| Step | Hyp | Ref
| Expression |
| 1 | | fpwwe2.1 |
. . . . . . . . . . 11
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} |
| 2 | | fpwwe2.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 3 | | fpwwe2.3 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
| 4 | | fpwwe2.4 |
. . . . . . . . . . 11
⊢ 𝑋 = ∪
dom 𝑊 |
| 5 | 1, 2, 3, 4 | fpwwe2lem10 10659 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋)) |
| 6 | 5 | ffund 6715 |
. . . . . . . . 9
⊢ (𝜑 → Fun 𝑊) |
| 7 | | funbrfv2b 6941 |
. . . . . . . . 9
⊢ (Fun
𝑊 → (𝑌𝑊𝑅 ↔ (𝑌 ∈ dom 𝑊 ∧ (𝑊‘𝑌) = 𝑅))) |
| 8 | 6, 7 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑌𝑊𝑅 ↔ (𝑌 ∈ dom 𝑊 ∧ (𝑊‘𝑌) = 𝑅))) |
| 9 | 8 | simprbda 498 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌𝑊𝑅) → 𝑌 ∈ dom 𝑊) |
| 10 | 9 | adantrr 717 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑌 ∈ dom 𝑊) |
| 11 | | elssuni 4918 |
. . . . . . 7
⊢ (𝑌 ∈ dom 𝑊 → 𝑌 ⊆ ∪ dom
𝑊) |
| 12 | 11, 4 | sseqtrrdi 4005 |
. . . . . 6
⊢ (𝑌 ∈ dom 𝑊 → 𝑌 ⊆ 𝑋) |
| 13 | 10, 12 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑌 ⊆ 𝑋) |
| 14 | | simpl 482 |
. . . . . . 7
⊢ ((𝑋 ⊆ 𝑌 ∧ (𝑊‘𝑋) = (𝑅 ∩ (𝑌 × 𝑋))) → 𝑋 ⊆ 𝑌) |
| 15 | 14 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → ((𝑋 ⊆ 𝑌 ∧ (𝑊‘𝑋) = (𝑅 ∩ (𝑌 × 𝑋))) → 𝑋 ⊆ 𝑌)) |
| 16 | | simplrr 777 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (𝑌𝐹𝑅) ∈ 𝑌) |
| 17 | 2 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝐴 ∈ 𝑉) |
| 18 | 17 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → 𝐴 ∈ 𝑉) |
| 19 | 1, 2, 3, 4 | fpwwe2lem11 10660 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑋 ∈ dom 𝑊) |
| 20 | | funfvbrb 7046 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (Fun
𝑊 → (𝑋 ∈ dom 𝑊 ↔ 𝑋𝑊(𝑊‘𝑋))) |
| 21 | 6, 20 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑋 ∈ dom 𝑊 ↔ 𝑋𝑊(𝑊‘𝑋))) |
| 22 | 19, 21 | mpbid 232 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑋𝑊(𝑊‘𝑋)) |
| 23 | 1, 2 | fpwwe2lem2 10651 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑋𝑊(𝑊‘𝑋) ↔ ((𝑋 ⊆ 𝐴 ∧ (𝑊‘𝑋) ⊆ (𝑋 × 𝑋)) ∧ ((𝑊‘𝑋) We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡(𝑊‘𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊‘𝑋) ∩ (𝑢 × 𝑢))) = 𝑦)))) |
| 24 | 22, 23 | mpbid 232 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑋 ⊆ 𝐴 ∧ (𝑊‘𝑋) ⊆ (𝑋 × 𝑋)) ∧ ((𝑊‘𝑋) We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡(𝑊‘𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊‘𝑋) ∩ (𝑢 × 𝑢))) = 𝑦))) |
| 25 | 24 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑋 ⊆ 𝐴 ∧ (𝑊‘𝑋) ⊆ (𝑋 × 𝑋)) ∧ ((𝑊‘𝑋) We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡(𝑊‘𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊‘𝑋) ∩ (𝑢 × 𝑢))) = 𝑦))) |
| 26 | 25 | simpld 494 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (𝑋 ⊆ 𝐴 ∧ (𝑊‘𝑋) ⊆ (𝑋 × 𝑋))) |
| 27 | 26 | simpld 494 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → 𝑋 ⊆ 𝐴) |
| 28 | 18, 27 | ssexd 5299 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → 𝑋 ∈ V) |
| 29 | 28 | difexd 5306 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (𝑋 ∖ 𝑌) ∈ V) |
| 30 | 25 | simprd 495 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑊‘𝑋) We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡(𝑊‘𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊‘𝑋) ∩ (𝑢 × 𝑢))) = 𝑦)) |
| 31 | 30 | simpld 494 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (𝑊‘𝑋) We 𝑋) |
| 32 | | wefr 5649 |
. . . . . . . . . . . . 13
⊢ ((𝑊‘𝑋) We 𝑋 → (𝑊‘𝑋) Fr 𝑋) |
| 33 | 31, 32 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (𝑊‘𝑋) Fr 𝑋) |
| 34 | | difssd 4117 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (𝑋 ∖ 𝑌) ⊆ 𝑋) |
| 35 | | fri 5616 |
. . . . . . . . . . . . 13
⊢ ((((𝑋 ∖ 𝑌) ∈ V ∧ (𝑊‘𝑋) Fr 𝑋) ∧ ((𝑋 ∖ 𝑌) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑌) ≠ ∅)) → ∃𝑧 ∈ (𝑋 ∖ 𝑌)∀𝑤 ∈ (𝑋 ∖ 𝑌) ¬ 𝑤(𝑊‘𝑋)𝑧) |
| 36 | 35 | expr 456 |
. . . . . . . . . . . 12
⊢ ((((𝑋 ∖ 𝑌) ∈ V ∧ (𝑊‘𝑋) Fr 𝑋) ∧ (𝑋 ∖ 𝑌) ⊆ 𝑋) → ((𝑋 ∖ 𝑌) ≠ ∅ → ∃𝑧 ∈ (𝑋 ∖ 𝑌)∀𝑤 ∈ (𝑋 ∖ 𝑌) ¬ 𝑤(𝑊‘𝑋)𝑧)) |
| 37 | 29, 33, 34, 36 | syl21anc 837 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑋 ∖ 𝑌) ≠ ∅ → ∃𝑧 ∈ (𝑋 ∖ 𝑌)∀𝑤 ∈ (𝑋 ∖ 𝑌) ¬ 𝑤(𝑊‘𝑋)𝑧)) |
| 38 | | ssdif0 4346 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∩ (◡(𝑊‘𝑋) “ {𝑧})) ⊆ 𝑌 ↔ ((𝑋 ∩ (◡(𝑊‘𝑋) “ {𝑧})) ∖ 𝑌) = ∅) |
| 39 | | indif1 4262 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 ∖ 𝑌) ∩ (◡(𝑊‘𝑋) “ {𝑧})) = ((𝑋 ∩ (◡(𝑊‘𝑋) “ {𝑧})) ∖ 𝑌) |
| 40 | 39 | eqeq1i 2741 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 ∖ 𝑌) ∩ (◡(𝑊‘𝑋) “ {𝑧})) = ∅ ↔ ((𝑋 ∩ (◡(𝑊‘𝑋) “ {𝑧})) ∖ 𝑌) = ∅) |
| 41 | | disj 4430 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑋 ∖ 𝑌) ∩ (◡(𝑊‘𝑋) “ {𝑧})) = ∅ ↔ ∀𝑤 ∈ (𝑋 ∖ 𝑌) ¬ 𝑤 ∈ (◡(𝑊‘𝑋) “ {𝑧})) |
| 42 | | vex 3468 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑤 ∈ V |
| 43 | 42 | eliniseg 6086 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ V → (𝑤 ∈ (◡(𝑊‘𝑋) “ {𝑧}) ↔ 𝑤(𝑊‘𝑋)𝑧)) |
| 44 | 43 | elv 3469 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ (◡(𝑊‘𝑋) “ {𝑧}) ↔ 𝑤(𝑊‘𝑋)𝑧) |
| 45 | 44 | notbii 320 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝑤 ∈ (◡(𝑊‘𝑋) “ {𝑧}) ↔ ¬ 𝑤(𝑊‘𝑋)𝑧) |
| 46 | 45 | ralbii 3083 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑤 ∈
(𝑋 ∖ 𝑌) ¬ 𝑤 ∈ (◡(𝑊‘𝑋) “ {𝑧}) ↔ ∀𝑤 ∈ (𝑋 ∖ 𝑌) ¬ 𝑤(𝑊‘𝑋)𝑧) |
| 47 | 41, 46 | bitri 275 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 ∖ 𝑌) ∩ (◡(𝑊‘𝑋) “ {𝑧})) = ∅ ↔ ∀𝑤 ∈ (𝑋 ∖ 𝑌) ¬ 𝑤(𝑊‘𝑋)𝑧) |
| 48 | 38, 40, 47 | 3bitr2i 299 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∩ (◡(𝑊‘𝑋) “ {𝑧})) ⊆ 𝑌 ↔ ∀𝑤 ∈ (𝑋 ∖ 𝑌) ¬ 𝑤(𝑊‘𝑋)𝑧) |
| 49 | | cnvimass 6074 |
. . . . . . . . . . . . . . . . 17
⊢ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ dom (𝑊‘𝑋) |
| 50 | 26 | simprd 495 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (𝑊‘𝑋) ⊆ (𝑋 × 𝑋)) |
| 51 | | dmss 5887 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑊‘𝑋) ⊆ (𝑋 × 𝑋) → dom (𝑊‘𝑋) ⊆ dom (𝑋 × 𝑋)) |
| 52 | 50, 51 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → dom (𝑊‘𝑋) ⊆ dom (𝑋 × 𝑋)) |
| 53 | | dmxpid 5915 |
. . . . . . . . . . . . . . . . . 18
⊢ dom
(𝑋 × 𝑋) = 𝑋 |
| 54 | 52, 53 | sseqtrdi 4004 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → dom (𝑊‘𝑋) ⊆ 𝑋) |
| 55 | 49, 54 | sstrid 3975 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑋) |
| 56 | | sseqin2 4203 |
. . . . . . . . . . . . . . . 16
⊢ ((◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑋 ↔ (𝑋 ∩ (◡(𝑊‘𝑋) “ {𝑧})) = (◡(𝑊‘𝑋) “ {𝑧})) |
| 57 | 55, 56 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (𝑋 ∩ (◡(𝑊‘𝑋) “ {𝑧})) = (◡(𝑊‘𝑋) “ {𝑧})) |
| 58 | 57 | sseq1d 3995 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑋 ∩ (◡(𝑊‘𝑋) “ {𝑧})) ⊆ 𝑌 ↔ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) |
| 59 | 48, 58 | bitr3id 285 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (∀𝑤 ∈ (𝑋 ∖ 𝑌) ¬ 𝑤(𝑊‘𝑋)𝑧 ↔ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) |
| 60 | 59 | rexbidv 3165 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (∃𝑧 ∈ (𝑋 ∖ 𝑌)∀𝑤 ∈ (𝑋 ∖ 𝑌) ¬ 𝑤(𝑊‘𝑋)𝑧 ↔ ∃𝑧 ∈ (𝑋 ∖ 𝑌)(◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) |
| 61 | | eldifn 4112 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧 ∈ (𝑋 ∖ 𝑌) → ¬ 𝑧 ∈ 𝑌) |
| 62 | 61 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → ¬ 𝑧 ∈ 𝑌) |
| 63 | | eleq1w 2818 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 = 𝑧 → (𝑤 ∈ 𝑌 ↔ 𝑧 ∈ 𝑌)) |
| 64 | 63 | notbid 318 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = 𝑧 → (¬ 𝑤 ∈ 𝑌 ↔ ¬ 𝑧 ∈ 𝑌)) |
| 65 | 62, 64 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑤 = 𝑧 → ¬ 𝑤 ∈ 𝑌)) |
| 66 | 65 | con2d 134 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑤 ∈ 𝑌 → ¬ 𝑤 = 𝑧)) |
| 67 | 66 | imp 406 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → ¬ 𝑤 = 𝑧) |
| 68 | 62 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → ¬ 𝑧 ∈ 𝑌) |
| 69 | | simprr 772 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌))) |
| 70 | 69 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌))) |
| 71 | 70 | breqd 5135 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → (𝑧𝑅𝑤 ↔ 𝑧((𝑊‘𝑋) ∩ (𝑋 × 𝑌))𝑤)) |
| 72 | | eldifi 4111 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 ∈ (𝑋 ∖ 𝑌) → 𝑧 ∈ 𝑋) |
| 73 | 72 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑧 ∈ 𝑋) |
| 74 | 73 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → 𝑧 ∈ 𝑋) |
| 75 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → 𝑤 ∈ 𝑌) |
| 76 | | brxp 5708 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧(𝑋 × 𝑌)𝑤 ↔ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑌)) |
| 77 | 74, 75, 76 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → 𝑧(𝑋 × 𝑌)𝑤) |
| 78 | | brin 5176 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧((𝑊‘𝑋) ∩ (𝑋 × 𝑌))𝑤 ↔ (𝑧(𝑊‘𝑋)𝑤 ∧ 𝑧(𝑋 × 𝑌)𝑤)) |
| 79 | 78 | rbaib 538 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧(𝑋 × 𝑌)𝑤 → (𝑧((𝑊‘𝑋) ∩ (𝑋 × 𝑌))𝑤 ↔ 𝑧(𝑊‘𝑋)𝑤)) |
| 80 | 77, 79 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → (𝑧((𝑊‘𝑋) ∩ (𝑋 × 𝑌))𝑤 ↔ 𝑧(𝑊‘𝑋)𝑤)) |
| 81 | 71, 80 | bitrd 279 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → (𝑧𝑅𝑤 ↔ 𝑧(𝑊‘𝑋)𝑤)) |
| 82 | 1, 2 | fpwwe2lem2 10651 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → (𝑌𝑊𝑅 ↔ ((𝑌 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑌 × 𝑌)) ∧ (𝑅 We 𝑌 ∧ ∀𝑦 ∈ 𝑌 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)))) |
| 83 | 82 | biimpa 476 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑌𝑊𝑅) → ((𝑌 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑌 × 𝑌)) ∧ (𝑅 We 𝑌 ∧ ∀𝑦 ∈ 𝑌 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) |
| 84 | 83 | adantrr 717 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → ((𝑌 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑌 × 𝑌)) ∧ (𝑅 We 𝑌 ∧ ∀𝑦 ∈ 𝑌 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) |
| 85 | 84 | simpld 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → (𝑌 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑌 × 𝑌))) |
| 86 | 85 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑅 ⊆ (𝑌 × 𝑌)) |
| 87 | 86 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → 𝑅 ⊆ (𝑌 × 𝑌)) |
| 88 | 87 | ssbrd 5167 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → (𝑧𝑅𝑤 → 𝑧(𝑌 × 𝑌)𝑤)) |
| 89 | | brxp 5708 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧(𝑌 × 𝑌)𝑤 ↔ (𝑧 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌)) |
| 90 | 89 | simplbi 497 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧(𝑌 × 𝑌)𝑤 → 𝑧 ∈ 𝑌) |
| 91 | 88, 90 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → (𝑧𝑅𝑤 → 𝑧 ∈ 𝑌)) |
| 92 | 81, 91 | sylbird 260 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → (𝑧(𝑊‘𝑋)𝑤 → 𝑧 ∈ 𝑌)) |
| 93 | 68, 92 | mtod 198 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → ¬ 𝑧(𝑊‘𝑋)𝑤) |
| 94 | 31 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → (𝑊‘𝑋) We 𝑋) |
| 95 | | weso 5650 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑊‘𝑋) We 𝑋 → (𝑊‘𝑋) Or 𝑋) |
| 96 | 94, 95 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → (𝑊‘𝑋) Or 𝑋) |
| 97 | 13 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑌 ⊆ 𝑋) |
| 98 | 97 | sselda 3963 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → 𝑤 ∈ 𝑋) |
| 99 | | sotric 5596 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑊‘𝑋) Or 𝑋 ∧ (𝑤 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑤(𝑊‘𝑋)𝑧 ↔ ¬ (𝑤 = 𝑧 ∨ 𝑧(𝑊‘𝑋)𝑤))) |
| 100 | | ioran 985 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
(𝑤 = 𝑧 ∨ 𝑧(𝑊‘𝑋)𝑤) ↔ (¬ 𝑤 = 𝑧 ∧ ¬ 𝑧(𝑊‘𝑋)𝑤)) |
| 101 | 99, 100 | bitrdi 287 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑊‘𝑋) Or 𝑋 ∧ (𝑤 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑤(𝑊‘𝑋)𝑧 ↔ (¬ 𝑤 = 𝑧 ∧ ¬ 𝑧(𝑊‘𝑋)𝑤))) |
| 102 | 96, 98, 74, 101 | syl12anc 836 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → (𝑤(𝑊‘𝑋)𝑧 ↔ (¬ 𝑤 = 𝑧 ∧ ¬ 𝑧(𝑊‘𝑋)𝑤))) |
| 103 | 67, 93, 102 | mpbir2and 713 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → 𝑤(𝑊‘𝑋)𝑧) |
| 104 | 103, 44 | sylibr 234 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → 𝑤 ∈ (◡(𝑊‘𝑋) “ {𝑧})) |
| 105 | 104 | ex 412 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑤 ∈ 𝑌 → 𝑤 ∈ (◡(𝑊‘𝑋) “ {𝑧}))) |
| 106 | 105 | ssrdv 3969 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑌 ⊆ (◡(𝑊‘𝑋) “ {𝑧})) |
| 107 | | simprr 772 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌) |
| 108 | 106, 107 | eqssd 3981 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑌 = (◡(𝑊‘𝑋) “ {𝑧})) |
| 109 | | in32 4210 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑊‘𝑋) ∩ (𝑋 × 𝑌)) ∩ (𝑌 × 𝑌)) = (((𝑊‘𝑋) ∩ (𝑌 × 𝑌)) ∩ (𝑋 × 𝑌)) |
| 110 | | simplrr 777 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌))) |
| 111 | 110 | ineq1d 4199 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑅 ∩ (𝑌 × 𝑌)) = (((𝑊‘𝑋) ∩ (𝑋 × 𝑌)) ∩ (𝑌 × 𝑌))) |
| 112 | 86 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑅 ⊆ (𝑌 × 𝑌)) |
| 113 | | dfss2 3949 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑅 ⊆ (𝑌 × 𝑌) ↔ (𝑅 ∩ (𝑌 × 𝑌)) = 𝑅) |
| 114 | 112, 113 | sylib 218 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑅 ∩ (𝑌 × 𝑌)) = 𝑅) |
| 115 | 111, 114 | eqtr3d 2773 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (((𝑊‘𝑋) ∩ (𝑋 × 𝑌)) ∩ (𝑌 × 𝑌)) = 𝑅) |
| 116 | | inss2 4218 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑊‘𝑋) ∩ (𝑌 × 𝑌)) ⊆ (𝑌 × 𝑌) |
| 117 | | xpss1 5678 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑌 ⊆ 𝑋 → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑌)) |
| 118 | 97, 117 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑌)) |
| 119 | 116, 118 | sstrid 3975 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → ((𝑊‘𝑋) ∩ (𝑌 × 𝑌)) ⊆ (𝑋 × 𝑌)) |
| 120 | | dfss2 3949 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑊‘𝑋) ∩ (𝑌 × 𝑌)) ⊆ (𝑋 × 𝑌) ↔ (((𝑊‘𝑋) ∩ (𝑌 × 𝑌)) ∩ (𝑋 × 𝑌)) = ((𝑊‘𝑋) ∩ (𝑌 × 𝑌))) |
| 121 | 119, 120 | sylib 218 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (((𝑊‘𝑋) ∩ (𝑌 × 𝑌)) ∩ (𝑋 × 𝑌)) = ((𝑊‘𝑋) ∩ (𝑌 × 𝑌))) |
| 122 | 109, 115,
121 | 3eqtr3a 2795 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑅 = ((𝑊‘𝑋) ∩ (𝑌 × 𝑌))) |
| 123 | 108 | sqxpeqd 5691 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑌 × 𝑌) = ((◡(𝑊‘𝑋) “ {𝑧}) × (◡(𝑊‘𝑋) “ {𝑧}))) |
| 124 | 123 | ineq2d 4200 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → ((𝑊‘𝑋) ∩ (𝑌 × 𝑌)) = ((𝑊‘𝑋) ∩ ((◡(𝑊‘𝑋) “ {𝑧}) × (◡(𝑊‘𝑋) “ {𝑧})))) |
| 125 | 122, 124 | eqtrd 2771 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑅 = ((𝑊‘𝑋) ∩ ((◡(𝑊‘𝑋) “ {𝑧}) × (◡(𝑊‘𝑋) “ {𝑧})))) |
| 126 | 108, 125 | oveq12d 7428 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑌𝐹𝑅) = ((◡(𝑊‘𝑋) “ {𝑧})𝐹((𝑊‘𝑋) ∩ ((◡(𝑊‘𝑋) “ {𝑧}) × (◡(𝑊‘𝑋) “ {𝑧}))))) |
| 127 | 18 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝐴 ∈ 𝑉) |
| 128 | 22 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑋𝑊(𝑊‘𝑋)) |
| 129 | 128 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑋𝑊(𝑊‘𝑋)) |
| 130 | 1, 127, 129 | fpwwe2lem3 10652 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑧 ∈ 𝑋) → ((◡(𝑊‘𝑋) “ {𝑧})𝐹((𝑊‘𝑋) ∩ ((◡(𝑊‘𝑋) “ {𝑧}) × (◡(𝑊‘𝑋) “ {𝑧})))) = 𝑧) |
| 131 | 73, 130 | mpdan 687 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → ((◡(𝑊‘𝑋) “ {𝑧})𝐹((𝑊‘𝑋) ∩ ((◡(𝑊‘𝑋) “ {𝑧}) × (◡(𝑊‘𝑋) “ {𝑧})))) = 𝑧) |
| 132 | 126, 131 | eqtrd 2771 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑌𝐹𝑅) = 𝑧) |
| 133 | 132, 62 | eqneltrd 2855 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → ¬ (𝑌𝐹𝑅) ∈ 𝑌) |
| 134 | 133 | rexlimdvaa 3143 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (∃𝑧 ∈ (𝑋 ∖ 𝑌)(◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌 → ¬ (𝑌𝐹𝑅) ∈ 𝑌)) |
| 135 | 60, 134 | sylbid 240 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (∃𝑧 ∈ (𝑋 ∖ 𝑌)∀𝑤 ∈ (𝑋 ∖ 𝑌) ¬ 𝑤(𝑊‘𝑋)𝑧 → ¬ (𝑌𝐹𝑅) ∈ 𝑌)) |
| 136 | 37, 135 | syld 47 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑋 ∖ 𝑌) ≠ ∅ → ¬ (𝑌𝐹𝑅) ∈ 𝑌)) |
| 137 | 136 | necon4ad 2952 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑌𝐹𝑅) ∈ 𝑌 → (𝑋 ∖ 𝑌) = ∅)) |
| 138 | 16, 137 | mpd 15 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (𝑋 ∖ 𝑌) = ∅) |
| 139 | | ssdif0 4346 |
. . . . . . . 8
⊢ (𝑋 ⊆ 𝑌 ↔ (𝑋 ∖ 𝑌) = ∅) |
| 140 | 138, 139 | sylibr 234 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → 𝑋 ⊆ 𝑌) |
| 141 | 140 | ex 412 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → ((𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌))) → 𝑋 ⊆ 𝑌)) |
| 142 | 3 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
| 143 | | simprl 770 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑌𝑊𝑅) |
| 144 | 1, 17, 142, 128, 143 | fpwwe2lem9 10658 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → ((𝑋 ⊆ 𝑌 ∧ (𝑊‘𝑋) = (𝑅 ∩ (𝑌 × 𝑋))) ∨ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌))))) |
| 145 | 15, 141, 144 | mpjaod 860 |
. . . . 5
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑋 ⊆ 𝑌) |
| 146 | 13, 145 | eqssd 3981 |
. . . 4
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑌 = 𝑋) |
| 147 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → Fun 𝑊) |
| 148 | 146, 143 | eqbrtrrd 5148 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑋𝑊𝑅) |
| 149 | | funbrfv 6932 |
. . . . . 6
⊢ (Fun
𝑊 → (𝑋𝑊𝑅 → (𝑊‘𝑋) = 𝑅)) |
| 150 | 147, 148,
149 | sylc 65 |
. . . . 5
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → (𝑊‘𝑋) = 𝑅) |
| 151 | 150 | eqcomd 2742 |
. . . 4
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑅 = (𝑊‘𝑋)) |
| 152 | 146, 151 | jca 511 |
. . 3
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → (𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋))) |
| 153 | 152 | ex 412 |
. 2
⊢ (𝜑 → ((𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌) → (𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋)))) |
| 154 | 1, 2, 3, 4 | fpwwe2lem12 10661 |
. . . 4
⊢ (𝜑 → (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) |
| 155 | 22, 154 | jca 511 |
. . 3
⊢ (𝜑 → (𝑋𝑊(𝑊‘𝑋) ∧ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋)) |
| 156 | | breq12 5129 |
. . . 4
⊢ ((𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋)) → (𝑌𝑊𝑅 ↔ 𝑋𝑊(𝑊‘𝑋))) |
| 157 | | oveq12 7419 |
. . . . 5
⊢ ((𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋)) → (𝑌𝐹𝑅) = (𝑋𝐹(𝑊‘𝑋))) |
| 158 | | simpl 482 |
. . . . 5
⊢ ((𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋)) → 𝑌 = 𝑋) |
| 159 | 157, 158 | eleq12d 2829 |
. . . 4
⊢ ((𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋)) → ((𝑌𝐹𝑅) ∈ 𝑌 ↔ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋)) |
| 160 | 156, 159 | anbi12d 632 |
. . 3
⊢ ((𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋)) → ((𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌) ↔ (𝑋𝑊(𝑊‘𝑋) ∧ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋))) |
| 161 | 155, 160 | syl5ibrcom 247 |
. 2
⊢ (𝜑 → ((𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋)) → (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌))) |
| 162 | 153, 161 | impbid 212 |
1
⊢ (𝜑 → ((𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌) ↔ (𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋)))) |