MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2 Structured version   Visualization version   GIF version

Theorem fpwwe2 10399
Description: Given any function 𝐹 from well-orderings of subsets of 𝐴 to 𝐴, there is a unique well-ordered subset 𝑋, (𝑊𝑋)⟩ which "agrees" with 𝐹 in the sense that each initial segment maps to its upper bound, and such that the entire set maps to an element of the set (so that it cannot be extended without losing the well-ordering). This theorem can be used to prove dfac8a 9786. Theorem 1.1 of [KanamoriPincus] p. 415. (Contributed by Mario Carneiro, 18-May-2015.) (Revised by AV, 20-Jul-2024.)
Hypotheses
Ref Expression
fpwwe2.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
fpwwe2.2 (𝜑𝐴𝑉)
fpwwe2.3 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
fpwwe2.4 𝑋 = dom 𝑊
Assertion
Ref Expression
fpwwe2 (𝜑 → ((𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌) ↔ (𝑌 = 𝑋𝑅 = (𝑊𝑋))))
Distinct variable groups:   𝑦,𝑢,𝑟,𝑥,𝐹   𝑋,𝑟,𝑢,𝑥,𝑦   𝜑,𝑟,𝑢,𝑥,𝑦   𝐴,𝑟,𝑥   𝑅,𝑟,𝑢,𝑥,𝑦   𝑌,𝑟,𝑢,𝑥,𝑦   𝑊,𝑟,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑢)   𝑉(𝑥,𝑦,𝑢,𝑟)

Proof of Theorem fpwwe2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fpwwe2.1 . . . . . . . . . . 11 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
2 fpwwe2.2 . . . . . . . . . . 11 (𝜑𝐴𝑉)
3 fpwwe2.3 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
4 fpwwe2.4 . . . . . . . . . . 11 𝑋 = dom 𝑊
51, 2, 3, 4fpwwe2lem10 10396 . . . . . . . . . 10 (𝜑𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋))
65ffund 6604 . . . . . . . . 9 (𝜑 → Fun 𝑊)
7 funbrfv2b 6827 . . . . . . . . 9 (Fun 𝑊 → (𝑌𝑊𝑅 ↔ (𝑌 ∈ dom 𝑊 ∧ (𝑊𝑌) = 𝑅)))
86, 7syl 17 . . . . . . . 8 (𝜑 → (𝑌𝑊𝑅 ↔ (𝑌 ∈ dom 𝑊 ∧ (𝑊𝑌) = 𝑅)))
98simprbda 499 . . . . . . 7 ((𝜑𝑌𝑊𝑅) → 𝑌 ∈ dom 𝑊)
109adantrr 714 . . . . . 6 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑌 ∈ dom 𝑊)
11 elssuni 4871 . . . . . . 7 (𝑌 ∈ dom 𝑊𝑌 dom 𝑊)
1211, 4sseqtrrdi 3972 . . . . . 6 (𝑌 ∈ dom 𝑊𝑌𝑋)
1310, 12syl 17 . . . . 5 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑌𝑋)
14 simpl 483 . . . . . . 7 ((𝑋𝑌 ∧ (𝑊𝑋) = (𝑅 ∩ (𝑌 × 𝑋))) → 𝑋𝑌)
1514a1i 11 . . . . . 6 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → ((𝑋𝑌 ∧ (𝑊𝑋) = (𝑅 ∩ (𝑌 × 𝑋))) → 𝑋𝑌))
16 simplrr 775 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (𝑌𝐹𝑅) ∈ 𝑌)
172adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝐴𝑉)
1817adantr 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → 𝐴𝑉)
191, 2, 3, 4fpwwe2lem11 10397 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋 ∈ dom 𝑊)
20 funfvbrb 6928 . . . . . . . . . . . . . . . . . . . 20 (Fun 𝑊 → (𝑋 ∈ dom 𝑊𝑋𝑊(𝑊𝑋)))
216, 20syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋 ∈ dom 𝑊𝑋𝑊(𝑊𝑋)))
2219, 21mpbid 231 . . . . . . . . . . . . . . . . . 18 (𝜑𝑋𝑊(𝑊𝑋))
231, 2fpwwe2lem2 10388 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑋𝑊(𝑊𝑋) ↔ ((𝑋𝐴 ∧ (𝑊𝑋) ⊆ (𝑋 × 𝑋)) ∧ ((𝑊𝑋) We 𝑋 ∧ ∀𝑦𝑋 [((𝑊𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊𝑋) ∩ (𝑢 × 𝑢))) = 𝑦))))
2422, 23mpbid 231 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑋𝐴 ∧ (𝑊𝑋) ⊆ (𝑋 × 𝑋)) ∧ ((𝑊𝑋) We 𝑋 ∧ ∀𝑦𝑋 [((𝑊𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊𝑋) ∩ (𝑢 × 𝑢))) = 𝑦)))
2524ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑋𝐴 ∧ (𝑊𝑋) ⊆ (𝑋 × 𝑋)) ∧ ((𝑊𝑋) We 𝑋 ∧ ∀𝑦𝑋 [((𝑊𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊𝑋) ∩ (𝑢 × 𝑢))) = 𝑦)))
2625simpld 495 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (𝑋𝐴 ∧ (𝑊𝑋) ⊆ (𝑋 × 𝑋)))
2726simpld 495 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → 𝑋𝐴)
2818, 27ssexd 5248 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → 𝑋 ∈ V)
2928difexd 5253 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (𝑋𝑌) ∈ V)
3025simprd 496 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑊𝑋) We 𝑋 ∧ ∀𝑦𝑋 [((𝑊𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊𝑋) ∩ (𝑢 × 𝑢))) = 𝑦))
3130simpld 495 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (𝑊𝑋) We 𝑋)
32 wefr 5579 . . . . . . . . . . . . 13 ((𝑊𝑋) We 𝑋 → (𝑊𝑋) Fr 𝑋)
3331, 32syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (𝑊𝑋) Fr 𝑋)
34 difssd 4067 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (𝑋𝑌) ⊆ 𝑋)
35 fri 5549 . . . . . . . . . . . . 13 ((((𝑋𝑌) ∈ V ∧ (𝑊𝑋) Fr 𝑋) ∧ ((𝑋𝑌) ⊆ 𝑋 ∧ (𝑋𝑌) ≠ ∅)) → ∃𝑧 ∈ (𝑋𝑌)∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤(𝑊𝑋)𝑧)
3635expr 457 . . . . . . . . . . . 12 ((((𝑋𝑌) ∈ V ∧ (𝑊𝑋) Fr 𝑋) ∧ (𝑋𝑌) ⊆ 𝑋) → ((𝑋𝑌) ≠ ∅ → ∃𝑧 ∈ (𝑋𝑌)∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤(𝑊𝑋)𝑧))
3729, 33, 34, 36syl21anc 835 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑋𝑌) ≠ ∅ → ∃𝑧 ∈ (𝑋𝑌)∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤(𝑊𝑋)𝑧))
38 ssdif0 4297 . . . . . . . . . . . . . . 15 ((𝑋 ∩ ((𝑊𝑋) “ {𝑧})) ⊆ 𝑌 ↔ ((𝑋 ∩ ((𝑊𝑋) “ {𝑧})) ∖ 𝑌) = ∅)
39 indif1 4205 . . . . . . . . . . . . . . . 16 ((𝑋𝑌) ∩ ((𝑊𝑋) “ {𝑧})) = ((𝑋 ∩ ((𝑊𝑋) “ {𝑧})) ∖ 𝑌)
4039eqeq1i 2743 . . . . . . . . . . . . . . 15 (((𝑋𝑌) ∩ ((𝑊𝑋) “ {𝑧})) = ∅ ↔ ((𝑋 ∩ ((𝑊𝑋) “ {𝑧})) ∖ 𝑌) = ∅)
41 disj 4381 . . . . . . . . . . . . . . . 16 (((𝑋𝑌) ∩ ((𝑊𝑋) “ {𝑧})) = ∅ ↔ ∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤 ∈ ((𝑊𝑋) “ {𝑧}))
42 vex 3436 . . . . . . . . . . . . . . . . . . . 20 𝑤 ∈ V
4342eliniseg 6002 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ V → (𝑤 ∈ ((𝑊𝑋) “ {𝑧}) ↔ 𝑤(𝑊𝑋)𝑧))
4443elv 3438 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ((𝑊𝑋) “ {𝑧}) ↔ 𝑤(𝑊𝑋)𝑧)
4544notbii 320 . . . . . . . . . . . . . . . . 17 𝑤 ∈ ((𝑊𝑋) “ {𝑧}) ↔ ¬ 𝑤(𝑊𝑋)𝑧)
4645ralbii 3092 . . . . . . . . . . . . . . . 16 (∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤 ∈ ((𝑊𝑋) “ {𝑧}) ↔ ∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤(𝑊𝑋)𝑧)
4741, 46bitri 274 . . . . . . . . . . . . . . 15 (((𝑋𝑌) ∩ ((𝑊𝑋) “ {𝑧})) = ∅ ↔ ∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤(𝑊𝑋)𝑧)
4838, 40, 473bitr2i 299 . . . . . . . . . . . . . 14 ((𝑋 ∩ ((𝑊𝑋) “ {𝑧})) ⊆ 𝑌 ↔ ∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤(𝑊𝑋)𝑧)
49 cnvimass 5989 . . . . . . . . . . . . . . . . 17 ((𝑊𝑋) “ {𝑧}) ⊆ dom (𝑊𝑋)
5026simprd 496 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (𝑊𝑋) ⊆ (𝑋 × 𝑋))
51 dmss 5811 . . . . . . . . . . . . . . . . . . 19 ((𝑊𝑋) ⊆ (𝑋 × 𝑋) → dom (𝑊𝑋) ⊆ dom (𝑋 × 𝑋))
5250, 51syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → dom (𝑊𝑋) ⊆ dom (𝑋 × 𝑋))
53 dmxpid 5839 . . . . . . . . . . . . . . . . . 18 dom (𝑋 × 𝑋) = 𝑋
5452, 53sseqtrdi 3971 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → dom (𝑊𝑋) ⊆ 𝑋)
5549, 54sstrid 3932 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑊𝑋) “ {𝑧}) ⊆ 𝑋)
56 sseqin2 4149 . . . . . . . . . . . . . . . 16 (((𝑊𝑋) “ {𝑧}) ⊆ 𝑋 ↔ (𝑋 ∩ ((𝑊𝑋) “ {𝑧})) = ((𝑊𝑋) “ {𝑧}))
5755, 56sylib 217 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (𝑋 ∩ ((𝑊𝑋) “ {𝑧})) = ((𝑊𝑋) “ {𝑧}))
5857sseq1d 3952 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑋 ∩ ((𝑊𝑋) “ {𝑧})) ⊆ 𝑌 ↔ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌))
5948, 58bitr3id 285 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤(𝑊𝑋)𝑧 ↔ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌))
6059rexbidv 3226 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (∃𝑧 ∈ (𝑋𝑌)∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤(𝑊𝑋)𝑧 ↔ ∃𝑧 ∈ (𝑋𝑌)((𝑊𝑋) “ {𝑧}) ⊆ 𝑌))
61 eldifn 4062 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ (𝑋𝑌) → ¬ 𝑧𝑌)
6261ad2antrl 725 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → ¬ 𝑧𝑌)
63 eleq1w 2821 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 𝑧 → (𝑤𝑌𝑧𝑌))
6463notbid 318 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑧 → (¬ 𝑤𝑌 ↔ ¬ 𝑧𝑌))
6562, 64syl5ibrcom 246 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑤 = 𝑧 → ¬ 𝑤𝑌))
6665con2d 134 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑤𝑌 → ¬ 𝑤 = 𝑧))
6766imp 407 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → ¬ 𝑤 = 𝑧)
6862adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → ¬ 𝑧𝑌)
69 simprr 770 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → 𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))
7069ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → 𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))
7170breqd 5085 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → (𝑧𝑅𝑤𝑧((𝑊𝑋) ∩ (𝑋 × 𝑌))𝑤))
72 eldifi 4061 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ (𝑋𝑌) → 𝑧𝑋)
7372ad2antrl 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑧𝑋)
7473adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → 𝑧𝑋)
75 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → 𝑤𝑌)
76 brxp 5636 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧(𝑋 × 𝑌)𝑤 ↔ (𝑧𝑋𝑤𝑌))
7774, 75, 76sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → 𝑧(𝑋 × 𝑌)𝑤)
78 brin 5126 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧((𝑊𝑋) ∩ (𝑋 × 𝑌))𝑤 ↔ (𝑧(𝑊𝑋)𝑤𝑧(𝑋 × 𝑌)𝑤))
7978rbaib 539 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧(𝑋 × 𝑌)𝑤 → (𝑧((𝑊𝑋) ∩ (𝑋 × 𝑌))𝑤𝑧(𝑊𝑋)𝑤))
8077, 79syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → (𝑧((𝑊𝑋) ∩ (𝑋 × 𝑌))𝑤𝑧(𝑊𝑋)𝑤))
8171, 80bitrd 278 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → (𝑧𝑅𝑤𝑧(𝑊𝑋)𝑤))
821, 2fpwwe2lem2 10388 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (𝑌𝑊𝑅 ↔ ((𝑌𝐴𝑅 ⊆ (𝑌 × 𝑌)) ∧ (𝑅 We 𝑌 ∧ ∀𝑦𝑌 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))))
8382biimpa 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑌𝑊𝑅) → ((𝑌𝐴𝑅 ⊆ (𝑌 × 𝑌)) ∧ (𝑅 We 𝑌 ∧ ∀𝑦𝑌 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)))
8483adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → ((𝑌𝐴𝑅 ⊆ (𝑌 × 𝑌)) ∧ (𝑅 We 𝑌 ∧ ∀𝑦𝑌 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)))
8584simpld 495 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → (𝑌𝐴𝑅 ⊆ (𝑌 × 𝑌)))
8685simprd 496 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑅 ⊆ (𝑌 × 𝑌))
8786ad5ant12 753 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → 𝑅 ⊆ (𝑌 × 𝑌))
8887ssbrd 5117 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → (𝑧𝑅𝑤𝑧(𝑌 × 𝑌)𝑤))
89 brxp 5636 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧(𝑌 × 𝑌)𝑤 ↔ (𝑧𝑌𝑤𝑌))
9089simplbi 498 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧(𝑌 × 𝑌)𝑤𝑧𝑌)
9188, 90syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → (𝑧𝑅𝑤𝑧𝑌))
9281, 91sylbird 259 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → (𝑧(𝑊𝑋)𝑤𝑧𝑌))
9368, 92mtod 197 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → ¬ 𝑧(𝑊𝑋)𝑤)
9431ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → (𝑊𝑋) We 𝑋)
95 weso 5580 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑊𝑋) We 𝑋 → (𝑊𝑋) Or 𝑋)
9694, 95syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → (𝑊𝑋) Or 𝑋)
9713ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑌𝑋)
9897sselda 3921 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → 𝑤𝑋)
99 sotric 5531 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑊𝑋) Or 𝑋 ∧ (𝑤𝑋𝑧𝑋)) → (𝑤(𝑊𝑋)𝑧 ↔ ¬ (𝑤 = 𝑧𝑧(𝑊𝑋)𝑤)))
100 ioran 981 . . . . . . . . . . . . . . . . . . . . . . 23 (¬ (𝑤 = 𝑧𝑧(𝑊𝑋)𝑤) ↔ (¬ 𝑤 = 𝑧 ∧ ¬ 𝑧(𝑊𝑋)𝑤))
10199, 100bitrdi 287 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊𝑋) Or 𝑋 ∧ (𝑤𝑋𝑧𝑋)) → (𝑤(𝑊𝑋)𝑧 ↔ (¬ 𝑤 = 𝑧 ∧ ¬ 𝑧(𝑊𝑋)𝑤)))
10296, 98, 74, 101syl12anc 834 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → (𝑤(𝑊𝑋)𝑧 ↔ (¬ 𝑤 = 𝑧 ∧ ¬ 𝑧(𝑊𝑋)𝑤)))
10367, 93, 102mpbir2and 710 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → 𝑤(𝑊𝑋)𝑧)
104103, 44sylibr 233 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → 𝑤 ∈ ((𝑊𝑋) “ {𝑧}))
105104ex 413 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑤𝑌𝑤 ∈ ((𝑊𝑋) “ {𝑧})))
106105ssrdv 3927 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑌 ⊆ ((𝑊𝑋) “ {𝑧}))
107 simprr 770 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)
108106, 107eqssd 3938 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑌 = ((𝑊𝑋) “ {𝑧}))
109 in32 4155 . . . . . . . . . . . . . . . . . 18 (((𝑊𝑋) ∩ (𝑋 × 𝑌)) ∩ (𝑌 × 𝑌)) = (((𝑊𝑋) ∩ (𝑌 × 𝑌)) ∩ (𝑋 × 𝑌))
110 simplrr 775 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))
111110ineq1d 4145 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑅 ∩ (𝑌 × 𝑌)) = (((𝑊𝑋) ∩ (𝑋 × 𝑌)) ∩ (𝑌 × 𝑌)))
11286ad2antrr 723 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑅 ⊆ (𝑌 × 𝑌))
113 df-ss 3904 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ⊆ (𝑌 × 𝑌) ↔ (𝑅 ∩ (𝑌 × 𝑌)) = 𝑅)
114112, 113sylib 217 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑅 ∩ (𝑌 × 𝑌)) = 𝑅)
115111, 114eqtr3d 2780 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (((𝑊𝑋) ∩ (𝑋 × 𝑌)) ∩ (𝑌 × 𝑌)) = 𝑅)
116 inss2 4163 . . . . . . . . . . . . . . . . . . . 20 ((𝑊𝑋) ∩ (𝑌 × 𝑌)) ⊆ (𝑌 × 𝑌)
117 xpss1 5608 . . . . . . . . . . . . . . . . . . . . 21 (𝑌𝑋 → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑌))
11897, 117syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑌))
119116, 118sstrid 3932 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → ((𝑊𝑋) ∩ (𝑌 × 𝑌)) ⊆ (𝑋 × 𝑌))
120 df-ss 3904 . . . . . . . . . . . . . . . . . . 19 (((𝑊𝑋) ∩ (𝑌 × 𝑌)) ⊆ (𝑋 × 𝑌) ↔ (((𝑊𝑋) ∩ (𝑌 × 𝑌)) ∩ (𝑋 × 𝑌)) = ((𝑊𝑋) ∩ (𝑌 × 𝑌)))
121119, 120sylib 217 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (((𝑊𝑋) ∩ (𝑌 × 𝑌)) ∩ (𝑋 × 𝑌)) = ((𝑊𝑋) ∩ (𝑌 × 𝑌)))
122109, 115, 1213eqtr3a 2802 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑅 = ((𝑊𝑋) ∩ (𝑌 × 𝑌)))
123108sqxpeqd 5621 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑌 × 𝑌) = (((𝑊𝑋) “ {𝑧}) × ((𝑊𝑋) “ {𝑧})))
124123ineq2d 4146 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → ((𝑊𝑋) ∩ (𝑌 × 𝑌)) = ((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑧}) × ((𝑊𝑋) “ {𝑧}))))
125122, 124eqtrd 2778 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑅 = ((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑧}) × ((𝑊𝑋) “ {𝑧}))))
126108, 125oveq12d 7293 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑌𝐹𝑅) = (((𝑊𝑋) “ {𝑧})𝐹((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑧}) × ((𝑊𝑋) “ {𝑧})))))
12718adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝐴𝑉)
12822adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑋𝑊(𝑊𝑋))
129128ad2antrr 723 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑋𝑊(𝑊𝑋))
1301, 127, 129fpwwe2lem3 10389 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑧𝑋) → (((𝑊𝑋) “ {𝑧})𝐹((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑧}) × ((𝑊𝑋) “ {𝑧})))) = 𝑧)
13173, 130mpdan 684 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (((𝑊𝑋) “ {𝑧})𝐹((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑧}) × ((𝑊𝑋) “ {𝑧})))) = 𝑧)
132126, 131eqtrd 2778 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑌𝐹𝑅) = 𝑧)
133132, 62eqneltrd 2858 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → ¬ (𝑌𝐹𝑅) ∈ 𝑌)
134133rexlimdvaa 3214 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (∃𝑧 ∈ (𝑋𝑌)((𝑊𝑋) “ {𝑧}) ⊆ 𝑌 → ¬ (𝑌𝐹𝑅) ∈ 𝑌))
13560, 134sylbid 239 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (∃𝑧 ∈ (𝑋𝑌)∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤(𝑊𝑋)𝑧 → ¬ (𝑌𝐹𝑅) ∈ 𝑌))
13637, 135syld 47 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑋𝑌) ≠ ∅ → ¬ (𝑌𝐹𝑅) ∈ 𝑌))
137136necon4ad 2962 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑌𝐹𝑅) ∈ 𝑌 → (𝑋𝑌) = ∅))
13816, 137mpd 15 . . . . . . . 8 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (𝑋𝑌) = ∅)
139 ssdif0 4297 . . . . . . . 8 (𝑋𝑌 ↔ (𝑋𝑌) = ∅)
140138, 139sylibr 233 . . . . . . 7 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → 𝑋𝑌)
141140ex 413 . . . . . 6 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → ((𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌))) → 𝑋𝑌))
1423adantlr 712 . . . . . . 7 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
143 simprl 768 . . . . . . 7 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑌𝑊𝑅)
1441, 17, 142, 128, 143fpwwe2lem9 10395 . . . . . 6 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → ((𝑋𝑌 ∧ (𝑊𝑋) = (𝑅 ∩ (𝑌 × 𝑋))) ∨ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))))
14515, 141, 144mpjaod 857 . . . . 5 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑋𝑌)
14613, 145eqssd 3938 . . . 4 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑌 = 𝑋)
1476adantr 481 . . . . . 6 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → Fun 𝑊)
148146, 143eqbrtrrd 5098 . . . . . 6 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑋𝑊𝑅)
149 funbrfv 6820 . . . . . 6 (Fun 𝑊 → (𝑋𝑊𝑅 → (𝑊𝑋) = 𝑅))
150147, 148, 149sylc 65 . . . . 5 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → (𝑊𝑋) = 𝑅)
151150eqcomd 2744 . . . 4 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑅 = (𝑊𝑋))
152146, 151jca 512 . . 3 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → (𝑌 = 𝑋𝑅 = (𝑊𝑋)))
153152ex 413 . 2 (𝜑 → ((𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌) → (𝑌 = 𝑋𝑅 = (𝑊𝑋))))
1541, 2, 3, 4fpwwe2lem12 10398 . . . 4 (𝜑 → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
15522, 154jca 512 . . 3 (𝜑 → (𝑋𝑊(𝑊𝑋) ∧ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋))
156 breq12 5079 . . . 4 ((𝑌 = 𝑋𝑅 = (𝑊𝑋)) → (𝑌𝑊𝑅𝑋𝑊(𝑊𝑋)))
157 oveq12 7284 . . . . 5 ((𝑌 = 𝑋𝑅 = (𝑊𝑋)) → (𝑌𝐹𝑅) = (𝑋𝐹(𝑊𝑋)))
158 simpl 483 . . . . 5 ((𝑌 = 𝑋𝑅 = (𝑊𝑋)) → 𝑌 = 𝑋)
159157, 158eleq12d 2833 . . . 4 ((𝑌 = 𝑋𝑅 = (𝑊𝑋)) → ((𝑌𝐹𝑅) ∈ 𝑌 ↔ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋))
160156, 159anbi12d 631 . . 3 ((𝑌 = 𝑋𝑅 = (𝑊𝑋)) → ((𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌) ↔ (𝑋𝑊(𝑊𝑋) ∧ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)))
161155, 160syl5ibrcom 246 . 2 (𝜑 → ((𝑌 = 𝑋𝑅 = (𝑊𝑋)) → (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)))
162153, 161impbid 211 1 (𝜑 → ((𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌) ↔ (𝑌 = 𝑋𝑅 = (𝑊𝑋))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  [wsbc 3716  cdif 3884  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561   cuni 4839   class class class wbr 5074  {copab 5136   Or wor 5502   Fr wfr 5541   We wwe 5543   × cxp 5587  ccnv 5588  dom cdm 5589  cima 5592  Fun wfun 6427  cfv 6433  (class class class)co 7275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-oi 9269
This theorem is referenced by:  fpwwe  10402  canthwelem  10406  pwfseqlem4  10418
  Copyright terms: Public domain W3C validator