Step | Hyp | Ref
| Expression |
1 | | fpwwe2.1 |
. . . . . . . . . . 11
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} |
2 | | fpwwe2.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ V) |
3 | | fpwwe2.3 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
4 | | fpwwe2.4 |
. . . . . . . . . . 11
⊢ 𝑋 = ∪
dom 𝑊 |
5 | 1, 2, 3, 4 | fpwwe2lem11 9777 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋)) |
6 | 5 | ffund 6282 |
. . . . . . . . 9
⊢ (𝜑 → Fun 𝑊) |
7 | | funbrfv2b 6487 |
. . . . . . . . 9
⊢ (Fun
𝑊 → (𝑌𝑊𝑅 ↔ (𝑌 ∈ dom 𝑊 ∧ (𝑊‘𝑌) = 𝑅))) |
8 | 6, 7 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑌𝑊𝑅 ↔ (𝑌 ∈ dom 𝑊 ∧ (𝑊‘𝑌) = 𝑅))) |
9 | 8 | simprbda 494 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌𝑊𝑅) → 𝑌 ∈ dom 𝑊) |
10 | 9 | adantrr 710 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑌 ∈ dom 𝑊) |
11 | | elssuni 4689 |
. . . . . . 7
⊢ (𝑌 ∈ dom 𝑊 → 𝑌 ⊆ ∪ dom
𝑊) |
12 | 11, 4 | syl6sseqr 3877 |
. . . . . 6
⊢ (𝑌 ∈ dom 𝑊 → 𝑌 ⊆ 𝑋) |
13 | 10, 12 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑌 ⊆ 𝑋) |
14 | | simpl 476 |
. . . . . . 7
⊢ ((𝑋 ⊆ 𝑌 ∧ (𝑊‘𝑋) = (𝑅 ∩ (𝑌 × 𝑋))) → 𝑋 ⊆ 𝑌) |
15 | 14 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → ((𝑋 ⊆ 𝑌 ∧ (𝑊‘𝑋) = (𝑅 ∩ (𝑌 × 𝑋))) → 𝑋 ⊆ 𝑌)) |
16 | | simplrr 798 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (𝑌𝐹𝑅) ∈ 𝑌) |
17 | 2 | adantr 474 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝐴 ∈ V) |
18 | 17 | adantr 474 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → 𝐴 ∈ V) |
19 | 1, 2, 3, 4 | fpwwe2lem12 9778 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑋 ∈ dom 𝑊) |
20 | | funfvbrb 6579 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (Fun
𝑊 → (𝑋 ∈ dom 𝑊 ↔ 𝑋𝑊(𝑊‘𝑋))) |
21 | 6, 20 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑋 ∈ dom 𝑊 ↔ 𝑋𝑊(𝑊‘𝑋))) |
22 | 19, 21 | mpbid 224 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑋𝑊(𝑊‘𝑋)) |
23 | 1, 2 | fpwwe2lem2 9769 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑋𝑊(𝑊‘𝑋) ↔ ((𝑋 ⊆ 𝐴 ∧ (𝑊‘𝑋) ⊆ (𝑋 × 𝑋)) ∧ ((𝑊‘𝑋) We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡(𝑊‘𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊‘𝑋) ∩ (𝑢 × 𝑢))) = 𝑦)))) |
24 | 22, 23 | mpbid 224 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑋 ⊆ 𝐴 ∧ (𝑊‘𝑋) ⊆ (𝑋 × 𝑋)) ∧ ((𝑊‘𝑋) We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡(𝑊‘𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊‘𝑋) ∩ (𝑢 × 𝑢))) = 𝑦))) |
25 | 24 | ad2antrr 719 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑋 ⊆ 𝐴 ∧ (𝑊‘𝑋) ⊆ (𝑋 × 𝑋)) ∧ ((𝑊‘𝑋) We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡(𝑊‘𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊‘𝑋) ∩ (𝑢 × 𝑢))) = 𝑦))) |
26 | 25 | simpld 490 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (𝑋 ⊆ 𝐴 ∧ (𝑊‘𝑋) ⊆ (𝑋 × 𝑋))) |
27 | 26 | simpld 490 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → 𝑋 ⊆ 𝐴) |
28 | 18, 27 | ssexd 5030 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → 𝑋 ∈ V) |
29 | | difexg 5033 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ V → (𝑋 ∖ 𝑌) ∈ V) |
30 | 28, 29 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (𝑋 ∖ 𝑌) ∈ V) |
31 | 25 | simprd 491 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑊‘𝑋) We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡(𝑊‘𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊‘𝑋) ∩ (𝑢 × 𝑢))) = 𝑦)) |
32 | 31 | simpld 490 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (𝑊‘𝑋) We 𝑋) |
33 | | wefr 5332 |
. . . . . . . . . . . . 13
⊢ ((𝑊‘𝑋) We 𝑋 → (𝑊‘𝑋) Fr 𝑋) |
34 | 32, 33 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (𝑊‘𝑋) Fr 𝑋) |
35 | | difssd 3965 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (𝑋 ∖ 𝑌) ⊆ 𝑋) |
36 | | fri 5304 |
. . . . . . . . . . . . 13
⊢ ((((𝑋 ∖ 𝑌) ∈ V ∧ (𝑊‘𝑋) Fr 𝑋) ∧ ((𝑋 ∖ 𝑌) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑌) ≠ ∅)) → ∃𝑧 ∈ (𝑋 ∖ 𝑌)∀𝑤 ∈ (𝑋 ∖ 𝑌) ¬ 𝑤(𝑊‘𝑋)𝑧) |
37 | 36 | expr 450 |
. . . . . . . . . . . 12
⊢ ((((𝑋 ∖ 𝑌) ∈ V ∧ (𝑊‘𝑋) Fr 𝑋) ∧ (𝑋 ∖ 𝑌) ⊆ 𝑋) → ((𝑋 ∖ 𝑌) ≠ ∅ → ∃𝑧 ∈ (𝑋 ∖ 𝑌)∀𝑤 ∈ (𝑋 ∖ 𝑌) ¬ 𝑤(𝑊‘𝑋)𝑧)) |
38 | 30, 34, 35, 37 | syl21anc 873 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑋 ∖ 𝑌) ≠ ∅ → ∃𝑧 ∈ (𝑋 ∖ 𝑌)∀𝑤 ∈ (𝑋 ∖ 𝑌) ¬ 𝑤(𝑊‘𝑋)𝑧)) |
39 | | ssdif0 4171 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∩ (◡(𝑊‘𝑋) “ {𝑧})) ⊆ 𝑌 ↔ ((𝑋 ∩ (◡(𝑊‘𝑋) “ {𝑧})) ∖ 𝑌) = ∅) |
40 | | indif1 4101 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 ∖ 𝑌) ∩ (◡(𝑊‘𝑋) “ {𝑧})) = ((𝑋 ∩ (◡(𝑊‘𝑋) “ {𝑧})) ∖ 𝑌) |
41 | 40 | eqeq1i 2830 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 ∖ 𝑌) ∩ (◡(𝑊‘𝑋) “ {𝑧})) = ∅ ↔ ((𝑋 ∩ (◡(𝑊‘𝑋) “ {𝑧})) ∖ 𝑌) = ∅) |
42 | | disj 4241 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑋 ∖ 𝑌) ∩ (◡(𝑊‘𝑋) “ {𝑧})) = ∅ ↔ ∀𝑤 ∈ (𝑋 ∖ 𝑌) ¬ 𝑤 ∈ (◡(𝑊‘𝑋) “ {𝑧})) |
43 | | vex 3417 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑧 ∈ V |
44 | | vex 3417 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑤 ∈ V |
45 | 44 | eliniseg 5735 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ V → (𝑤 ∈ (◡(𝑊‘𝑋) “ {𝑧}) ↔ 𝑤(𝑊‘𝑋)𝑧)) |
46 | 43, 45 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ (◡(𝑊‘𝑋) “ {𝑧}) ↔ 𝑤(𝑊‘𝑋)𝑧) |
47 | 46 | notbii 312 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝑤 ∈ (◡(𝑊‘𝑋) “ {𝑧}) ↔ ¬ 𝑤(𝑊‘𝑋)𝑧) |
48 | 47 | ralbii 3189 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑤 ∈
(𝑋 ∖ 𝑌) ¬ 𝑤 ∈ (◡(𝑊‘𝑋) “ {𝑧}) ↔ ∀𝑤 ∈ (𝑋 ∖ 𝑌) ¬ 𝑤(𝑊‘𝑋)𝑧) |
49 | 42, 48 | bitri 267 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 ∖ 𝑌) ∩ (◡(𝑊‘𝑋) “ {𝑧})) = ∅ ↔ ∀𝑤 ∈ (𝑋 ∖ 𝑌) ¬ 𝑤(𝑊‘𝑋)𝑧) |
50 | 39, 41, 49 | 3bitr2i 291 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∩ (◡(𝑊‘𝑋) “ {𝑧})) ⊆ 𝑌 ↔ ∀𝑤 ∈ (𝑋 ∖ 𝑌) ¬ 𝑤(𝑊‘𝑋)𝑧) |
51 | | cnvimass 5726 |
. . . . . . . . . . . . . . . . 17
⊢ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ dom (𝑊‘𝑋) |
52 | 26 | simprd 491 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (𝑊‘𝑋) ⊆ (𝑋 × 𝑋)) |
53 | | dmss 5555 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑊‘𝑋) ⊆ (𝑋 × 𝑋) → dom (𝑊‘𝑋) ⊆ dom (𝑋 × 𝑋)) |
54 | 52, 53 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → dom (𝑊‘𝑋) ⊆ dom (𝑋 × 𝑋)) |
55 | | dmxpid 5577 |
. . . . . . . . . . . . . . . . . 18
⊢ dom
(𝑋 × 𝑋) = 𝑋 |
56 | 54, 55 | syl6sseq 3876 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → dom (𝑊‘𝑋) ⊆ 𝑋) |
57 | 51, 56 | syl5ss 3838 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑋) |
58 | | sseqin2 4044 |
. . . . . . . . . . . . . . . 16
⊢ ((◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑋 ↔ (𝑋 ∩ (◡(𝑊‘𝑋) “ {𝑧})) = (◡(𝑊‘𝑋) “ {𝑧})) |
59 | 57, 58 | sylib 210 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (𝑋 ∩ (◡(𝑊‘𝑋) “ {𝑧})) = (◡(𝑊‘𝑋) “ {𝑧})) |
60 | 59 | sseq1d 3857 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑋 ∩ (◡(𝑊‘𝑋) “ {𝑧})) ⊆ 𝑌 ↔ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) |
61 | 50, 60 | syl5bbr 277 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (∀𝑤 ∈ (𝑋 ∖ 𝑌) ¬ 𝑤(𝑊‘𝑋)𝑧 ↔ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) |
62 | 61 | rexbidv 3262 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (∃𝑧 ∈ (𝑋 ∖ 𝑌)∀𝑤 ∈ (𝑋 ∖ 𝑌) ¬ 𝑤(𝑊‘𝑋)𝑧 ↔ ∃𝑧 ∈ (𝑋 ∖ 𝑌)(◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) |
63 | | eldifn 3960 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧 ∈ (𝑋 ∖ 𝑌) → ¬ 𝑧 ∈ 𝑌) |
64 | 63 | ad2antrl 721 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → ¬ 𝑧 ∈ 𝑌) |
65 | | eleq1w 2889 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 = 𝑧 → (𝑤 ∈ 𝑌 ↔ 𝑧 ∈ 𝑌)) |
66 | 65 | notbid 310 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = 𝑧 → (¬ 𝑤 ∈ 𝑌 ↔ ¬ 𝑧 ∈ 𝑌)) |
67 | 64, 66 | syl5ibrcom 239 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑤 = 𝑧 → ¬ 𝑤 ∈ 𝑌)) |
68 | 67 | con2d 132 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑤 ∈ 𝑌 → ¬ 𝑤 = 𝑧)) |
69 | 68 | imp 397 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → ¬ 𝑤 = 𝑧) |
70 | 64 | adantr 474 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → ¬ 𝑧 ∈ 𝑌) |
71 | | simprr 791 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌))) |
72 | 71 | ad2antrr 719 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌))) |
73 | 72 | breqd 4884 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → (𝑧𝑅𝑤 ↔ 𝑧((𝑊‘𝑋) ∩ (𝑋 × 𝑌))𝑤)) |
74 | | eldifi 3959 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 ∈ (𝑋 ∖ 𝑌) → 𝑧 ∈ 𝑋) |
75 | 74 | ad2antrl 721 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑧 ∈ 𝑋) |
76 | 75 | adantr 474 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → 𝑧 ∈ 𝑋) |
77 | | simpr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → 𝑤 ∈ 𝑌) |
78 | | brxp 5388 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧(𝑋 × 𝑌)𝑤 ↔ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑌)) |
79 | 76, 77, 78 | sylanbrc 580 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → 𝑧(𝑋 × 𝑌)𝑤) |
80 | | brin 4925 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧((𝑊‘𝑋) ∩ (𝑋 × 𝑌))𝑤 ↔ (𝑧(𝑊‘𝑋)𝑤 ∧ 𝑧(𝑋 × 𝑌)𝑤)) |
81 | 80 | rbaib 536 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧(𝑋 × 𝑌)𝑤 → (𝑧((𝑊‘𝑋) ∩ (𝑋 × 𝑌))𝑤 ↔ 𝑧(𝑊‘𝑋)𝑤)) |
82 | 79, 81 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → (𝑧((𝑊‘𝑋) ∩ (𝑋 × 𝑌))𝑤 ↔ 𝑧(𝑊‘𝑋)𝑤)) |
83 | 73, 82 | bitrd 271 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → (𝑧𝑅𝑤 ↔ 𝑧(𝑊‘𝑋)𝑤)) |
84 | 1, 2 | fpwwe2lem2 9769 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → (𝑌𝑊𝑅 ↔ ((𝑌 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑌 × 𝑌)) ∧ (𝑅 We 𝑌 ∧ ∀𝑦 ∈ 𝑌 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)))) |
85 | 84 | biimpa 470 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑌𝑊𝑅) → ((𝑌 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑌 × 𝑌)) ∧ (𝑅 We 𝑌 ∧ ∀𝑦 ∈ 𝑌 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) |
86 | 85 | adantrr 710 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → ((𝑌 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑌 × 𝑌)) ∧ (𝑅 We 𝑌 ∧ ∀𝑦 ∈ 𝑌 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) |
87 | 86 | simpld 490 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → (𝑌 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑌 × 𝑌))) |
88 | 87 | simprd 491 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑅 ⊆ (𝑌 × 𝑌)) |
89 | 88 | ad3antrrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → 𝑅 ⊆ (𝑌 × 𝑌)) |
90 | 89 | ssbrd 4916 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → (𝑧𝑅𝑤 → 𝑧(𝑌 × 𝑌)𝑤)) |
91 | | brxp 5388 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧(𝑌 × 𝑌)𝑤 ↔ (𝑧 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌)) |
92 | 91 | simplbi 493 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧(𝑌 × 𝑌)𝑤 → 𝑧 ∈ 𝑌) |
93 | 90, 92 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → (𝑧𝑅𝑤 → 𝑧 ∈ 𝑌)) |
94 | 83, 93 | sylbird 252 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → (𝑧(𝑊‘𝑋)𝑤 → 𝑧 ∈ 𝑌)) |
95 | 70, 94 | mtod 190 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → ¬ 𝑧(𝑊‘𝑋)𝑤) |
96 | 32 | ad2antrr 719 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → (𝑊‘𝑋) We 𝑋) |
97 | | weso 5333 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑊‘𝑋) We 𝑋 → (𝑊‘𝑋) Or 𝑋) |
98 | 96, 97 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → (𝑊‘𝑋) Or 𝑋) |
99 | 13 | ad2antrr 719 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑌 ⊆ 𝑋) |
100 | 99 | sselda 3827 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → 𝑤 ∈ 𝑋) |
101 | | sotric 5289 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑊‘𝑋) Or 𝑋 ∧ (𝑤 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑤(𝑊‘𝑋)𝑧 ↔ ¬ (𝑤 = 𝑧 ∨ 𝑧(𝑊‘𝑋)𝑤))) |
102 | | ioran 1013 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
(𝑤 = 𝑧 ∨ 𝑧(𝑊‘𝑋)𝑤) ↔ (¬ 𝑤 = 𝑧 ∧ ¬ 𝑧(𝑊‘𝑋)𝑤)) |
103 | 101, 102 | syl6bb 279 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑊‘𝑋) Or 𝑋 ∧ (𝑤 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑤(𝑊‘𝑋)𝑧 ↔ (¬ 𝑤 = 𝑧 ∧ ¬ 𝑧(𝑊‘𝑋)𝑤))) |
104 | 98, 100, 76, 103 | syl12anc 872 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → (𝑤(𝑊‘𝑋)𝑧 ↔ (¬ 𝑤 = 𝑧 ∧ ¬ 𝑧(𝑊‘𝑋)𝑤))) |
105 | 69, 95, 104 | mpbir2and 706 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → 𝑤(𝑊‘𝑋)𝑧) |
106 | 105, 46 | sylibr 226 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → 𝑤 ∈ (◡(𝑊‘𝑋) “ {𝑧})) |
107 | 106 | ex 403 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑤 ∈ 𝑌 → 𝑤 ∈ (◡(𝑊‘𝑋) “ {𝑧}))) |
108 | 107 | ssrdv 3833 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑌 ⊆ (◡(𝑊‘𝑋) “ {𝑧})) |
109 | | simprr 791 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌) |
110 | 108, 109 | eqssd 3844 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑌 = (◡(𝑊‘𝑋) “ {𝑧})) |
111 | | in32 4050 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑊‘𝑋) ∩ (𝑋 × 𝑌)) ∩ (𝑌 × 𝑌)) = (((𝑊‘𝑋) ∩ (𝑌 × 𝑌)) ∩ (𝑋 × 𝑌)) |
112 | | simplrr 798 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌))) |
113 | 112 | ineq1d 4040 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑅 ∩ (𝑌 × 𝑌)) = (((𝑊‘𝑋) ∩ (𝑋 × 𝑌)) ∩ (𝑌 × 𝑌))) |
114 | 88 | ad2antrr 719 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑅 ⊆ (𝑌 × 𝑌)) |
115 | | df-ss 3812 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑅 ⊆ (𝑌 × 𝑌) ↔ (𝑅 ∩ (𝑌 × 𝑌)) = 𝑅) |
116 | 114, 115 | sylib 210 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑅 ∩ (𝑌 × 𝑌)) = 𝑅) |
117 | 113, 116 | eqtr3d 2863 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (((𝑊‘𝑋) ∩ (𝑋 × 𝑌)) ∩ (𝑌 × 𝑌)) = 𝑅) |
118 | | inss2 4058 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑊‘𝑋) ∩ (𝑌 × 𝑌)) ⊆ (𝑌 × 𝑌) |
119 | | xpss1 5361 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑌 ⊆ 𝑋 → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑌)) |
120 | 99, 119 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑌)) |
121 | 118, 120 | syl5ss 3838 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → ((𝑊‘𝑋) ∩ (𝑌 × 𝑌)) ⊆ (𝑋 × 𝑌)) |
122 | | df-ss 3812 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑊‘𝑋) ∩ (𝑌 × 𝑌)) ⊆ (𝑋 × 𝑌) ↔ (((𝑊‘𝑋) ∩ (𝑌 × 𝑌)) ∩ (𝑋 × 𝑌)) = ((𝑊‘𝑋) ∩ (𝑌 × 𝑌))) |
123 | 121, 122 | sylib 210 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (((𝑊‘𝑋) ∩ (𝑌 × 𝑌)) ∩ (𝑋 × 𝑌)) = ((𝑊‘𝑋) ∩ (𝑌 × 𝑌))) |
124 | 111, 117,
123 | 3eqtr3a 2885 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑅 = ((𝑊‘𝑋) ∩ (𝑌 × 𝑌))) |
125 | 110 | sqxpeqd 5374 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑌 × 𝑌) = ((◡(𝑊‘𝑋) “ {𝑧}) × (◡(𝑊‘𝑋) “ {𝑧}))) |
126 | 125 | ineq2d 4041 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → ((𝑊‘𝑋) ∩ (𝑌 × 𝑌)) = ((𝑊‘𝑋) ∩ ((◡(𝑊‘𝑋) “ {𝑧}) × (◡(𝑊‘𝑋) “ {𝑧})))) |
127 | 124, 126 | eqtrd 2861 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑅 = ((𝑊‘𝑋) ∩ ((◡(𝑊‘𝑋) “ {𝑧}) × (◡(𝑊‘𝑋) “ {𝑧})))) |
128 | 110, 127 | oveq12d 6923 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑌𝐹𝑅) = ((◡(𝑊‘𝑋) “ {𝑧})𝐹((𝑊‘𝑋) ∩ ((◡(𝑊‘𝑋) “ {𝑧}) × (◡(𝑊‘𝑋) “ {𝑧}))))) |
129 | 18 | adantr 474 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝐴 ∈ V) |
130 | 22 | adantr 474 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑋𝑊(𝑊‘𝑋)) |
131 | 130 | ad2antrr 719 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑋𝑊(𝑊‘𝑋)) |
132 | 1, 129, 131 | fpwwe2lem3 9770 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑧 ∈ 𝑋) → ((◡(𝑊‘𝑋) “ {𝑧})𝐹((𝑊‘𝑋) ∩ ((◡(𝑊‘𝑋) “ {𝑧}) × (◡(𝑊‘𝑋) “ {𝑧})))) = 𝑧) |
133 | 75, 132 | mpdan 680 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → ((◡(𝑊‘𝑋) “ {𝑧})𝐹((𝑊‘𝑋) ∩ ((◡(𝑊‘𝑋) “ {𝑧}) × (◡(𝑊‘𝑋) “ {𝑧})))) = 𝑧) |
134 | 128, 133 | eqtrd 2861 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑌𝐹𝑅) = 𝑧) |
135 | 134, 64 | eqneltrd 2925 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → ¬ (𝑌𝐹𝑅) ∈ 𝑌) |
136 | 135 | rexlimdvaa 3241 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (∃𝑧 ∈ (𝑋 ∖ 𝑌)(◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌 → ¬ (𝑌𝐹𝑅) ∈ 𝑌)) |
137 | 62, 136 | sylbid 232 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (∃𝑧 ∈ (𝑋 ∖ 𝑌)∀𝑤 ∈ (𝑋 ∖ 𝑌) ¬ 𝑤(𝑊‘𝑋)𝑧 → ¬ (𝑌𝐹𝑅) ∈ 𝑌)) |
138 | 38, 137 | syld 47 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑋 ∖ 𝑌) ≠ ∅ → ¬ (𝑌𝐹𝑅) ∈ 𝑌)) |
139 | 138 | necon4ad 3018 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑌𝐹𝑅) ∈ 𝑌 → (𝑋 ∖ 𝑌) = ∅)) |
140 | 16, 139 | mpd 15 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (𝑋 ∖ 𝑌) = ∅) |
141 | | ssdif0 4171 |
. . . . . . . 8
⊢ (𝑋 ⊆ 𝑌 ↔ (𝑋 ∖ 𝑌) = ∅) |
142 | 140, 141 | sylibr 226 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → 𝑋 ⊆ 𝑌) |
143 | 142 | ex 403 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → ((𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌))) → 𝑋 ⊆ 𝑌)) |
144 | 3 | adantlr 708 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
145 | | simprl 789 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑌𝑊𝑅) |
146 | 1, 17, 144, 130, 145 | fpwwe2lem10 9776 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → ((𝑋 ⊆ 𝑌 ∧ (𝑊‘𝑋) = (𝑅 ∩ (𝑌 × 𝑋))) ∨ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌))))) |
147 | 15, 143, 146 | mpjaod 893 |
. . . . 5
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑋 ⊆ 𝑌) |
148 | 13, 147 | eqssd 3844 |
. . . 4
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑌 = 𝑋) |
149 | 6 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → Fun 𝑊) |
150 | 148, 145 | eqbrtrrd 4897 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑋𝑊𝑅) |
151 | | funbrfv 6480 |
. . . . . 6
⊢ (Fun
𝑊 → (𝑋𝑊𝑅 → (𝑊‘𝑋) = 𝑅)) |
152 | 149, 150,
151 | sylc 65 |
. . . . 5
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → (𝑊‘𝑋) = 𝑅) |
153 | 152 | eqcomd 2831 |
. . . 4
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑅 = (𝑊‘𝑋)) |
154 | 148, 153 | jca 509 |
. . 3
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → (𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋))) |
155 | 154 | ex 403 |
. 2
⊢ (𝜑 → ((𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌) → (𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋)))) |
156 | 1, 2, 3, 4 | fpwwe2lem13 9779 |
. . . 4
⊢ (𝜑 → (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) |
157 | 22, 156 | jca 509 |
. . 3
⊢ (𝜑 → (𝑋𝑊(𝑊‘𝑋) ∧ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋)) |
158 | | breq12 4878 |
. . . 4
⊢ ((𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋)) → (𝑌𝑊𝑅 ↔ 𝑋𝑊(𝑊‘𝑋))) |
159 | | oveq12 6914 |
. . . . 5
⊢ ((𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋)) → (𝑌𝐹𝑅) = (𝑋𝐹(𝑊‘𝑋))) |
160 | | simpl 476 |
. . . . 5
⊢ ((𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋)) → 𝑌 = 𝑋) |
161 | 159, 160 | eleq12d 2900 |
. . . 4
⊢ ((𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋)) → ((𝑌𝐹𝑅) ∈ 𝑌 ↔ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋)) |
162 | 158, 161 | anbi12d 626 |
. . 3
⊢ ((𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋)) → ((𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌) ↔ (𝑋𝑊(𝑊‘𝑋) ∧ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋))) |
163 | 157, 162 | syl5ibrcom 239 |
. 2
⊢ (𝜑 → ((𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋)) → (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌))) |
164 | 155, 163 | impbid 204 |
1
⊢ (𝜑 → ((𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌) ↔ (𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋)))) |