Step | Hyp | Ref
| Expression |
1 | | df-ov 7258 |
. . . . . . . . . . 11
⊢ (𝑥(1st ‘(𝐶
2ndF 𝐷))𝑦) = ((1st ‘(𝐶
2ndF 𝐷))‘〈𝑥, 𝑦〉) |
2 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝐶 ×c
𝐷) = (𝐶 ×c 𝐷) |
3 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝐶) =
(Base‘𝐶) |
4 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝐷) =
(Base‘𝐷) |
5 | 2, 3, 4 | xpcbas 17811 |
. . . . . . . . . . . . 13
⊢
((Base‘𝐶)
× (Base‘𝐷)) =
(Base‘(𝐶
×c 𝐷)) |
6 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (Hom
‘(𝐶
×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷)) |
7 | | curf2ndf.c |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐶 ∈ Cat) |
8 | 7 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐶 ∈ Cat) |
9 | | curf2ndf.d |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐷 ∈ Cat) |
10 | 9 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat) |
11 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝐶
2ndF 𝐷) = (𝐶 2ndF 𝐷) |
12 | | opelxpi 5617 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷)) → 〈𝑥, 𝑦〉 ∈ ((Base‘𝐶) × (Base‘𝐷))) |
13 | 12 | adantll 710 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 〈𝑥, 𝑦〉 ∈ ((Base‘𝐶) × (Base‘𝐷))) |
14 | 2, 5, 6, 8, 10, 11, 13 | 2ndf1 17828 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((1st ‘(𝐶
2ndF 𝐷))‘〈𝑥, 𝑦〉) = (2nd ‘〈𝑥, 𝑦〉)) |
15 | | vex 3426 |
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ V |
16 | | vex 3426 |
. . . . . . . . . . . . 13
⊢ 𝑦 ∈ V |
17 | 15, 16 | op2nd 7813 |
. . . . . . . . . . . 12
⊢
(2nd ‘〈𝑥, 𝑦〉) = 𝑦 |
18 | 14, 17 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((1st ‘(𝐶
2ndF 𝐷))‘〈𝑥, 𝑦〉) = 𝑦) |
19 | 1, 18 | eqtrid 2790 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦) = 𝑦) |
20 | 19 | mpteq2dva 5170 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦)) = (𝑦 ∈ (Base‘𝐷) ↦ 𝑦)) |
21 | | mptresid 5947 |
. . . . . . . . 9
⊢ ( I
↾ (Base‘𝐷)) =
(𝑦 ∈ (Base‘𝐷) ↦ 𝑦) |
22 | 20, 21 | eqtr4di 2797 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦)) = ( I ↾ (Base‘𝐷))) |
23 | | df-ov 7258 |
. . . . . . . . . . . . . . 15
⊢
(((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘(𝐶
2ndF 𝐷))〈𝑥, 𝑧〉)𝑓) = ((〈𝑥, 𝑦〉(2nd ‘(𝐶
2ndF 𝐷))〈𝑥, 𝑧〉)‘〈((Id‘𝐶)‘𝑥), 𝑓〉) |
24 | 8 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐶 ∈ Cat) |
25 | 10 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐷 ∈ Cat) |
26 | 13 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 〈𝑥, 𝑦〉 ∈ ((Base‘𝐶) × (Base‘𝐷))) |
27 | | simp-4r 780 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑥 ∈ (Base‘𝐶)) |
28 | | simplr 765 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑧 ∈ (Base‘𝐷)) |
29 | 27, 28 | opelxpd 5618 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 〈𝑥, 𝑧〉 ∈ ((Base‘𝐶) × (Base‘𝐷))) |
30 | 2, 5, 6, 24, 25, 11, 26, 29 | 2ndf2 17829 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (〈𝑥, 𝑦〉(2nd ‘(𝐶
2ndF 𝐷))〈𝑥, 𝑧〉) = (2nd ↾
(〈𝑥, 𝑦〉(Hom ‘(𝐶 ×c
𝐷))〈𝑥, 𝑧〉))) |
31 | 30 | fveq1d 6758 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((〈𝑥, 𝑦〉(2nd ‘(𝐶
2ndF 𝐷))〈𝑥, 𝑧〉)‘〈((Id‘𝐶)‘𝑥), 𝑓〉) = ((2nd ↾
(〈𝑥, 𝑦〉(Hom ‘(𝐶 ×c
𝐷))〈𝑥, 𝑧〉))‘〈((Id‘𝐶)‘𝑥), 𝑓〉)) |
32 | 23, 31 | eqtrid 2790 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘(𝐶
2ndF 𝐷))〈𝑥, 𝑧〉)𝑓) = ((2nd ↾ (〈𝑥, 𝑦〉(Hom ‘(𝐶 ×c 𝐷))〈𝑥, 𝑧〉))‘〈((Id‘𝐶)‘𝑥), 𝑓〉)) |
33 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
34 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(Id‘𝐶) =
(Id‘𝐶) |
35 | 7 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat) |
36 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶)) |
37 | 3, 33, 34, 35, 36 | catidcl 17308 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥)) |
38 | 37 | ad5ant12 752 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥)) |
39 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) |
40 | 38, 39 | opelxpd 5618 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 〈((Id‘𝐶)‘𝑥), 𝑓〉 ∈ ((𝑥(Hom ‘𝐶)𝑥) × (𝑦(Hom ‘𝐷)𝑧))) |
41 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
42 | | simpllr 772 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑦 ∈ (Base‘𝐷)) |
43 | 2, 3, 4, 33, 41, 27, 42, 27, 28, 6 | xpchom2 17819 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (〈𝑥, 𝑦〉(Hom ‘(𝐶 ×c 𝐷))〈𝑥, 𝑧〉) = ((𝑥(Hom ‘𝐶)𝑥) × (𝑦(Hom ‘𝐷)𝑧))) |
44 | 40, 43 | eleqtrrd 2842 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 〈((Id‘𝐶)‘𝑥), 𝑓〉 ∈ (〈𝑥, 𝑦〉(Hom ‘(𝐶 ×c 𝐷))〈𝑥, 𝑧〉)) |
45 | 44 | fvresd 6776 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((2nd ↾
(〈𝑥, 𝑦〉(Hom ‘(𝐶 ×c
𝐷))〈𝑥, 𝑧〉))‘〈((Id‘𝐶)‘𝑥), 𝑓〉) = (2nd
‘〈((Id‘𝐶)‘𝑥), 𝑓〉)) |
46 | | fvex 6769 |
. . . . . . . . . . . . . . . 16
⊢
((Id‘𝐶)‘𝑥) ∈ V |
47 | | vex 3426 |
. . . . . . . . . . . . . . . 16
⊢ 𝑓 ∈ V |
48 | 46, 47 | op2nd 7813 |
. . . . . . . . . . . . . . 15
⊢
(2nd ‘〈((Id‘𝐶)‘𝑥), 𝑓〉) = 𝑓 |
49 | 45, 48 | eqtrdi 2795 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((2nd ↾
(〈𝑥, 𝑦〉(Hom ‘(𝐶 ×c
𝐷))〈𝑥, 𝑧〉))‘〈((Id‘𝐶)‘𝑥), 𝑓〉) = 𝑓) |
50 | 32, 49 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘(𝐶
2ndF 𝐷))〈𝑥, 𝑧〉)𝑓) = 𝑓) |
51 | 50 | mpteq2dva 5170 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘(𝐶
2ndF 𝐷))〈𝑥, 𝑧〉)𝑓)) = (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ 𝑓)) |
52 | | mptresid 5947 |
. . . . . . . . . . . 12
⊢ ( I
↾ (𝑦(Hom ‘𝐷)𝑧)) = (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ 𝑓) |
53 | 51, 52 | eqtr4di 2797 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘(𝐶
2ndF 𝐷))〈𝑥, 𝑧〉)𝑓)) = ( I ↾ (𝑦(Hom ‘𝐷)𝑧))) |
54 | 53 | 3impa 1108 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘(𝐶
2ndF 𝐷))〈𝑥, 𝑧〉)𝑓)) = ( I ↾ (𝑦(Hom ‘𝐷)𝑧))) |
55 | 54 | mpoeq3dva 7330 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘(𝐶
2ndF 𝐷))〈𝑥, 𝑧〉)𝑓))) = (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ ( I ↾ (𝑦(Hom ‘𝐷)𝑧)))) |
56 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑢 = 〈𝑦, 𝑧〉 → ((Hom ‘𝐷)‘𝑢) = ((Hom ‘𝐷)‘〈𝑦, 𝑧〉)) |
57 | | df-ov 7258 |
. . . . . . . . . . . 12
⊢ (𝑦(Hom ‘𝐷)𝑧) = ((Hom ‘𝐷)‘〈𝑦, 𝑧〉) |
58 | 56, 57 | eqtr4di 2797 |
. . . . . . . . . . 11
⊢ (𝑢 = 〈𝑦, 𝑧〉 → ((Hom ‘𝐷)‘𝑢) = (𝑦(Hom ‘𝐷)𝑧)) |
59 | 58 | reseq2d 5880 |
. . . . . . . . . 10
⊢ (𝑢 = 〈𝑦, 𝑧〉 → ( I ↾ ((Hom ‘𝐷)‘𝑢)) = ( I ↾ (𝑦(Hom ‘𝐷)𝑧))) |
60 | 59 | mpompt 7366 |
. . . . . . . . 9
⊢ (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ ( I ↾ ((Hom
‘𝐷)‘𝑢))) = (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ ( I ↾ (𝑦(Hom ‘𝐷)𝑧))) |
61 | 55, 60 | eqtr4di 2797 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘(𝐶
2ndF 𝐷))〈𝑥, 𝑧〉)𝑓))) = (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ ( I ↾ ((Hom ‘𝐷)‘𝑢)))) |
62 | 22, 61 | opeq12d 4809 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 〈(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘(𝐶
2ndF 𝐷))〈𝑥, 𝑧〉)𝑓)))〉 = 〈( I ↾
(Base‘𝐷)), (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ ( I ↾ ((Hom
‘𝐷)‘𝑢)))〉) |
63 | | eqid 2738 |
. . . . . . . 8
⊢
(〈𝐶, 𝐷〉 curryF
(𝐶
2ndF 𝐷)) = (〈𝐶, 𝐷〉 curryF (𝐶
2ndF 𝐷)) |
64 | 9 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat) |
65 | 2, 7, 9, 11 | 2ndfcl 17831 |
. . . . . . . . 9
⊢ (𝜑 → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷)) |
66 | 65 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷)) |
67 | | eqid 2738 |
. . . . . . . 8
⊢
((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶
2ndF 𝐷)))‘𝑥) = ((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶
2ndF 𝐷)))‘𝑥) |
68 | 63, 3, 35, 64, 66, 4, 36, 67, 41, 34 | curf1 17859 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st
‘(〈𝐶, 𝐷〉 curryF
(𝐶
2ndF 𝐷)))‘𝑥) = 〈(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘(𝐶
2ndF 𝐷))〈𝑥, 𝑧〉)𝑓)))〉) |
69 | | eqid 2738 |
. . . . . . . 8
⊢
(idfunc‘𝐷) = (idfunc‘𝐷) |
70 | 69, 4, 64, 41 | idfuval 17507 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) →
(idfunc‘𝐷) = 〈( I ↾ (Base‘𝐷)), (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ ( I ↾ ((Hom ‘𝐷)‘𝑢)))〉) |
71 | 62, 68, 70 | 3eqtr4d 2788 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st
‘(〈𝐶, 𝐷〉 curryF
(𝐶
2ndF 𝐷)))‘𝑥) = (idfunc‘𝐷)) |
72 | | eqid 2738 |
. . . . . . 7
⊢ (𝑄Δfunc𝐶) = (𝑄Δfunc𝐶) |
73 | | curf2ndf.q |
. . . . . . . . 9
⊢ 𝑄 = (𝐷 FuncCat 𝐷) |
74 | 73, 9, 9 | fuccat 17604 |
. . . . . . . 8
⊢ (𝜑 → 𝑄 ∈ Cat) |
75 | 74 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑄 ∈ Cat) |
76 | 73 | fucbas 17593 |
. . . . . . 7
⊢ (𝐷 Func 𝐷) = (Base‘𝑄) |
77 | 69 | idfucl 17512 |
. . . . . . . . 9
⊢ (𝐷 ∈ Cat →
(idfunc‘𝐷) ∈ (𝐷 Func 𝐷)) |
78 | 9, 77 | syl 17 |
. . . . . . . 8
⊢ (𝜑 →
(idfunc‘𝐷) ∈ (𝐷 Func 𝐷)) |
79 | 78 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) →
(idfunc‘𝐷) ∈ (𝐷 Func 𝐷)) |
80 | | eqid 2738 |
. . . . . . 7
⊢
((1st ‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)) = ((1st
‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)) |
81 | 72, 75, 35, 76, 79, 80, 3, 36 | diag11 17877 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st
‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)))‘𝑥) = (idfunc‘𝐷)) |
82 | 71, 81 | eqtr4d 2781 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st
‘(〈𝐶, 𝐷〉 curryF
(𝐶
2ndF 𝐷)))‘𝑥) = ((1st ‘((1st
‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)))‘𝑥)) |
83 | 82 | mpteq2dva 5170 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((1st
‘(〈𝐶, 𝐷〉 curryF
(𝐶
2ndF 𝐷)))‘𝑥)) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st
‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)))‘𝑥))) |
84 | | relfunc 17493 |
. . . . . . 7
⊢ Rel
(𝐶 Func 𝑄) |
85 | 63, 73, 7, 9, 65 | curfcl 17866 |
. . . . . . 7
⊢ (𝜑 → (〈𝐶, 𝐷〉 curryF (𝐶
2ndF 𝐷)) ∈ (𝐶 Func 𝑄)) |
86 | | 1st2ndbr 7856 |
. . . . . . 7
⊢ ((Rel
(𝐶 Func 𝑄) ∧ (〈𝐶, 𝐷〉 curryF (𝐶
2ndF 𝐷)) ∈ (𝐶 Func 𝑄)) → (1st
‘(〈𝐶, 𝐷〉 curryF
(𝐶
2ndF 𝐷)))(𝐶 Func 𝑄)(2nd ‘(〈𝐶, 𝐷〉 curryF (𝐶
2ndF 𝐷)))) |
87 | 84, 85, 86 | sylancr 586 |
. . . . . 6
⊢ (𝜑 → (1st
‘(〈𝐶, 𝐷〉 curryF
(𝐶
2ndF 𝐷)))(𝐶 Func 𝑄)(2nd ‘(〈𝐶, 𝐷〉 curryF (𝐶
2ndF 𝐷)))) |
88 | 3, 76, 87 | funcf1 17497 |
. . . . 5
⊢ (𝜑 → (1st
‘(〈𝐶, 𝐷〉 curryF
(𝐶
2ndF 𝐷))):(Base‘𝐶)⟶(𝐷 Func 𝐷)) |
89 | 88 | feqmptd 6819 |
. . . 4
⊢ (𝜑 → (1st
‘(〈𝐶, 𝐷〉 curryF
(𝐶
2ndF 𝐷))) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st
‘(〈𝐶, 𝐷〉 curryF
(𝐶
2ndF 𝐷)))‘𝑥))) |
90 | 72, 74, 7, 76, 78, 80 | diag1cl 17876 |
. . . . . . 7
⊢ (𝜑 → ((1st
‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)) ∈ (𝐶 Func 𝑄)) |
91 | | 1st2ndbr 7856 |
. . . . . . 7
⊢ ((Rel
(𝐶 Func 𝑄) ∧ ((1st ‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)) ∈ (𝐶 Func 𝑄)) → (1st
‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)))(𝐶 Func 𝑄)(2nd ‘((1st
‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)))) |
92 | 84, 90, 91 | sylancr 586 |
. . . . . 6
⊢ (𝜑 → (1st
‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)))(𝐶 Func 𝑄)(2nd ‘((1st
‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)))) |
93 | 3, 76, 92 | funcf1 17497 |
. . . . 5
⊢ (𝜑 → (1st
‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷))):(Base‘𝐶)⟶(𝐷 Func 𝐷)) |
94 | 93 | feqmptd 6819 |
. . . 4
⊢ (𝜑 → (1st
‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷))) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st
‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)))‘𝑥))) |
95 | 83, 89, 94 | 3eqtr4d 2788 |
. . 3
⊢ (𝜑 → (1st
‘(〈𝐶, 𝐷〉 curryF
(𝐶
2ndF 𝐷))) = (1st
‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)))) |
96 | 9 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐷 ∈ Cat) |
97 | 69, 4, 96 | idfu1st 17510 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (1st
‘(idfunc‘𝐷)) = ( I ↾ (Base‘𝐷))) |
98 | 97 | coeq2d 5760 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((Id‘𝐷) ∘ (1st
‘(idfunc‘𝐷))) = ((Id‘𝐷) ∘ ( I ↾ (Base‘𝐷)))) |
99 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Id‘𝑄) =
(Id‘𝑄) |
100 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Id‘𝐷) =
(Id‘𝐷) |
101 | 78 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) →
(idfunc‘𝐷) ∈ (𝐷 Func 𝐷)) |
102 | 73, 99, 100, 101 | fucid 17605 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((Id‘𝑄)‘(idfunc‘𝐷)) = ((Id‘𝐷) ∘ (1st
‘(idfunc‘𝐷)))) |
103 | 4, 100 | cidfn 17305 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ Cat →
(Id‘𝐷) Fn
(Base‘𝐷)) |
104 | 96, 103 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (Id‘𝐷) Fn (Base‘𝐷)) |
105 | | dffn2 6586 |
. . . . . . . . . . . . 13
⊢
((Id‘𝐷) Fn
(Base‘𝐷) ↔
(Id‘𝐷):(Base‘𝐷)⟶V) |
106 | 104, 105 | sylib 217 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (Id‘𝐷):(Base‘𝐷)⟶V) |
107 | 106 | feqmptd 6819 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (Id‘𝐷) = (𝑧 ∈ (Base‘𝐷) ↦ ((Id‘𝐷)‘𝑧))) |
108 | | fcoi1 6632 |
. . . . . . . . . . . 12
⊢
((Id‘𝐷):(Base‘𝐷)⟶V → ((Id‘𝐷) ∘ ( I ↾
(Base‘𝐷))) =
(Id‘𝐷)) |
109 | 106, 108 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((Id‘𝐷) ∘ ( I ↾ (Base‘𝐷))) = (Id‘𝐷)) |
110 | 7 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐶 ∈ Cat) |
111 | 110 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝐶 ∈ Cat) |
112 | 96 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat) |
113 | | simplrl 773 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶)) |
114 | | opelxpi 5617 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐷)) → 〈𝑥, 𝑧〉 ∈ ((Base‘𝐶) × (Base‘𝐷))) |
115 | 113, 114 | sylan 579 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 〈𝑥, 𝑧〉 ∈ ((Base‘𝐶) × (Base‘𝐷))) |
116 | | simplrr 774 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶)) |
117 | | opelxpi 5617 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐷)) → 〈𝑦, 𝑧〉 ∈ ((Base‘𝐶) × (Base‘𝐷))) |
118 | 116, 117 | sylan 579 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 〈𝑦, 𝑧〉 ∈ ((Base‘𝐶) × (Base‘𝐷))) |
119 | 2, 5, 6, 111, 112, 11, 115, 118 | 2ndf2 17829 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (〈𝑥, 𝑧〉(2nd ‘(𝐶
2ndF 𝐷))〈𝑦, 𝑧〉) = (2nd ↾
(〈𝑥, 𝑧〉(Hom ‘(𝐶 ×c
𝐷))〈𝑦, 𝑧〉))) |
120 | 119 | oveqd 7272 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓(〈𝑥, 𝑧〉(2nd ‘(𝐶
2ndF 𝐷))〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧)) = (𝑓(2nd ↾ (〈𝑥, 𝑧〉(Hom ‘(𝐶 ×c 𝐷))〈𝑦, 𝑧〉))((Id‘𝐷)‘𝑧))) |
121 | | df-ov 7258 |
. . . . . . . . . . . . . . 15
⊢ (𝑓(2nd ↾
(〈𝑥, 𝑧〉(Hom ‘(𝐶 ×c
𝐷))〈𝑦, 𝑧〉))((Id‘𝐷)‘𝑧)) = ((2nd ↾ (〈𝑥, 𝑧〉(Hom ‘(𝐶 ×c 𝐷))〈𝑦, 𝑧〉))‘〈𝑓, ((Id‘𝐷)‘𝑧)〉) |
122 | | simplr 765 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
123 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑧 ∈ (Base‘𝐷)) |
124 | 4, 41, 100, 112, 123 | catidcl 17308 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((Id‘𝐷)‘𝑧) ∈ (𝑧(Hom ‘𝐷)𝑧)) |
125 | 122, 124 | opelxpd 5618 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 〈𝑓, ((Id‘𝐷)‘𝑧)〉 ∈ ((𝑥(Hom ‘𝐶)𝑦) × (𝑧(Hom ‘𝐷)𝑧))) |
126 | 113 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑥 ∈ (Base‘𝐶)) |
127 | 116 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑦 ∈ (Base‘𝐶)) |
128 | 2, 3, 4, 33, 41, 126, 123, 127, 123, 6 | xpchom2 17819 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (〈𝑥, 𝑧〉(Hom ‘(𝐶 ×c 𝐷))〈𝑦, 𝑧〉) = ((𝑥(Hom ‘𝐶)𝑦) × (𝑧(Hom ‘𝐷)𝑧))) |
129 | 125, 128 | eleqtrrd 2842 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 〈𝑓, ((Id‘𝐷)‘𝑧)〉 ∈ (〈𝑥, 𝑧〉(Hom ‘(𝐶 ×c 𝐷))〈𝑦, 𝑧〉)) |
130 | 129 | fvresd 6776 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((2nd ↾
(〈𝑥, 𝑧〉(Hom ‘(𝐶 ×c
𝐷))〈𝑦, 𝑧〉))‘〈𝑓, ((Id‘𝐷)‘𝑧)〉) = (2nd ‘〈𝑓, ((Id‘𝐷)‘𝑧)〉)) |
131 | 121, 130 | eqtrid 2790 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓(2nd ↾ (〈𝑥, 𝑧〉(Hom ‘(𝐶 ×c 𝐷))〈𝑦, 𝑧〉))((Id‘𝐷)‘𝑧)) = (2nd ‘〈𝑓, ((Id‘𝐷)‘𝑧)〉)) |
132 | | fvex 6769 |
. . . . . . . . . . . . . . 15
⊢
((Id‘𝐷)‘𝑧) ∈ V |
133 | 47, 132 | op2nd 7813 |
. . . . . . . . . . . . . 14
⊢
(2nd ‘〈𝑓, ((Id‘𝐷)‘𝑧)〉) = ((Id‘𝐷)‘𝑧) |
134 | 131, 133 | eqtrdi 2795 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓(2nd ↾ (〈𝑥, 𝑧〉(Hom ‘(𝐶 ×c 𝐷))〈𝑦, 𝑧〉))((Id‘𝐷)‘𝑧)) = ((Id‘𝐷)‘𝑧)) |
135 | 120, 134 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓(〈𝑥, 𝑧〉(2nd ‘(𝐶
2ndF 𝐷))〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧)) = ((Id‘𝐷)‘𝑧)) |
136 | 135 | mpteq2dva 5170 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑓(〈𝑥, 𝑧〉(2nd ‘(𝐶
2ndF 𝐷))〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧))) = (𝑧 ∈ (Base‘𝐷) ↦ ((Id‘𝐷)‘𝑧))) |
137 | 107, 109,
136 | 3eqtr4rd 2789 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑓(〈𝑥, 𝑧〉(2nd ‘(𝐶
2ndF 𝐷))〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧))) = ((Id‘𝐷) ∘ ( I ↾ (Base‘𝐷)))) |
138 | 98, 102, 137 | 3eqtr4rd 2789 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑓(〈𝑥, 𝑧〉(2nd ‘(𝐶
2ndF 𝐷))〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧))) = ((Id‘𝑄)‘(idfunc‘𝐷))) |
139 | 65 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷)) |
140 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) |
141 | | eqid 2738 |
. . . . . . . . . 10
⊢ ((𝑥(2nd
‘(〈𝐶, 𝐷〉 curryF
(𝐶
2ndF 𝐷)))𝑦)‘𝑓) = ((𝑥(2nd ‘(〈𝐶, 𝐷〉 curryF (𝐶
2ndF 𝐷)))𝑦)‘𝑓) |
142 | 63, 3, 110, 96, 139, 4, 33, 100, 113, 116, 140, 141 | curf2 17863 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘(〈𝐶, 𝐷〉 curryF (𝐶
2ndF 𝐷)))𝑦)‘𝑓) = (𝑧 ∈ (Base‘𝐷) ↦ (𝑓(〈𝑥, 𝑧〉(2nd ‘(𝐶
2ndF 𝐷))〈𝑦, 𝑧〉)((Id‘𝐷)‘𝑧)))) |
143 | 74 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑄 ∈ Cat) |
144 | 72, 143, 110, 76, 101, 80, 3, 113, 33, 99, 116, 140 | diag12 17878 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘((1st
‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)))𝑦)‘𝑓) = ((Id‘𝑄)‘(idfunc‘𝐷))) |
145 | 138, 142,
144 | 3eqtr4d 2788 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘(〈𝐶, 𝐷〉 curryF (𝐶
2ndF 𝐷)))𝑦)‘𝑓) = ((𝑥(2nd ‘((1st
‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)))𝑦)‘𝑓)) |
146 | 145 | mpteq2dva 5170 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd ‘(〈𝐶, 𝐷〉 curryF (𝐶
2ndF 𝐷)))𝑦)‘𝑓)) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd ‘((1st
‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)))𝑦)‘𝑓))) |
147 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝐷 Nat 𝐷) = (𝐷 Nat 𝐷) |
148 | 73, 147 | fuchom 17594 |
. . . . . . . . 9
⊢ (𝐷 Nat 𝐷) = (Hom ‘𝑄) |
149 | 87 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st
‘(〈𝐶, 𝐷〉 curryF
(𝐶
2ndF 𝐷)))(𝐶 Func 𝑄)(2nd ‘(〈𝐶, 𝐷〉 curryF (𝐶
2ndF 𝐷)))) |
150 | | simprl 767 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) |
151 | | simprr 769 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) |
152 | 3, 33, 148, 149, 150, 151 | funcf2 17499 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(〈𝐶, 𝐷〉 curryF (𝐶
2ndF 𝐷)))𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st
‘(〈𝐶, 𝐷〉 curryF
(𝐶
2ndF 𝐷)))‘𝑥)(𝐷 Nat 𝐷)((1st ‘(〈𝐶, 𝐷〉 curryF (𝐶
2ndF 𝐷)))‘𝑦))) |
153 | 152 | feqmptd 6819 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(〈𝐶, 𝐷〉 curryF (𝐶
2ndF 𝐷)))𝑦) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd ‘(〈𝐶, 𝐷〉 curryF (𝐶
2ndF 𝐷)))𝑦)‘𝑓))) |
154 | 92 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st
‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)))(𝐶 Func 𝑄)(2nd ‘((1st
‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)))) |
155 | 3, 33, 148, 154, 150, 151 | funcf2 17499 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘((1st
‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)))𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st
‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)))‘𝑥)(𝐷 Nat 𝐷)((1st ‘((1st
‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)))‘𝑦))) |
156 | 155 | feqmptd 6819 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘((1st
‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)))𝑦) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd ‘((1st
‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)))𝑦)‘𝑓))) |
157 | 146, 153,
156 | 3eqtr4d 2788 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(〈𝐶, 𝐷〉 curryF (𝐶
2ndF 𝐷)))𝑦) = (𝑥(2nd ‘((1st
‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)))𝑦)) |
158 | 157 | 3impb 1113 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(2nd ‘(〈𝐶, 𝐷〉 curryF (𝐶
2ndF 𝐷)))𝑦) = (𝑥(2nd ‘((1st
‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)))𝑦)) |
159 | 158 | mpoeq3dva 7330 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘(〈𝐶, 𝐷〉 curryF (𝐶
2ndF 𝐷)))𝑦)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘((1st
‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)))𝑦))) |
160 | 3, 87 | funcfn2 17500 |
. . . . 5
⊢ (𝜑 → (2nd
‘(〈𝐶, 𝐷〉 curryF
(𝐶
2ndF 𝐷))) Fn ((Base‘𝐶) × (Base‘𝐶))) |
161 | | fnov 7383 |
. . . . 5
⊢
((2nd ‘(〈𝐶, 𝐷〉 curryF (𝐶
2ndF 𝐷))) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (2nd
‘(〈𝐶, 𝐷〉 curryF
(𝐶
2ndF 𝐷))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘(〈𝐶, 𝐷〉 curryF (𝐶
2ndF 𝐷)))𝑦))) |
162 | 160, 161 | sylib 217 |
. . . 4
⊢ (𝜑 → (2nd
‘(〈𝐶, 𝐷〉 curryF
(𝐶
2ndF 𝐷))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘(〈𝐶, 𝐷〉 curryF (𝐶
2ndF 𝐷)))𝑦))) |
163 | 3, 92 | funcfn2 17500 |
. . . . 5
⊢ (𝜑 → (2nd
‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷))) Fn ((Base‘𝐶) × (Base‘𝐶))) |
164 | | fnov 7383 |
. . . . 5
⊢
((2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷))) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (2nd
‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘((1st
‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)))𝑦))) |
165 | 163, 164 | sylib 217 |
. . . 4
⊢ (𝜑 → (2nd
‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘((1st
‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)))𝑦))) |
166 | 159, 162,
165 | 3eqtr4d 2788 |
. . 3
⊢ (𝜑 → (2nd
‘(〈𝐶, 𝐷〉 curryF
(𝐶
2ndF 𝐷))) = (2nd
‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)))) |
167 | 95, 166 | opeq12d 4809 |
. 2
⊢ (𝜑 → 〈(1st
‘(〈𝐶, 𝐷〉 curryF
(𝐶
2ndF 𝐷))), (2nd ‘(〈𝐶, 𝐷〉 curryF (𝐶
2ndF 𝐷)))〉 = 〈(1st
‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷))), (2nd
‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)))〉) |
168 | | 1st2nd 7853 |
. . 3
⊢ ((Rel
(𝐶 Func 𝑄) ∧ (〈𝐶, 𝐷〉 curryF (𝐶
2ndF 𝐷)) ∈ (𝐶 Func 𝑄)) → (〈𝐶, 𝐷〉 curryF (𝐶
2ndF 𝐷)) = 〈(1st
‘(〈𝐶, 𝐷〉 curryF
(𝐶
2ndF 𝐷))), (2nd ‘(〈𝐶, 𝐷〉 curryF (𝐶
2ndF 𝐷)))〉) |
169 | 84, 85, 168 | sylancr 586 |
. 2
⊢ (𝜑 → (〈𝐶, 𝐷〉 curryF (𝐶
2ndF 𝐷)) = 〈(1st
‘(〈𝐶, 𝐷〉 curryF
(𝐶
2ndF 𝐷))), (2nd ‘(〈𝐶, 𝐷〉 curryF (𝐶
2ndF 𝐷)))〉) |
170 | | 1st2nd 7853 |
. . 3
⊢ ((Rel
(𝐶 Func 𝑄) ∧ ((1st ‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)) ∈ (𝐶 Func 𝑄)) → ((1st ‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)) = 〈(1st
‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷))), (2nd
‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)))〉) |
171 | 84, 90, 170 | sylancr 586 |
. 2
⊢ (𝜑 → ((1st
‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)) = 〈(1st
‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷))), (2nd
‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷)))〉) |
172 | 167, 169,
171 | 3eqtr4d 2788 |
1
⊢ (𝜑 → (〈𝐶, 𝐷〉 curryF (𝐶
2ndF 𝐷)) = ((1st ‘(𝑄Δfunc𝐶))‘(idfunc‘𝐷))) |