ ((𝜑 ∧ ℎ ∈ 𝑆) → (𝐸‘ℎ) ∈ 𝑇) | 
| 32 | 31 | ralrimiva 3145 | . . . 4
⊢ (𝜑 → ∀ℎ ∈ 𝑆 (𝐸‘ℎ) ∈ 𝑇) | 
| 33 |  | ffnfv 7138 | . . . 4
⊢ (𝐸:𝑆⟶𝑇 ↔ (𝐸 Fn 𝑆 ∧ ∀ℎ ∈ 𝑆 (𝐸‘ℎ) ∈ 𝑇)) | 
| 34 | 7, 32, 33 | sylanbrc 583 | . . 3
⊢ (𝜑 → 𝐸:𝑆⟶𝑇) | 
| 35 |  | sseq2 4009 | . . . . . 6
⊢ (ℎ = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} → (𝑁 ⊆ ℎ ↔ 𝑁 ⊆ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓})) | 
| 36 | 16 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → 𝑁 ∈ (NrmSGrp‘𝐺)) | 
| 37 |  | simpr 484 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → 𝑓 ∈ 𝑇) | 
| 38 | 37, 30 | eleqtrdi 2850 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → 𝑓 ∈ (SubGrp‘𝑄)) | 
| 39 | 8, 9, 10, 36, 38 | nsgmgclem 33440 | . . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ∈ (SubGrp‘𝐺)) | 
| 40 |  | nsgsubg 19177 | . . . . . . . . . 10
⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺)) | 
| 41 | 16, 40 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ (SubGrp‘𝐺)) | 
| 42 | 8 | subgss 19146 | . . . . . . . . 9
⊢ (𝑁 ∈ (SubGrp‘𝐺) → 𝑁 ⊆ 𝐵) | 
| 43 | 41, 42 | syl 17 | . . . . . . . 8
⊢ (𝜑 → 𝑁 ⊆ 𝐵) | 
| 44 | 43 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → 𝑁 ⊆ 𝐵) | 
| 45 | 41 | ad2antrr 726 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑇) ∧ 𝑎 ∈ 𝑁) → 𝑁 ∈ (SubGrp‘𝐺)) | 
| 46 |  | simpr 484 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑇) ∧ 𝑎 ∈ 𝑁) → 𝑎 ∈ 𝑁) | 
| 47 | 10 | grplsmid 33433 | . . . . . . . . 9
⊢ ((𝑁 ∈ (SubGrp‘𝐺) ∧ 𝑎 ∈ 𝑁) → ({𝑎} ⊕ 𝑁) = 𝑁) | 
| 48 | 45, 46, 47 | syl2anc 584 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑇) ∧ 𝑎 ∈ 𝑁) → ({𝑎} ⊕ 𝑁) = 𝑁) | 
| 49 | 16 | ad2antrr 726 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑇) ∧ 𝑎 ∈ 𝑁) → 𝑁 ∈ (NrmSGrp‘𝐺)) | 
| 50 | 38 | adantr 480 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑇) ∧ 𝑎 ∈ 𝑁) → 𝑓 ∈ (SubGrp‘𝑄)) | 
| 51 | 9 | nsgqus0 33439 | . . . . . . . . 9
⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑓 ∈ (SubGrp‘𝑄)) → 𝑁 ∈ 𝑓) | 
| 52 | 49, 50, 51 | syl2anc 584 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑇) ∧ 𝑎 ∈ 𝑁) → 𝑁 ∈ 𝑓) | 
| 53 | 48, 52 | eqeltrd 2840 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑇) ∧ 𝑎 ∈ 𝑁) → ({𝑎} ⊕ 𝑁) ∈ 𝑓) | 
| 54 | 44, 53 | ssrabdv 4073 | . . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → 𝑁 ⊆ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) | 
| 55 | 35, 39, 54 | elrabd 3693 | . . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ∈ {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ}) | 
| 56 | 55, 19 | eleqtrrdi 2851 | . . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ∈ 𝑆) | 
| 57 |  | nsgmgc.f | . . . 4
⊢ 𝐹 = (𝑓 ∈ 𝑇 ↦ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) | 
| 58 | 56, 57 | fmptd 7133 | . . 3
⊢ (𝜑 → 𝐹:𝑇⟶𝑆) | 
| 59 | 34, 58 | jca 511 | . 2
⊢ (𝜑 → (𝐸:𝑆⟶𝑇 ∧ 𝐹:𝑇⟶𝑆)) | 
| 60 | 8 | subgss 19146 | . . . . . . . . . 10
⊢ (ℎ ∈ (SubGrp‘𝐺) → ℎ ⊆ 𝐵) | 
| 61 | 26, 60 | syl 17 | . . . . . . . . 9
⊢ ((𝜑 ∧ ℎ ∈ 𝑆) → ℎ ⊆ 𝐵) | 
| 62 | 61 | ad2antrr 726 | . . . . . . . 8
⊢ ((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ (𝐸‘ℎ) ⊆ 𝑓) → ℎ ⊆ 𝐵) | 
| 63 | 6 | fvmpt2 7026 | . . . . . . . . . . . 12
⊢ ((ℎ ∈ 𝑆 ∧ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ V) → (𝐸‘ℎ) = ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) | 
| 64 | 18, 4, 63 | sylancl 586 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ ℎ ∈ 𝑆) → (𝐸‘ℎ) = ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) | 
| 65 | 64 | ad3antrrr 730 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ (𝐸‘ℎ) ⊆ 𝑓) ∧ 𝑎 ∈ ℎ) → (𝐸‘ℎ) = ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) | 
| 66 |  | simplr 768 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ (𝐸‘ℎ) ⊆ 𝑓) ∧ 𝑎 ∈ ℎ) → (𝐸‘ℎ) ⊆ 𝑓) | 
| 67 | 65, 66 | eqsstrrd 4018 | . . . . . . . . 9
⊢
(((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ (𝐸‘ℎ) ⊆ 𝑓) ∧ 𝑎 ∈ ℎ) → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ⊆ 𝑓) | 
| 68 |  | eqid 2736 | . . . . . . . . . 10
⊢ (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) = (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) | 
| 69 |  | simpr 484 | . . . . . . . . . . 11
⊢
(((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ (𝐸‘ℎ) ⊆ 𝑓) ∧ 𝑎 ∈ ℎ) → 𝑎 ∈ ℎ) | 
| 70 |  | sneq 4635 | . . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑎 → {𝑥} = {𝑎}) | 
| 71 | 70 | oveq1d 7447 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝑎 → ({𝑥} ⊕ 𝑁) = ({𝑎} ⊕ 𝑁)) | 
| 72 | 71 | eqeq2d 2747 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑎 → (({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁) ↔ ({𝑎} ⊕ 𝑁) = ({𝑎} ⊕ 𝑁))) | 
| 73 | 72 | adantl 481 | . . . . . . . . . . 11
⊢
((((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ (𝐸‘ℎ) ⊆ 𝑓) ∧ 𝑎 ∈ ℎ) ∧ 𝑥 = 𝑎) → (({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁) ↔ ({𝑎} ⊕ 𝑁) = ({𝑎} ⊕ 𝑁))) | 
| 74 |  | eqidd 2737 | . . . . . . . . . . 11
⊢
(((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ (𝐸‘ℎ) ⊆ 𝑓) ∧ 𝑎 ∈ ℎ) → ({𝑎} ⊕ 𝑁) = ({𝑎} ⊕ 𝑁)) | 
| 75 | 69, 73, 74 | rspcedvd 3623 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ (𝐸‘ℎ) ⊆ 𝑓) ∧ 𝑎 ∈ ℎ) → ∃𝑥 ∈ ℎ ({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁)) | 
| 76 |  | ovexd 7467 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ (𝐸‘ℎ) ⊆ 𝑓) ∧ 𝑎 ∈ ℎ) → ({𝑎} ⊕ 𝑁) ∈ V) | 
| 77 | 68, 75, 76 | elrnmptd 5973 | . . . . . . . . 9
⊢
(((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ (𝐸‘ℎ) ⊆ 𝑓) ∧ 𝑎 ∈ ℎ) → ({𝑎} ⊕ 𝑁) ∈ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) | 
| 78 | 67, 77 | sseldd 3983 | . . . . . . . 8
⊢
(((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ (𝐸‘ℎ) ⊆ 𝑓) ∧ 𝑎 ∈ ℎ) → ({𝑎} ⊕ 𝑁) ∈ 𝑓) | 
| 79 | 62, 78 | ssrabdv 4073 | . . . . . . 7
⊢ ((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ (𝐸‘ℎ) ⊆ 𝑓) → ℎ ⊆ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) | 
| 80 |  | simpr 484 | . . . . . . . . 9
⊢ (((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) → 𝑓 ∈ 𝑇) | 
| 81 | 8 | fvexi 6919 | . . . . . . . . . 10
⊢ 𝐵 ∈ V | 
| 82 | 81 | rabex 5338 | . . . . . . . . 9
⊢ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ∈ V | 
| 83 | 57 | fvmpt2 7026 | . . . . . . . . 9
⊢ ((𝑓 ∈ 𝑇 ∧ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ∈ V) → (𝐹‘𝑓) = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) | 
| 84 | 80, 82, 83 | sylancl 586 | . . . . . . . 8
⊢ (((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) → (𝐹‘𝑓) = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) | 
| 85 | 84 | adantr 480 | . . . . . . 7
⊢ ((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ (𝐸‘ℎ) ⊆ 𝑓) → (𝐹‘𝑓) = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) | 
| 86 | 79, 85 | sseqtrrd 4020 | . . . . . 6
⊢ ((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ (𝐸‘ℎ) ⊆ 𝑓) → ℎ ⊆ (𝐹‘𝑓)) | 
| 87 | 64 | ad2antrr 726 | . . . . . . 7
⊢ ((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ ℎ ⊆ (𝐹‘𝑓)) → (𝐸‘ℎ) = ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) | 
| 88 |  | simpr 484 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ ℎ ⊆ (𝐹‘𝑓)) → ℎ ⊆ (𝐹‘𝑓)) | 
| 89 | 88 | sselda 3982 | . . . . . . . . . . 11
⊢
(((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ ℎ ⊆ (𝐹‘𝑓)) ∧ 𝑥 ∈ ℎ) → 𝑥 ∈ (𝐹‘𝑓)) | 
| 90 | 84 | ad2antrr 726 | . . . . . . . . . . 11
⊢
(((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ ℎ ⊆ (𝐹‘𝑓)) ∧ 𝑥 ∈ ℎ) → (𝐹‘𝑓) = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) | 
| 91 | 89, 90 | eleqtrd 2842 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ ℎ ⊆ (𝐹‘𝑓)) ∧ 𝑥 ∈ ℎ) → 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) | 
| 92 |  | sneq 4635 | . . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑥 → {𝑎} = {𝑥}) | 
| 93 | 92 | oveq1d 7447 | . . . . . . . . . . . . 13
⊢ (𝑎 = 𝑥 → ({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁)) | 
| 94 | 93 | eleq1d 2825 | . . . . . . . . . . . 12
⊢ (𝑎 = 𝑥 → (({𝑎} ⊕ 𝑁) ∈ 𝑓 ↔ ({𝑥} ⊕ 𝑁) ∈ 𝑓)) | 
| 95 | 94 | elrab 3691 | . . . . . . . . . . 11
⊢ (𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ↔ (𝑥 ∈ 𝐵 ∧ ({𝑥} ⊕ 𝑁) ∈ 𝑓)) | 
| 96 | 95 | simprbi 496 | . . . . . . . . . 10
⊢ (𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} → ({𝑥} ⊕ 𝑁) ∈ 𝑓) | 
| 97 | 91, 96 | syl 17 | . . . . . . . . 9
⊢
(((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ ℎ ⊆ (𝐹‘𝑓)) ∧ 𝑥 ∈ ℎ) → ({𝑥} ⊕ 𝑁) ∈ 𝑓) | 
| 98 | 97 | ralrimiva 3145 | . . . . . . . 8
⊢ ((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ ℎ ⊆ (𝐹‘𝑓)) → ∀𝑥 ∈ ℎ ({𝑥} ⊕ 𝑁) ∈ 𝑓) | 
| 99 | 68 | rnmptss 7142 | . . . . . . . 8
⊢
(∀𝑥 ∈
ℎ ({𝑥} ⊕ 𝑁) ∈ 𝑓 → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ⊆ 𝑓) | 
| 100 | 98, 99 | syl 17 | . . . . . . 7
⊢ ((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ ℎ ⊆ (𝐹‘𝑓)) → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ⊆ 𝑓) | 
| 101 | 87, 100 | eqsstrd 4017 | . . . . . 6
⊢ ((((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) ∧ ℎ ⊆ (𝐹‘𝑓)) → (𝐸‘ℎ) ⊆ 𝑓) | 
| 102 | 86, 101 | impbida 800 | . . . . 5
⊢ (((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) → ((𝐸‘ℎ) ⊆ 𝑓 ↔ ℎ ⊆ (𝐹‘𝑓))) | 
| 103 | 30 | fvexi 6919 | . . . . . 6
⊢ 𝑇 ∈ V | 
| 104 |  | nsgmgc.w | . . . . . . 7
⊢ 𝑊 = (toInc‘𝑇) | 
| 105 |  | eqid 2736 | . . . . . . 7
⊢
(le‘𝑊) =
(le‘𝑊) | 
| 106 | 104, 105 | ipole 18580 | . . . . . 6
⊢ ((𝑇 ∈ V ∧ (𝐸‘ℎ) ∈ 𝑇 ∧ 𝑓 ∈ 𝑇) → ((𝐸‘ℎ)(le‘𝑊)𝑓 ↔ (𝐸‘ℎ) ⊆ 𝑓)) | 
| 107 | 103, 31, 80, 106 | mp3an2ani 1469 | . . . . 5
⊢ (((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) → ((𝐸‘ℎ)(le‘𝑊)𝑓 ↔ (𝐸‘ℎ) ⊆ 𝑓)) | 
| 108 |  | fvex 6918 | . . . . . . 7
⊢
(SubGrp‘𝐺)
∈ V | 
| 109 | 19, 108 | rabex2 5340 | . . . . . 6
⊢ 𝑆 ∈ V | 
| 110 | 58 | ffvelcdmda 7103 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → (𝐹‘𝑓) ∈ 𝑆) | 
| 111 | 110 | adantlr 715 | . . . . . 6
⊢ (((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) → (𝐹‘𝑓) ∈ 𝑆) | 
| 112 |  | nsgmgc.v | . . . . . . 7
⊢ 𝑉 = (toInc‘𝑆) | 
| 113 |  | eqid 2736 | . . . . . . 7
⊢
(le‘𝑉) =
(le‘𝑉) | 
| 114 | 112, 113 | ipole 18580 | . . . . . 6
⊢ ((𝑆 ∈ V ∧ ℎ ∈ 𝑆 ∧ (𝐹‘𝑓) ∈ 𝑆) → (ℎ(le‘𝑉)(𝐹‘𝑓) ↔ ℎ ⊆ (𝐹‘𝑓))) | 
| 115 | 109, 18, 111, 114 | mp3an2ani 1469 | . . . . 5
⊢ (((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) → (ℎ(le‘𝑉)(𝐹‘𝑓) ↔ ℎ ⊆ (𝐹‘𝑓))) | 
| 116 | 102, 107,
115 | 3bitr4d 311 | . . . 4
⊢ (((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 ∈ 𝑇) → ((𝐸‘ℎ)(le‘𝑊)𝑓 ↔ ℎ(le‘𝑉)(𝐹‘𝑓))) | 
| 117 | 116 | anasss 466 | . . 3
⊢ ((𝜑 ∧ (ℎ ∈ 𝑆 ∧ 𝑓 ∈ 𝑇)) → ((𝐸‘ℎ)(le‘𝑊)𝑓 ↔ ℎ(le‘𝑉)(𝐹‘𝑓))) | 
| 118 | 117 | ralrimivva 3201 | . 2
⊢ (𝜑 → ∀ℎ ∈ 𝑆 ∀𝑓 ∈ 𝑇 ((𝐸‘ℎ)(le‘𝑊)𝑓 ↔ ℎ(le‘𝑉)(𝐹‘𝑓))) | 
| 119 | 112 | ipobas 18577 | . . . 4
⊢ (𝑆 ∈ V → 𝑆 = (Base‘𝑉)) | 
| 120 | 109, 119 | ax-mp 5 | . . 3
⊢ 𝑆 = (Base‘𝑉) | 
| 121 | 104 | ipobas 18577 | . . . 4
⊢ (𝑇 ∈ V → 𝑇 = (Base‘𝑊)) | 
| 122 | 103, 121 | ax-mp 5 | . . 3
⊢ 𝑇 = (Base‘𝑊) | 
| 123 |  | nsgmgc.j | . . 3
⊢ 𝐽 = (𝑉MGalConn𝑊) | 
| 124 | 112 | ipopos 18582 | . . . 4
⊢ 𝑉 ∈ Poset | 
| 125 |  | posprs 18363 | . . . 4
⊢ (𝑉 ∈ Poset → 𝑉 ∈ Proset
) | 
| 126 | 124, 125 | mp1i 13 | . . 3
⊢ (𝜑 → 𝑉 ∈ Proset ) | 
| 127 | 104 | ipopos 18582 | . . . 4
⊢ 𝑊 ∈ Poset | 
| 128 |  | posprs 18363 | . . . 4
⊢ (𝑊 ∈ Poset → 𝑊 ∈ Proset
) | 
| 129 | 127, 128 | mp1i 13 | . . 3
⊢ (𝜑 → 𝑊 ∈ Proset ) | 
| 130 | 120, 122,
113, 105, 123, 126, 129 | mgcval 32978 | . 2
⊢ (𝜑 → (𝐸𝐽𝐹 ↔ ((𝐸:𝑆⟶𝑇 ∧ 𝐹:𝑇⟶𝑆) ∧ ∀ℎ ∈ 𝑆 ∀𝑓 ∈ 𝑇 ((𝐸‘ℎ)(le‘𝑊)𝑓 ↔ ℎ(le‘𝑉)(𝐹‘𝑓))))) | 
| 131 | 59, 118, 130 | mpbir2and 713 | 1
⊢ (𝜑 → 𝐸𝐽𝐹) |