MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf2ndf Structured version   Visualization version   GIF version

Theorem curf2ndf 18246
Description: As shown in diagval 18239, the currying of the first projection is the diagonal functor. On the other hand, the currying of the second projection is 𝑥𝐶 ↦ (𝑦𝐷𝑦), which is a constant functor of the identity functor at 𝐷. (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
curf2ndf.q 𝑄 = (𝐷 FuncCat 𝐷)
curf2ndf.c (𝜑𝐶 ∈ Cat)
curf2ndf.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
curf2ndf (𝜑 → (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) = ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))

Proof of Theorem curf2ndf
Dummy variables 𝑢 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7429 . . . . . . . . . . 11 (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦) = ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑥, 𝑦⟩)
2 eqid 2728 . . . . . . . . . . . . 13 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
3 eqid 2728 . . . . . . . . . . . . . 14 (Base‘𝐶) = (Base‘𝐶)
4 eqid 2728 . . . . . . . . . . . . . 14 (Base‘𝐷) = (Base‘𝐷)
52, 3, 4xpcbas 18176 . . . . . . . . . . . . 13 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘(𝐶 ×c 𝐷))
6 eqid 2728 . . . . . . . . . . . . 13 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
7 curf2ndf.c . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ Cat)
87ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐶 ∈ Cat)
9 curf2ndf.d . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ Cat)
109ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat)
11 eqid 2728 . . . . . . . . . . . . 13 (𝐶 2ndF 𝐷) = (𝐶 2ndF 𝐷)
12 opelxpi 5719 . . . . . . . . . . . . . 14 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
1312adantll 712 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
142, 5, 6, 8, 10, 11, 132ndf1 18193 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑥, 𝑦⟩) = (2nd ‘⟨𝑥, 𝑦⟩))
15 vex 3477 . . . . . . . . . . . . 13 𝑥 ∈ V
16 vex 3477 . . . . . . . . . . . . 13 𝑦 ∈ V
1715, 16op2nd 8008 . . . . . . . . . . . 12 (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦
1814, 17eqtrdi 2784 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑥, 𝑦⟩) = 𝑦)
191, 18eqtrid 2780 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦) = 𝑦)
2019mpteq2dva 5252 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦)) = (𝑦 ∈ (Base‘𝐷) ↦ 𝑦))
21 mptresid 6059 . . . . . . . . 9 ( I ↾ (Base‘𝐷)) = (𝑦 ∈ (Base‘𝐷) ↦ 𝑦)
2220, 21eqtr4di 2786 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦)) = ( I ↾ (Base‘𝐷)))
23 df-ov 7429 . . . . . . . . . . . . . . 15 (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓) = ((⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩)
248ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐶 ∈ Cat)
2510ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐷 ∈ Cat)
2613ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
27 simp-4r 782 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑥 ∈ (Base‘𝐶))
28 simplr 767 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑧 ∈ (Base‘𝐷))
2927, 28opelxpd 5721 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨𝑥, 𝑧⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
302, 5, 6, 24, 25, 11, 26, 292ndf2 18194 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩) = (2nd ↾ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩)))
3130fveq1d 6904 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩) = ((2nd ↾ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩))‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩))
3223, 31eqtrid 2780 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓) = ((2nd ↾ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩))‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩))
33 eqid 2728 . . . . . . . . . . . . . . . . . . . 20 (Hom ‘𝐶) = (Hom ‘𝐶)
34 eqid 2728 . . . . . . . . . . . . . . . . . . . 20 (Id‘𝐶) = (Id‘𝐶)
357adantr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
36 simpr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
373, 33, 34, 35, 36catidcl 17669 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
3837ad5ant12 754 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
39 simpr 483 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧))
4038, 39opelxpd 5721 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨((Id‘𝐶)‘𝑥), 𝑓⟩ ∈ ((𝑥(Hom ‘𝐶)𝑥) × (𝑦(Hom ‘𝐷)𝑧)))
41 eqid 2728 . . . . . . . . . . . . . . . . . 18 (Hom ‘𝐷) = (Hom ‘𝐷)
42 simpllr 774 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑦 ∈ (Base‘𝐷))
432, 3, 4, 33, 41, 27, 42, 27, 28, 6xpchom2 18184 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩) = ((𝑥(Hom ‘𝐶)𝑥) × (𝑦(Hom ‘𝐷)𝑧)))
4440, 43eleqtrrd 2832 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨((Id‘𝐶)‘𝑥), 𝑓⟩ ∈ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩))
4544fvresd 6922 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((2nd ↾ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩))‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩) = (2nd ‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩))
46 fvex 6915 . . . . . . . . . . . . . . . 16 ((Id‘𝐶)‘𝑥) ∈ V
47 vex 3477 . . . . . . . . . . . . . . . 16 𝑓 ∈ V
4846, 47op2nd 8008 . . . . . . . . . . . . . . 15 (2nd ‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩) = 𝑓
4945, 48eqtrdi 2784 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((2nd ↾ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩))‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩) = 𝑓)
5032, 49eqtrd 2768 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓) = 𝑓)
5150mpteq2dva 5252 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓)) = (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ 𝑓))
52 mptresid 6059 . . . . . . . . . . . 12 ( I ↾ (𝑦(Hom ‘𝐷)𝑧)) = (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ 𝑓)
5351, 52eqtr4di 2786 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓)) = ( I ↾ (𝑦(Hom ‘𝐷)𝑧)))
54533impa 1107 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓)) = ( I ↾ (𝑦(Hom ‘𝐷)𝑧)))
5554mpoeq3dva 7503 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓))) = (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ ( I ↾ (𝑦(Hom ‘𝐷)𝑧))))
56 fveq2 6902 . . . . . . . . . . . 12 (𝑢 = ⟨𝑦, 𝑧⟩ → ((Hom ‘𝐷)‘𝑢) = ((Hom ‘𝐷)‘⟨𝑦, 𝑧⟩))
57 df-ov 7429 . . . . . . . . . . . 12 (𝑦(Hom ‘𝐷)𝑧) = ((Hom ‘𝐷)‘⟨𝑦, 𝑧⟩)
5856, 57eqtr4di 2786 . . . . . . . . . . 11 (𝑢 = ⟨𝑦, 𝑧⟩ → ((Hom ‘𝐷)‘𝑢) = (𝑦(Hom ‘𝐷)𝑧))
5958reseq2d 5989 . . . . . . . . . 10 (𝑢 = ⟨𝑦, 𝑧⟩ → ( I ↾ ((Hom ‘𝐷)‘𝑢)) = ( I ↾ (𝑦(Hom ‘𝐷)𝑧)))
6059mpompt 7540 . . . . . . . . 9 (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ ( I ↾ ((Hom ‘𝐷)‘𝑢))) = (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ ( I ↾ (𝑦(Hom ‘𝐷)𝑧)))
6155, 60eqtr4di 2786 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓))) = (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ ( I ↾ ((Hom ‘𝐷)‘𝑢))))
6222, 61opeq12d 4886 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓)))⟩ = ⟨( I ↾ (Base‘𝐷)), (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ ( I ↾ ((Hom ‘𝐷)‘𝑢)))⟩)
63 eqid 2728 . . . . . . . 8 (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) = (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))
649adantr 479 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
652, 7, 9, 112ndfcl 18196 . . . . . . . . 9 (𝜑 → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷))
6665adantr 479 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷))
67 eqid 2728 . . . . . . . 8 ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥) = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥)
6863, 3, 35, 64, 66, 4, 36, 67, 41, 34curf1 18224 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥) = ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓)))⟩)
69 eqid 2728 . . . . . . . 8 (idfunc𝐷) = (idfunc𝐷)
7069, 4, 64, 41idfuval 17869 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (idfunc𝐷) = ⟨( I ↾ (Base‘𝐷)), (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ ( I ↾ ((Hom ‘𝐷)‘𝑢)))⟩)
7162, 68, 703eqtr4d 2778 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥) = (idfunc𝐷))
72 eqid 2728 . . . . . . 7 (𝑄Δfunc𝐶) = (𝑄Δfunc𝐶)
73 curf2ndf.q . . . . . . . . 9 𝑄 = (𝐷 FuncCat 𝐷)
7473, 9, 9fuccat 17969 . . . . . . . 8 (𝜑𝑄 ∈ Cat)
7574adantr 479 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑄 ∈ Cat)
7673fucbas 17958 . . . . . . 7 (𝐷 Func 𝐷) = (Base‘𝑄)
7769idfucl 17874 . . . . . . . . 9 (𝐷 ∈ Cat → (idfunc𝐷) ∈ (𝐷 Func 𝐷))
789, 77syl 17 . . . . . . . 8 (𝜑 → (idfunc𝐷) ∈ (𝐷 Func 𝐷))
7978adantr 479 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (idfunc𝐷) ∈ (𝐷 Func 𝐷))
80 eqid 2728 . . . . . . 7 ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)) = ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))
8172, 75, 35, 76, 79, 80, 3, 36diag11 18242 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))‘𝑥) = (idfunc𝐷))
8271, 81eqtr4d 2771 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥) = ((1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))‘𝑥))
8382mpteq2dva 5252 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥)) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))‘𝑥)))
84 relfunc 17855 . . . . . . 7 Rel (𝐶 Func 𝑄)
8563, 73, 7, 9, 65curfcl 18231 . . . . . . 7 (𝜑 → (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) ∈ (𝐶 Func 𝑄))
86 1st2ndbr 8052 . . . . . . 7 ((Rel (𝐶 Func 𝑄) ∧ (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) ∈ (𝐶 Func 𝑄)) → (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))(𝐶 Func 𝑄)(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))))
8784, 85, 86sylancr 585 . . . . . 6 (𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))(𝐶 Func 𝑄)(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))))
883, 76, 87funcf1 17859 . . . . 5 (𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))):(Base‘𝐶)⟶(𝐷 Func 𝐷))
8988feqmptd 6972 . . . 4 (𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥)))
9072, 74, 7, 76, 78, 80diag1cl 18241 . . . . . . 7 (𝜑 → ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)) ∈ (𝐶 Func 𝑄))
91 1st2ndbr 8052 . . . . . . 7 ((Rel (𝐶 Func 𝑄) ∧ ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)) ∈ (𝐶 Func 𝑄)) → (1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))(𝐶 Func 𝑄)(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))))
9284, 90, 91sylancr 585 . . . . . 6 (𝜑 → (1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))(𝐶 Func 𝑄)(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))))
933, 76, 92funcf1 17859 . . . . 5 (𝜑 → (1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))):(Base‘𝐶)⟶(𝐷 Func 𝐷))
9493feqmptd 6972 . . . 4 (𝜑 → (1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))‘𝑥)))
9583, 89, 943eqtr4d 2778 . . 3 (𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) = (1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))))
969ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐷 ∈ Cat)
9769, 4, 96idfu1st 17872 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (1st ‘(idfunc𝐷)) = ( I ↾ (Base‘𝐷)))
9897coeq2d 5869 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((Id‘𝐷) ∘ (1st ‘(idfunc𝐷))) = ((Id‘𝐷) ∘ ( I ↾ (Base‘𝐷))))
99 eqid 2728 . . . . . . . . . . 11 (Id‘𝑄) = (Id‘𝑄)
100 eqid 2728 . . . . . . . . . . 11 (Id‘𝐷) = (Id‘𝐷)
10178ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (idfunc𝐷) ∈ (𝐷 Func 𝐷))
10273, 99, 100, 101fucid 17970 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((Id‘𝑄)‘(idfunc𝐷)) = ((Id‘𝐷) ∘ (1st ‘(idfunc𝐷))))
1034, 100cidfn 17666 . . . . . . . . . . . . . 14 (𝐷 ∈ Cat → (Id‘𝐷) Fn (Base‘𝐷))
10496, 103syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (Id‘𝐷) Fn (Base‘𝐷))
105 dffn2 6729 . . . . . . . . . . . . 13 ((Id‘𝐷) Fn (Base‘𝐷) ↔ (Id‘𝐷):(Base‘𝐷)⟶V)
106104, 105sylib 217 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (Id‘𝐷):(Base‘𝐷)⟶V)
107106feqmptd 6972 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (Id‘𝐷) = (𝑧 ∈ (Base‘𝐷) ↦ ((Id‘𝐷)‘𝑧)))
108 fcoi1 6776 . . . . . . . . . . . 12 ((Id‘𝐷):(Base‘𝐷)⟶V → ((Id‘𝐷) ∘ ( I ↾ (Base‘𝐷))) = (Id‘𝐷))
109106, 108syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((Id‘𝐷) ∘ ( I ↾ (Base‘𝐷))) = (Id‘𝐷))
1107ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐶 ∈ Cat)
111110adantr 479 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝐶 ∈ Cat)
11296adantr 479 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat)
113 simplrl 775 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶))
114 opelxpi 5719 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑧⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
115113, 114sylan 578 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑧⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
116 simplrr 776 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶))
117 opelxpi 5719 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐷)) → ⟨𝑦, 𝑧⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
118116, 117sylan 578 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ⟨𝑦, 𝑧⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
1192, 5, 6, 111, 112, 11, 115, 1182ndf2 18194 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩) = (2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩)))
120119oveqd 7443 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓(⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)) = (𝑓(2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))((Id‘𝐷)‘𝑧)))
121 df-ov 7429 . . . . . . . . . . . . . . 15 (𝑓(2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))((Id‘𝐷)‘𝑧)) = ((2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))‘⟨𝑓, ((Id‘𝐷)‘𝑧)⟩)
122 simplr 767 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
123 simpr 483 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑧 ∈ (Base‘𝐷))
1244, 41, 100, 112, 123catidcl 17669 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((Id‘𝐷)‘𝑧) ∈ (𝑧(Hom ‘𝐷)𝑧))
125122, 124opelxpd 5721 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ⟨𝑓, ((Id‘𝐷)‘𝑧)⟩ ∈ ((𝑥(Hom ‘𝐶)𝑦) × (𝑧(Hom ‘𝐷)𝑧)))
126113adantr 479 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑥 ∈ (Base‘𝐶))
127116adantr 479 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑦 ∈ (Base‘𝐶))
1282, 3, 4, 33, 41, 126, 123, 127, 123, 6xpchom2 18184 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩) = ((𝑥(Hom ‘𝐶)𝑦) × (𝑧(Hom ‘𝐷)𝑧)))
129125, 128eleqtrrd 2832 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ⟨𝑓, ((Id‘𝐷)‘𝑧)⟩ ∈ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))
130129fvresd 6922 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))‘⟨𝑓, ((Id‘𝐷)‘𝑧)⟩) = (2nd ‘⟨𝑓, ((Id‘𝐷)‘𝑧)⟩))
131121, 130eqtrid 2780 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓(2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))((Id‘𝐷)‘𝑧)) = (2nd ‘⟨𝑓, ((Id‘𝐷)‘𝑧)⟩))
132 fvex 6915 . . . . . . . . . . . . . . 15 ((Id‘𝐷)‘𝑧) ∈ V
13347, 132op2nd 8008 . . . . . . . . . . . . . 14 (2nd ‘⟨𝑓, ((Id‘𝐷)‘𝑧)⟩) = ((Id‘𝐷)‘𝑧)
134131, 133eqtrdi 2784 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓(2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))((Id‘𝐷)‘𝑧)) = ((Id‘𝐷)‘𝑧))
135120, 134eqtrd 2768 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓(⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)) = ((Id‘𝐷)‘𝑧))
136135mpteq2dva 5252 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑓(⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))) = (𝑧 ∈ (Base‘𝐷) ↦ ((Id‘𝐷)‘𝑧)))
137107, 109, 1363eqtr4rd 2779 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑓(⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))) = ((Id‘𝐷) ∘ ( I ↾ (Base‘𝐷))))
13898, 102, 1373eqtr4rd 2779 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑓(⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))) = ((Id‘𝑄)‘(idfunc𝐷)))
13965ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷))
140 simpr 483 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
141 eqid 2728 . . . . . . . . . 10 ((𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)‘𝑓) = ((𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)‘𝑓)
14263, 3, 110, 96, 139, 4, 33, 100, 113, 116, 140, 141curf2 18228 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)‘𝑓) = (𝑧 ∈ (Base‘𝐷) ↦ (𝑓(⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))
14374ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑄 ∈ Cat)
14472, 143, 110, 76, 101, 80, 3, 113, 33, 99, 116, 140diag12 18243 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)‘𝑓) = ((Id‘𝑄)‘(idfunc𝐷)))
145138, 142, 1443eqtr4d 2778 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)‘𝑓) = ((𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)‘𝑓))
146145mpteq2dva 5252 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)‘𝑓)) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)‘𝑓)))
147 eqid 2728 . . . . . . . . . 10 (𝐷 Nat 𝐷) = (𝐷 Nat 𝐷)
14873, 147fuchom 17959 . . . . . . . . 9 (𝐷 Nat 𝐷) = (Hom ‘𝑄)
14987adantr 479 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))(𝐶 Func 𝑄)(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))))
150 simprl 769 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
151 simprr 771 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
1523, 33, 148, 149, 150, 151funcf2 17861 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥)(𝐷 Nat 𝐷)((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑦)))
153152feqmptd 6972 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)‘𝑓)))
15492adantr 479 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))(𝐶 Func 𝑄)(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))))
1553, 33, 148, 154, 150, 151funcf2 17861 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))‘𝑥)(𝐷 Nat 𝐷)((1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))‘𝑦)))
156155feqmptd 6972 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)‘𝑓)))
157146, 153, 1563eqtr4d 2778 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦) = (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦))
1581573impb 1112 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦) = (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦))
159158mpoeq3dva 7503 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)))
1603, 87funcfn2 17862 . . . . 5 (𝜑 → (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) Fn ((Base‘𝐶) × (Base‘𝐶)))
161 fnov 7558 . . . . 5 ((2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)))
162160, 161sylib 217 . . . 4 (𝜑 → (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)))
1633, 92funcfn2 17862 . . . . 5 (𝜑 → (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))) Fn ((Base‘𝐶) × (Base‘𝐶)))
164 fnov 7558 . . . . 5 ((2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)))
165163, 164sylib 217 . . . 4 (𝜑 → (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)))
166159, 162, 1653eqtr4d 2778 . . 3 (𝜑 → (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) = (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))))
16795, 166opeq12d 4886 . 2 (𝜑 → ⟨(1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))), (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))⟩ = ⟨(1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))), (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))⟩)
168 1st2nd 8049 . . 3 ((Rel (𝐶 Func 𝑄) ∧ (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) ∈ (𝐶 Func 𝑄)) → (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) = ⟨(1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))), (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))⟩)
16984, 85, 168sylancr 585 . 2 (𝜑 → (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) = ⟨(1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))), (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))⟩)
170 1st2nd 8049 . . 3 ((Rel (𝐶 Func 𝑄) ∧ ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)) ∈ (𝐶 Func 𝑄)) → ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)) = ⟨(1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))), (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))⟩)
17184, 90, 170sylancr 585 . 2 (𝜑 → ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)) = ⟨(1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))), (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))⟩)
172167, 169, 1713eqtr4d 2778 1 (𝜑 → (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) = ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3473  cop 4638   class class class wbr 5152  cmpt 5235   I cid 5579   × cxp 5680  cres 5684  ccom 5686  Rel wrel 5687   Fn wfn 6548  wf 6549  cfv 6553  (class class class)co 7426  cmpo 7428  1st c1st 7997  2nd c2nd 7998  Basecbs 17187  Hom chom 17251  Catccat 17651  Idccid 17652   Func cfunc 17847  idfunccidfu 17848   Nat cnat 17938   FuncCat cfuc 17939   ×c cxpc 18166   2ndF c2ndf 18168   curryF ccurf 18209  Δfunccdiag 18211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-ixp 8923  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-fz 13525  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17188  df-hom 17264  df-cco 17265  df-cat 17655  df-cid 17656  df-func 17851  df-idfu 17852  df-nat 17940  df-fuc 17941  df-xpc 18170  df-1stf 18171  df-2ndf 18172  df-curf 18213  df-diag 18215
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator