MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf2ndf Structured version   Visualization version   GIF version

Theorem curf2ndf 18264
Description: As shown in diagval 18257, the currying of the first projection is the diagonal functor. On the other hand, the currying of the second projection is 𝑥𝐶 ↦ (𝑦𝐷𝑦), which is a constant functor of the identity functor at 𝐷. (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
curf2ndf.q 𝑄 = (𝐷 FuncCat 𝐷)
curf2ndf.c (𝜑𝐶 ∈ Cat)
curf2ndf.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
curf2ndf (𝜑 → (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) = ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))

Proof of Theorem curf2ndf
Dummy variables 𝑢 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7413 . . . . . . . . . . 11 (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦) = ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑥, 𝑦⟩)
2 eqid 2736 . . . . . . . . . . . . 13 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
3 eqid 2736 . . . . . . . . . . . . . 14 (Base‘𝐶) = (Base‘𝐶)
4 eqid 2736 . . . . . . . . . . . . . 14 (Base‘𝐷) = (Base‘𝐷)
52, 3, 4xpcbas 18195 . . . . . . . . . . . . 13 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘(𝐶 ×c 𝐷))
6 eqid 2736 . . . . . . . . . . . . 13 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
7 curf2ndf.c . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ Cat)
87ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐶 ∈ Cat)
9 curf2ndf.d . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ Cat)
109ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat)
11 eqid 2736 . . . . . . . . . . . . 13 (𝐶 2ndF 𝐷) = (𝐶 2ndF 𝐷)
12 opelxpi 5696 . . . . . . . . . . . . . 14 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
1312adantll 714 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
142, 5, 6, 8, 10, 11, 132ndf1 18212 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑥, 𝑦⟩) = (2nd ‘⟨𝑥, 𝑦⟩))
15 vex 3468 . . . . . . . . . . . . 13 𝑥 ∈ V
16 vex 3468 . . . . . . . . . . . . 13 𝑦 ∈ V
1715, 16op2nd 8002 . . . . . . . . . . . 12 (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦
1814, 17eqtrdi 2787 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑥, 𝑦⟩) = 𝑦)
191, 18eqtrid 2783 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦) = 𝑦)
2019mpteq2dva 5219 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦)) = (𝑦 ∈ (Base‘𝐷) ↦ 𝑦))
21 mptresid 6043 . . . . . . . . 9 ( I ↾ (Base‘𝐷)) = (𝑦 ∈ (Base‘𝐷) ↦ 𝑦)
2220, 21eqtr4di 2789 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦)) = ( I ↾ (Base‘𝐷)))
23 df-ov 7413 . . . . . . . . . . . . . . 15 (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓) = ((⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩)
248ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐶 ∈ Cat)
2510ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐷 ∈ Cat)
2613ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
27 simp-4r 783 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑥 ∈ (Base‘𝐶))
28 simplr 768 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑧 ∈ (Base‘𝐷))
2927, 28opelxpd 5698 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨𝑥, 𝑧⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
302, 5, 6, 24, 25, 11, 26, 292ndf2 18213 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩) = (2nd ↾ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩)))
3130fveq1d 6883 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩) = ((2nd ↾ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩))‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩))
3223, 31eqtrid 2783 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓) = ((2nd ↾ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩))‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩))
33 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (Hom ‘𝐶) = (Hom ‘𝐶)
34 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (Id‘𝐶) = (Id‘𝐶)
357adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
36 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
373, 33, 34, 35, 36catidcl 17699 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
3837ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
39 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧))
4038, 39opelxpd 5698 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨((Id‘𝐶)‘𝑥), 𝑓⟩ ∈ ((𝑥(Hom ‘𝐶)𝑥) × (𝑦(Hom ‘𝐷)𝑧)))
41 eqid 2736 . . . . . . . . . . . . . . . . . 18 (Hom ‘𝐷) = (Hom ‘𝐷)
42 simpllr 775 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑦 ∈ (Base‘𝐷))
432, 3, 4, 33, 41, 27, 42, 27, 28, 6xpchom2 18203 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩) = ((𝑥(Hom ‘𝐶)𝑥) × (𝑦(Hom ‘𝐷)𝑧)))
4440, 43eleqtrrd 2838 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨((Id‘𝐶)‘𝑥), 𝑓⟩ ∈ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩))
4544fvresd 6901 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((2nd ↾ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩))‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩) = (2nd ‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩))
46 fvex 6894 . . . . . . . . . . . . . . . 16 ((Id‘𝐶)‘𝑥) ∈ V
47 vex 3468 . . . . . . . . . . . . . . . 16 𝑓 ∈ V
4846, 47op2nd 8002 . . . . . . . . . . . . . . 15 (2nd ‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩) = 𝑓
4945, 48eqtrdi 2787 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((2nd ↾ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩))‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩) = 𝑓)
5032, 49eqtrd 2771 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓) = 𝑓)
5150mpteq2dva 5219 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓)) = (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ 𝑓))
52 mptresid 6043 . . . . . . . . . . . 12 ( I ↾ (𝑦(Hom ‘𝐷)𝑧)) = (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ 𝑓)
5351, 52eqtr4di 2789 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓)) = ( I ↾ (𝑦(Hom ‘𝐷)𝑧)))
54533impa 1109 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓)) = ( I ↾ (𝑦(Hom ‘𝐷)𝑧)))
5554mpoeq3dva 7489 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓))) = (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ ( I ↾ (𝑦(Hom ‘𝐷)𝑧))))
56 fveq2 6881 . . . . . . . . . . . 12 (𝑢 = ⟨𝑦, 𝑧⟩ → ((Hom ‘𝐷)‘𝑢) = ((Hom ‘𝐷)‘⟨𝑦, 𝑧⟩))
57 df-ov 7413 . . . . . . . . . . . 12 (𝑦(Hom ‘𝐷)𝑧) = ((Hom ‘𝐷)‘⟨𝑦, 𝑧⟩)
5856, 57eqtr4di 2789 . . . . . . . . . . 11 (𝑢 = ⟨𝑦, 𝑧⟩ → ((Hom ‘𝐷)‘𝑢) = (𝑦(Hom ‘𝐷)𝑧))
5958reseq2d 5971 . . . . . . . . . 10 (𝑢 = ⟨𝑦, 𝑧⟩ → ( I ↾ ((Hom ‘𝐷)‘𝑢)) = ( I ↾ (𝑦(Hom ‘𝐷)𝑧)))
6059mpompt 7526 . . . . . . . . 9 (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ ( I ↾ ((Hom ‘𝐷)‘𝑢))) = (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ ( I ↾ (𝑦(Hom ‘𝐷)𝑧)))
6155, 60eqtr4di 2789 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓))) = (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ ( I ↾ ((Hom ‘𝐷)‘𝑢))))
6222, 61opeq12d 4862 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓)))⟩ = ⟨( I ↾ (Base‘𝐷)), (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ ( I ↾ ((Hom ‘𝐷)‘𝑢)))⟩)
63 eqid 2736 . . . . . . . 8 (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) = (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))
649adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
652, 7, 9, 112ndfcl 18215 . . . . . . . . 9 (𝜑 → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷))
6665adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷))
67 eqid 2736 . . . . . . . 8 ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥) = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥)
6863, 3, 35, 64, 66, 4, 36, 67, 41, 34curf1 18242 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥) = ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓)))⟩)
69 eqid 2736 . . . . . . . 8 (idfunc𝐷) = (idfunc𝐷)
7069, 4, 64, 41idfuval 17894 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (idfunc𝐷) = ⟨( I ↾ (Base‘𝐷)), (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ ( I ↾ ((Hom ‘𝐷)‘𝑢)))⟩)
7162, 68, 703eqtr4d 2781 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥) = (idfunc𝐷))
72 eqid 2736 . . . . . . 7 (𝑄Δfunc𝐶) = (𝑄Δfunc𝐶)
73 curf2ndf.q . . . . . . . . 9 𝑄 = (𝐷 FuncCat 𝐷)
7473, 9, 9fuccat 17991 . . . . . . . 8 (𝜑𝑄 ∈ Cat)
7574adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑄 ∈ Cat)
7673fucbas 17981 . . . . . . 7 (𝐷 Func 𝐷) = (Base‘𝑄)
7769idfucl 17899 . . . . . . . . 9 (𝐷 ∈ Cat → (idfunc𝐷) ∈ (𝐷 Func 𝐷))
789, 77syl 17 . . . . . . . 8 (𝜑 → (idfunc𝐷) ∈ (𝐷 Func 𝐷))
7978adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (idfunc𝐷) ∈ (𝐷 Func 𝐷))
80 eqid 2736 . . . . . . 7 ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)) = ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))
8172, 75, 35, 76, 79, 80, 3, 36diag11 18260 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))‘𝑥) = (idfunc𝐷))
8271, 81eqtr4d 2774 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥) = ((1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))‘𝑥))
8382mpteq2dva 5219 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥)) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))‘𝑥)))
84 relfunc 17880 . . . . . . 7 Rel (𝐶 Func 𝑄)
8563, 73, 7, 9, 65curfcl 18249 . . . . . . 7 (𝜑 → (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) ∈ (𝐶 Func 𝑄))
86 1st2ndbr 8046 . . . . . . 7 ((Rel (𝐶 Func 𝑄) ∧ (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) ∈ (𝐶 Func 𝑄)) → (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))(𝐶 Func 𝑄)(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))))
8784, 85, 86sylancr 587 . . . . . 6 (𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))(𝐶 Func 𝑄)(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))))
883, 76, 87funcf1 17884 . . . . 5 (𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))):(Base‘𝐶)⟶(𝐷 Func 𝐷))
8988feqmptd 6952 . . . 4 (𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥)))
9072, 74, 7, 76, 78, 80diag1cl 18259 . . . . . . 7 (𝜑 → ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)) ∈ (𝐶 Func 𝑄))
91 1st2ndbr 8046 . . . . . . 7 ((Rel (𝐶 Func 𝑄) ∧ ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)) ∈ (𝐶 Func 𝑄)) → (1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))(𝐶 Func 𝑄)(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))))
9284, 90, 91sylancr 587 . . . . . 6 (𝜑 → (1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))(𝐶 Func 𝑄)(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))))
933, 76, 92funcf1 17884 . . . . 5 (𝜑 → (1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))):(Base‘𝐶)⟶(𝐷 Func 𝐷))
9493feqmptd 6952 . . . 4 (𝜑 → (1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))‘𝑥)))
9583, 89, 943eqtr4d 2781 . . 3 (𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) = (1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))))
969ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐷 ∈ Cat)
9769, 4, 96idfu1st 17897 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (1st ‘(idfunc𝐷)) = ( I ↾ (Base‘𝐷)))
9897coeq2d 5847 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((Id‘𝐷) ∘ (1st ‘(idfunc𝐷))) = ((Id‘𝐷) ∘ ( I ↾ (Base‘𝐷))))
99 eqid 2736 . . . . . . . . . . 11 (Id‘𝑄) = (Id‘𝑄)
100 eqid 2736 . . . . . . . . . . 11 (Id‘𝐷) = (Id‘𝐷)
10178ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (idfunc𝐷) ∈ (𝐷 Func 𝐷))
10273, 99, 100, 101fucid 17992 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((Id‘𝑄)‘(idfunc𝐷)) = ((Id‘𝐷) ∘ (1st ‘(idfunc𝐷))))
1034, 100cidfn 17696 . . . . . . . . . . . . . 14 (𝐷 ∈ Cat → (Id‘𝐷) Fn (Base‘𝐷))
10496, 103syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (Id‘𝐷) Fn (Base‘𝐷))
105 dffn2 6713 . . . . . . . . . . . . 13 ((Id‘𝐷) Fn (Base‘𝐷) ↔ (Id‘𝐷):(Base‘𝐷)⟶V)
106104, 105sylib 218 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (Id‘𝐷):(Base‘𝐷)⟶V)
107106feqmptd 6952 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (Id‘𝐷) = (𝑧 ∈ (Base‘𝐷) ↦ ((Id‘𝐷)‘𝑧)))
108 fcoi1 6757 . . . . . . . . . . . 12 ((Id‘𝐷):(Base‘𝐷)⟶V → ((Id‘𝐷) ∘ ( I ↾ (Base‘𝐷))) = (Id‘𝐷))
109106, 108syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((Id‘𝐷) ∘ ( I ↾ (Base‘𝐷))) = (Id‘𝐷))
1107ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐶 ∈ Cat)
111110adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝐶 ∈ Cat)
11296adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat)
113 simplrl 776 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶))
114 opelxpi 5696 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑧⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
115113, 114sylan 580 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑧⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
116 simplrr 777 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶))
117 opelxpi 5696 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐷)) → ⟨𝑦, 𝑧⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
118116, 117sylan 580 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ⟨𝑦, 𝑧⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
1192, 5, 6, 111, 112, 11, 115, 1182ndf2 18213 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩) = (2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩)))
120119oveqd 7427 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓(⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)) = (𝑓(2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))((Id‘𝐷)‘𝑧)))
121 df-ov 7413 . . . . . . . . . . . . . . 15 (𝑓(2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))((Id‘𝐷)‘𝑧)) = ((2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))‘⟨𝑓, ((Id‘𝐷)‘𝑧)⟩)
122 simplr 768 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
123 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑧 ∈ (Base‘𝐷))
1244, 41, 100, 112, 123catidcl 17699 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((Id‘𝐷)‘𝑧) ∈ (𝑧(Hom ‘𝐷)𝑧))
125122, 124opelxpd 5698 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ⟨𝑓, ((Id‘𝐷)‘𝑧)⟩ ∈ ((𝑥(Hom ‘𝐶)𝑦) × (𝑧(Hom ‘𝐷)𝑧)))
126113adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑥 ∈ (Base‘𝐶))
127116adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑦 ∈ (Base‘𝐶))
1282, 3, 4, 33, 41, 126, 123, 127, 123, 6xpchom2 18203 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩) = ((𝑥(Hom ‘𝐶)𝑦) × (𝑧(Hom ‘𝐷)𝑧)))
129125, 128eleqtrrd 2838 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ⟨𝑓, ((Id‘𝐷)‘𝑧)⟩ ∈ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))
130129fvresd 6901 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))‘⟨𝑓, ((Id‘𝐷)‘𝑧)⟩) = (2nd ‘⟨𝑓, ((Id‘𝐷)‘𝑧)⟩))
131121, 130eqtrid 2783 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓(2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))((Id‘𝐷)‘𝑧)) = (2nd ‘⟨𝑓, ((Id‘𝐷)‘𝑧)⟩))
132 fvex 6894 . . . . . . . . . . . . . . 15 ((Id‘𝐷)‘𝑧) ∈ V
13347, 132op2nd 8002 . . . . . . . . . . . . . 14 (2nd ‘⟨𝑓, ((Id‘𝐷)‘𝑧)⟩) = ((Id‘𝐷)‘𝑧)
134131, 133eqtrdi 2787 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓(2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))((Id‘𝐷)‘𝑧)) = ((Id‘𝐷)‘𝑧))
135120, 134eqtrd 2771 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓(⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)) = ((Id‘𝐷)‘𝑧))
136135mpteq2dva 5219 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑓(⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))) = (𝑧 ∈ (Base‘𝐷) ↦ ((Id‘𝐷)‘𝑧)))
137107, 109, 1363eqtr4rd 2782 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑓(⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))) = ((Id‘𝐷) ∘ ( I ↾ (Base‘𝐷))))
13898, 102, 1373eqtr4rd 2782 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑓(⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))) = ((Id‘𝑄)‘(idfunc𝐷)))
13965ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷))
140 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
141 eqid 2736 . . . . . . . . . 10 ((𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)‘𝑓) = ((𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)‘𝑓)
14263, 3, 110, 96, 139, 4, 33, 100, 113, 116, 140, 141curf2 18246 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)‘𝑓) = (𝑧 ∈ (Base‘𝐷) ↦ (𝑓(⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))
14374ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑄 ∈ Cat)
14472, 143, 110, 76, 101, 80, 3, 113, 33, 99, 116, 140diag12 18261 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)‘𝑓) = ((Id‘𝑄)‘(idfunc𝐷)))
145138, 142, 1443eqtr4d 2781 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)‘𝑓) = ((𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)‘𝑓))
146145mpteq2dva 5219 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)‘𝑓)) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)‘𝑓)))
147 eqid 2736 . . . . . . . . . 10 (𝐷 Nat 𝐷) = (𝐷 Nat 𝐷)
14873, 147fuchom 17982 . . . . . . . . 9 (𝐷 Nat 𝐷) = (Hom ‘𝑄)
14987adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))(𝐶 Func 𝑄)(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))))
150 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
151 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
1523, 33, 148, 149, 150, 151funcf2 17886 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥)(𝐷 Nat 𝐷)((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑦)))
153152feqmptd 6952 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)‘𝑓)))
15492adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))(𝐶 Func 𝑄)(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))))
1553, 33, 148, 154, 150, 151funcf2 17886 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))‘𝑥)(𝐷 Nat 𝐷)((1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))‘𝑦)))
156155feqmptd 6952 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)‘𝑓)))
157146, 153, 1563eqtr4d 2781 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦) = (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦))
1581573impb 1114 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦) = (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦))
159158mpoeq3dva 7489 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)))
1603, 87funcfn2 17887 . . . . 5 (𝜑 → (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) Fn ((Base‘𝐶) × (Base‘𝐶)))
161 fnov 7543 . . . . 5 ((2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)))
162160, 161sylib 218 . . . 4 (𝜑 → (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)))
1633, 92funcfn2 17887 . . . . 5 (𝜑 → (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))) Fn ((Base‘𝐶) × (Base‘𝐶)))
164 fnov 7543 . . . . 5 ((2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)))
165163, 164sylib 218 . . . 4 (𝜑 → (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)))
166159, 162, 1653eqtr4d 2781 . . 3 (𝜑 → (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) = (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))))
16795, 166opeq12d 4862 . 2 (𝜑 → ⟨(1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))), (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))⟩ = ⟨(1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))), (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))⟩)
168 1st2nd 8043 . . 3 ((Rel (𝐶 Func 𝑄) ∧ (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) ∈ (𝐶 Func 𝑄)) → (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) = ⟨(1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))), (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))⟩)
16984, 85, 168sylancr 587 . 2 (𝜑 → (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) = ⟨(1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))), (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))⟩)
170 1st2nd 8043 . . 3 ((Rel (𝐶 Func 𝑄) ∧ ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)) ∈ (𝐶 Func 𝑄)) → ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)) = ⟨(1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))), (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))⟩)
17184, 90, 170sylancr 587 . 2 (𝜑 → ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)) = ⟨(1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))), (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))⟩)
172167, 169, 1713eqtr4d 2781 1 (𝜑 → (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) = ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  cop 4612   class class class wbr 5124  cmpt 5206   I cid 5552   × cxp 5657  cres 5661  ccom 5663  Rel wrel 5664   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  cmpo 7412  1st c1st 7991  2nd c2nd 7992  Basecbs 17233  Hom chom 17287  Catccat 17681  Idccid 17682   Func cfunc 17872  idfunccidfu 17873   Nat cnat 17962   FuncCat cfuc 17963   ×c cxpc 18185   2ndF c2ndf 18187   curryF ccurf 18227  Δfunccdiag 18229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-slot 17206  df-ndx 17218  df-base 17234  df-hom 17300  df-cco 17301  df-cat 17685  df-cid 17686  df-func 17876  df-idfu 17877  df-nat 17964  df-fuc 17965  df-xpc 18189  df-1stf 18190  df-2ndf 18191  df-curf 18231  df-diag 18233
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator