MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf2ndf Structured version   Visualization version   GIF version

Theorem curf2ndf 18215
Description: As shown in diagval 18208, the currying of the first projection is the diagonal functor. On the other hand, the currying of the second projection is 𝑥𝐶 ↦ (𝑦𝐷𝑦), which is a constant functor of the identity functor at 𝐷. (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
curf2ndf.q 𝑄 = (𝐷 FuncCat 𝐷)
curf2ndf.c (𝜑𝐶 ∈ Cat)
curf2ndf.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
curf2ndf (𝜑 → (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) = ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))

Proof of Theorem curf2ndf
Dummy variables 𝑢 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7393 . . . . . . . . . . 11 (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦) = ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑥, 𝑦⟩)
2 eqid 2730 . . . . . . . . . . . . 13 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
3 eqid 2730 . . . . . . . . . . . . . 14 (Base‘𝐶) = (Base‘𝐶)
4 eqid 2730 . . . . . . . . . . . . . 14 (Base‘𝐷) = (Base‘𝐷)
52, 3, 4xpcbas 18146 . . . . . . . . . . . . 13 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘(𝐶 ×c 𝐷))
6 eqid 2730 . . . . . . . . . . . . 13 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
7 curf2ndf.c . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ Cat)
87ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐶 ∈ Cat)
9 curf2ndf.d . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ Cat)
109ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat)
11 eqid 2730 . . . . . . . . . . . . 13 (𝐶 2ndF 𝐷) = (𝐶 2ndF 𝐷)
12 opelxpi 5678 . . . . . . . . . . . . . 14 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
1312adantll 714 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
142, 5, 6, 8, 10, 11, 132ndf1 18163 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑥, 𝑦⟩) = (2nd ‘⟨𝑥, 𝑦⟩))
15 vex 3454 . . . . . . . . . . . . 13 𝑥 ∈ V
16 vex 3454 . . . . . . . . . . . . 13 𝑦 ∈ V
1715, 16op2nd 7980 . . . . . . . . . . . 12 (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦
1814, 17eqtrdi 2781 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑥, 𝑦⟩) = 𝑦)
191, 18eqtrid 2777 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦) = 𝑦)
2019mpteq2dva 5203 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦)) = (𝑦 ∈ (Base‘𝐷) ↦ 𝑦))
21 mptresid 6025 . . . . . . . . 9 ( I ↾ (Base‘𝐷)) = (𝑦 ∈ (Base‘𝐷) ↦ 𝑦)
2220, 21eqtr4di 2783 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦)) = ( I ↾ (Base‘𝐷)))
23 df-ov 7393 . . . . . . . . . . . . . . 15 (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓) = ((⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩)
248ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐶 ∈ Cat)
2510ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐷 ∈ Cat)
2613ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
27 simp-4r 783 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑥 ∈ (Base‘𝐶))
28 simplr 768 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑧 ∈ (Base‘𝐷))
2927, 28opelxpd 5680 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨𝑥, 𝑧⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
302, 5, 6, 24, 25, 11, 26, 292ndf2 18164 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩) = (2nd ↾ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩)))
3130fveq1d 6863 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩) = ((2nd ↾ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩))‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩))
3223, 31eqtrid 2777 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓) = ((2nd ↾ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩))‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩))
33 eqid 2730 . . . . . . . . . . . . . . . . . . . 20 (Hom ‘𝐶) = (Hom ‘𝐶)
34 eqid 2730 . . . . . . . . . . . . . . . . . . . 20 (Id‘𝐶) = (Id‘𝐶)
357adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
36 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
373, 33, 34, 35, 36catidcl 17650 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
3837ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
39 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧))
4038, 39opelxpd 5680 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨((Id‘𝐶)‘𝑥), 𝑓⟩ ∈ ((𝑥(Hom ‘𝐶)𝑥) × (𝑦(Hom ‘𝐷)𝑧)))
41 eqid 2730 . . . . . . . . . . . . . . . . . 18 (Hom ‘𝐷) = (Hom ‘𝐷)
42 simpllr 775 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑦 ∈ (Base‘𝐷))
432, 3, 4, 33, 41, 27, 42, 27, 28, 6xpchom2 18154 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩) = ((𝑥(Hom ‘𝐶)𝑥) × (𝑦(Hom ‘𝐷)𝑧)))
4440, 43eleqtrrd 2832 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨((Id‘𝐶)‘𝑥), 𝑓⟩ ∈ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩))
4544fvresd 6881 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((2nd ↾ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩))‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩) = (2nd ‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩))
46 fvex 6874 . . . . . . . . . . . . . . . 16 ((Id‘𝐶)‘𝑥) ∈ V
47 vex 3454 . . . . . . . . . . . . . . . 16 𝑓 ∈ V
4846, 47op2nd 7980 . . . . . . . . . . . . . . 15 (2nd ‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩) = 𝑓
4945, 48eqtrdi 2781 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((2nd ↾ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩))‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩) = 𝑓)
5032, 49eqtrd 2765 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓) = 𝑓)
5150mpteq2dva 5203 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓)) = (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ 𝑓))
52 mptresid 6025 . . . . . . . . . . . 12 ( I ↾ (𝑦(Hom ‘𝐷)𝑧)) = (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ 𝑓)
5351, 52eqtr4di 2783 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓)) = ( I ↾ (𝑦(Hom ‘𝐷)𝑧)))
54533impa 1109 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓)) = ( I ↾ (𝑦(Hom ‘𝐷)𝑧)))
5554mpoeq3dva 7469 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓))) = (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ ( I ↾ (𝑦(Hom ‘𝐷)𝑧))))
56 fveq2 6861 . . . . . . . . . . . 12 (𝑢 = ⟨𝑦, 𝑧⟩ → ((Hom ‘𝐷)‘𝑢) = ((Hom ‘𝐷)‘⟨𝑦, 𝑧⟩))
57 df-ov 7393 . . . . . . . . . . . 12 (𝑦(Hom ‘𝐷)𝑧) = ((Hom ‘𝐷)‘⟨𝑦, 𝑧⟩)
5856, 57eqtr4di 2783 . . . . . . . . . . 11 (𝑢 = ⟨𝑦, 𝑧⟩ → ((Hom ‘𝐷)‘𝑢) = (𝑦(Hom ‘𝐷)𝑧))
5958reseq2d 5953 . . . . . . . . . 10 (𝑢 = ⟨𝑦, 𝑧⟩ → ( I ↾ ((Hom ‘𝐷)‘𝑢)) = ( I ↾ (𝑦(Hom ‘𝐷)𝑧)))
6059mpompt 7506 . . . . . . . . 9 (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ ( I ↾ ((Hom ‘𝐷)‘𝑢))) = (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ ( I ↾ (𝑦(Hom ‘𝐷)𝑧)))
6155, 60eqtr4di 2783 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓))) = (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ ( I ↾ ((Hom ‘𝐷)‘𝑢))))
6222, 61opeq12d 4848 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓)))⟩ = ⟨( I ↾ (Base‘𝐷)), (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ ( I ↾ ((Hom ‘𝐷)‘𝑢)))⟩)
63 eqid 2730 . . . . . . . 8 (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) = (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))
649adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
652, 7, 9, 112ndfcl 18166 . . . . . . . . 9 (𝜑 → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷))
6665adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷))
67 eqid 2730 . . . . . . . 8 ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥) = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥)
6863, 3, 35, 64, 66, 4, 36, 67, 41, 34curf1 18193 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥) = ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓)))⟩)
69 eqid 2730 . . . . . . . 8 (idfunc𝐷) = (idfunc𝐷)
7069, 4, 64, 41idfuval 17845 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (idfunc𝐷) = ⟨( I ↾ (Base‘𝐷)), (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ ( I ↾ ((Hom ‘𝐷)‘𝑢)))⟩)
7162, 68, 703eqtr4d 2775 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥) = (idfunc𝐷))
72 eqid 2730 . . . . . . 7 (𝑄Δfunc𝐶) = (𝑄Δfunc𝐶)
73 curf2ndf.q . . . . . . . . 9 𝑄 = (𝐷 FuncCat 𝐷)
7473, 9, 9fuccat 17942 . . . . . . . 8 (𝜑𝑄 ∈ Cat)
7574adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑄 ∈ Cat)
7673fucbas 17932 . . . . . . 7 (𝐷 Func 𝐷) = (Base‘𝑄)
7769idfucl 17850 . . . . . . . . 9 (𝐷 ∈ Cat → (idfunc𝐷) ∈ (𝐷 Func 𝐷))
789, 77syl 17 . . . . . . . 8 (𝜑 → (idfunc𝐷) ∈ (𝐷 Func 𝐷))
7978adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (idfunc𝐷) ∈ (𝐷 Func 𝐷))
80 eqid 2730 . . . . . . 7 ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)) = ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))
8172, 75, 35, 76, 79, 80, 3, 36diag11 18211 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))‘𝑥) = (idfunc𝐷))
8271, 81eqtr4d 2768 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥) = ((1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))‘𝑥))
8382mpteq2dva 5203 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥)) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))‘𝑥)))
84 relfunc 17831 . . . . . . 7 Rel (𝐶 Func 𝑄)
8563, 73, 7, 9, 65curfcl 18200 . . . . . . 7 (𝜑 → (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) ∈ (𝐶 Func 𝑄))
86 1st2ndbr 8024 . . . . . . 7 ((Rel (𝐶 Func 𝑄) ∧ (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) ∈ (𝐶 Func 𝑄)) → (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))(𝐶 Func 𝑄)(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))))
8784, 85, 86sylancr 587 . . . . . 6 (𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))(𝐶 Func 𝑄)(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))))
883, 76, 87funcf1 17835 . . . . 5 (𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))):(Base‘𝐶)⟶(𝐷 Func 𝐷))
8988feqmptd 6932 . . . 4 (𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥)))
9072, 74, 7, 76, 78, 80diag1cl 18210 . . . . . . 7 (𝜑 → ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)) ∈ (𝐶 Func 𝑄))
91 1st2ndbr 8024 . . . . . . 7 ((Rel (𝐶 Func 𝑄) ∧ ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)) ∈ (𝐶 Func 𝑄)) → (1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))(𝐶 Func 𝑄)(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))))
9284, 90, 91sylancr 587 . . . . . 6 (𝜑 → (1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))(𝐶 Func 𝑄)(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))))
933, 76, 92funcf1 17835 . . . . 5 (𝜑 → (1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))):(Base‘𝐶)⟶(𝐷 Func 𝐷))
9493feqmptd 6932 . . . 4 (𝜑 → (1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))‘𝑥)))
9583, 89, 943eqtr4d 2775 . . 3 (𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) = (1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))))
969ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐷 ∈ Cat)
9769, 4, 96idfu1st 17848 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (1st ‘(idfunc𝐷)) = ( I ↾ (Base‘𝐷)))
9897coeq2d 5829 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((Id‘𝐷) ∘ (1st ‘(idfunc𝐷))) = ((Id‘𝐷) ∘ ( I ↾ (Base‘𝐷))))
99 eqid 2730 . . . . . . . . . . 11 (Id‘𝑄) = (Id‘𝑄)
100 eqid 2730 . . . . . . . . . . 11 (Id‘𝐷) = (Id‘𝐷)
10178ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (idfunc𝐷) ∈ (𝐷 Func 𝐷))
10273, 99, 100, 101fucid 17943 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((Id‘𝑄)‘(idfunc𝐷)) = ((Id‘𝐷) ∘ (1st ‘(idfunc𝐷))))
1034, 100cidfn 17647 . . . . . . . . . . . . . 14 (𝐷 ∈ Cat → (Id‘𝐷) Fn (Base‘𝐷))
10496, 103syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (Id‘𝐷) Fn (Base‘𝐷))
105 dffn2 6693 . . . . . . . . . . . . 13 ((Id‘𝐷) Fn (Base‘𝐷) ↔ (Id‘𝐷):(Base‘𝐷)⟶V)
106104, 105sylib 218 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (Id‘𝐷):(Base‘𝐷)⟶V)
107106feqmptd 6932 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (Id‘𝐷) = (𝑧 ∈ (Base‘𝐷) ↦ ((Id‘𝐷)‘𝑧)))
108 fcoi1 6737 . . . . . . . . . . . 12 ((Id‘𝐷):(Base‘𝐷)⟶V → ((Id‘𝐷) ∘ ( I ↾ (Base‘𝐷))) = (Id‘𝐷))
109106, 108syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((Id‘𝐷) ∘ ( I ↾ (Base‘𝐷))) = (Id‘𝐷))
1107ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐶 ∈ Cat)
111110adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝐶 ∈ Cat)
11296adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat)
113 simplrl 776 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶))
114 opelxpi 5678 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑧⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
115113, 114sylan 580 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑧⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
116 simplrr 777 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶))
117 opelxpi 5678 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐷)) → ⟨𝑦, 𝑧⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
118116, 117sylan 580 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ⟨𝑦, 𝑧⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
1192, 5, 6, 111, 112, 11, 115, 1182ndf2 18164 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩) = (2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩)))
120119oveqd 7407 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓(⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)) = (𝑓(2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))((Id‘𝐷)‘𝑧)))
121 df-ov 7393 . . . . . . . . . . . . . . 15 (𝑓(2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))((Id‘𝐷)‘𝑧)) = ((2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))‘⟨𝑓, ((Id‘𝐷)‘𝑧)⟩)
122 simplr 768 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
123 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑧 ∈ (Base‘𝐷))
1244, 41, 100, 112, 123catidcl 17650 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((Id‘𝐷)‘𝑧) ∈ (𝑧(Hom ‘𝐷)𝑧))
125122, 124opelxpd 5680 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ⟨𝑓, ((Id‘𝐷)‘𝑧)⟩ ∈ ((𝑥(Hom ‘𝐶)𝑦) × (𝑧(Hom ‘𝐷)𝑧)))
126113adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑥 ∈ (Base‘𝐶))
127116adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑦 ∈ (Base‘𝐶))
1282, 3, 4, 33, 41, 126, 123, 127, 123, 6xpchom2 18154 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩) = ((𝑥(Hom ‘𝐶)𝑦) × (𝑧(Hom ‘𝐷)𝑧)))
129125, 128eleqtrrd 2832 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ⟨𝑓, ((Id‘𝐷)‘𝑧)⟩ ∈ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))
130129fvresd 6881 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))‘⟨𝑓, ((Id‘𝐷)‘𝑧)⟩) = (2nd ‘⟨𝑓, ((Id‘𝐷)‘𝑧)⟩))
131121, 130eqtrid 2777 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓(2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))((Id‘𝐷)‘𝑧)) = (2nd ‘⟨𝑓, ((Id‘𝐷)‘𝑧)⟩))
132 fvex 6874 . . . . . . . . . . . . . . 15 ((Id‘𝐷)‘𝑧) ∈ V
13347, 132op2nd 7980 . . . . . . . . . . . . . 14 (2nd ‘⟨𝑓, ((Id‘𝐷)‘𝑧)⟩) = ((Id‘𝐷)‘𝑧)
134131, 133eqtrdi 2781 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓(2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))((Id‘𝐷)‘𝑧)) = ((Id‘𝐷)‘𝑧))
135120, 134eqtrd 2765 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓(⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)) = ((Id‘𝐷)‘𝑧))
136135mpteq2dva 5203 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑓(⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))) = (𝑧 ∈ (Base‘𝐷) ↦ ((Id‘𝐷)‘𝑧)))
137107, 109, 1363eqtr4rd 2776 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑓(⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))) = ((Id‘𝐷) ∘ ( I ↾ (Base‘𝐷))))
13898, 102, 1373eqtr4rd 2776 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑓(⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))) = ((Id‘𝑄)‘(idfunc𝐷)))
13965ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷))
140 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
141 eqid 2730 . . . . . . . . . 10 ((𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)‘𝑓) = ((𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)‘𝑓)
14263, 3, 110, 96, 139, 4, 33, 100, 113, 116, 140, 141curf2 18197 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)‘𝑓) = (𝑧 ∈ (Base‘𝐷) ↦ (𝑓(⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))
14374ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑄 ∈ Cat)
14472, 143, 110, 76, 101, 80, 3, 113, 33, 99, 116, 140diag12 18212 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)‘𝑓) = ((Id‘𝑄)‘(idfunc𝐷)))
145138, 142, 1443eqtr4d 2775 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)‘𝑓) = ((𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)‘𝑓))
146145mpteq2dva 5203 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)‘𝑓)) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)‘𝑓)))
147 eqid 2730 . . . . . . . . . 10 (𝐷 Nat 𝐷) = (𝐷 Nat 𝐷)
14873, 147fuchom 17933 . . . . . . . . 9 (𝐷 Nat 𝐷) = (Hom ‘𝑄)
14987adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))(𝐶 Func 𝑄)(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))))
150 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
151 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
1523, 33, 148, 149, 150, 151funcf2 17837 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥)(𝐷 Nat 𝐷)((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑦)))
153152feqmptd 6932 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)‘𝑓)))
15492adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))(𝐶 Func 𝑄)(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))))
1553, 33, 148, 154, 150, 151funcf2 17837 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))‘𝑥)(𝐷 Nat 𝐷)((1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))‘𝑦)))
156155feqmptd 6932 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)‘𝑓)))
157146, 153, 1563eqtr4d 2775 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦) = (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦))
1581573impb 1114 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦) = (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦))
159158mpoeq3dva 7469 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)))
1603, 87funcfn2 17838 . . . . 5 (𝜑 → (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) Fn ((Base‘𝐶) × (Base‘𝐶)))
161 fnov 7523 . . . . 5 ((2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)))
162160, 161sylib 218 . . . 4 (𝜑 → (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)))
1633, 92funcfn2 17838 . . . . 5 (𝜑 → (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))) Fn ((Base‘𝐶) × (Base‘𝐶)))
164 fnov 7523 . . . . 5 ((2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)))
165163, 164sylib 218 . . . 4 (𝜑 → (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)))
166159, 162, 1653eqtr4d 2775 . . 3 (𝜑 → (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) = (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))))
16795, 166opeq12d 4848 . 2 (𝜑 → ⟨(1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))), (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))⟩ = ⟨(1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))), (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))⟩)
168 1st2nd 8021 . . 3 ((Rel (𝐶 Func 𝑄) ∧ (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) ∈ (𝐶 Func 𝑄)) → (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) = ⟨(1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))), (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))⟩)
16984, 85, 168sylancr 587 . 2 (𝜑 → (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) = ⟨(1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))), (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))⟩)
170 1st2nd 8021 . . 3 ((Rel (𝐶 Func 𝑄) ∧ ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)) ∈ (𝐶 Func 𝑄)) → ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)) = ⟨(1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))), (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))⟩)
17184, 90, 170sylancr 587 . 2 (𝜑 → ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)) = ⟨(1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))), (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))⟩)
172167, 169, 1713eqtr4d 2775 1 (𝜑 → (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) = ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cop 4598   class class class wbr 5110  cmpt 5191   I cid 5535   × cxp 5639  cres 5643  ccom 5645  Rel wrel 5646   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  1st c1st 7969  2nd c2nd 7970  Basecbs 17186  Hom chom 17238  Catccat 17632  Idccid 17633   Func cfunc 17823  idfunccidfu 17824   Nat cnat 17913   FuncCat cfuc 17914   ×c cxpc 18136   2ndF c2ndf 18138   curryF ccurf 18178  Δfunccdiag 18180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-hom 17251  df-cco 17252  df-cat 17636  df-cid 17637  df-func 17827  df-idfu 17828  df-nat 17915  df-fuc 17916  df-xpc 18140  df-1stf 18141  df-2ndf 18142  df-curf 18182  df-diag 18184
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator