MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2 Structured version   Visualization version   GIF version

Theorem fpwwe2 10572
Description: Given any function 𝐹 from well-orderings of subsets of 𝐴 to 𝐴, there is a unique well-ordered subset 𝑋, (𝑊𝑋)⟩ which "agrees" with 𝐹 in the sense that each initial segment maps to its upper bound, and such that the entire set maps to an element of the set (so that it cannot be extended without losing the well-ordering). This theorem can be used to prove dfac8a 9959. Theorem 1.1 of [KanamoriPincus] p. 415. (Contributed by Mario Carneiro, 18-May-2015.) (Revised by AV, 20-Jul-2024.)
Hypotheses
Ref Expression
fpwwe2.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
fpwwe2.2 (𝜑𝐴𝑉)
fpwwe2.3 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
fpwwe2.4 𝑋 = dom 𝑊
Assertion
Ref Expression
fpwwe2 (𝜑 → ((𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌) ↔ (𝑌 = 𝑋𝑅 = (𝑊𝑋))))
Distinct variable groups:   𝑦,𝑢,𝑟,𝑥,𝐹   𝑋,𝑟,𝑢,𝑥,𝑦   𝜑,𝑟,𝑢,𝑥,𝑦   𝐴,𝑟,𝑥   𝑅,𝑟,𝑢,𝑥,𝑦   𝑌,𝑟,𝑢,𝑥,𝑦   𝑊,𝑟,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑢)   𝑉(𝑥,𝑦,𝑢,𝑟)

Proof of Theorem fpwwe2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fpwwe2.1 . . . . . . . . . . 11 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
2 fpwwe2.2 . . . . . . . . . . 11 (𝜑𝐴𝑉)
3 fpwwe2.3 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
4 fpwwe2.4 . . . . . . . . . . 11 𝑋 = dom 𝑊
51, 2, 3, 4fpwwe2lem10 10569 . . . . . . . . . 10 (𝜑𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋))
65ffund 6674 . . . . . . . . 9 (𝜑 → Fun 𝑊)
7 funbrfv2b 6900 . . . . . . . . 9 (Fun 𝑊 → (𝑌𝑊𝑅 ↔ (𝑌 ∈ dom 𝑊 ∧ (𝑊𝑌) = 𝑅)))
86, 7syl 17 . . . . . . . 8 (𝜑 → (𝑌𝑊𝑅 ↔ (𝑌 ∈ dom 𝑊 ∧ (𝑊𝑌) = 𝑅)))
98simprbda 498 . . . . . . 7 ((𝜑𝑌𝑊𝑅) → 𝑌 ∈ dom 𝑊)
109adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑌 ∈ dom 𝑊)
11 elssuni 4897 . . . . . . 7 (𝑌 ∈ dom 𝑊𝑌 dom 𝑊)
1211, 4sseqtrrdi 3985 . . . . . 6 (𝑌 ∈ dom 𝑊𝑌𝑋)
1310, 12syl 17 . . . . 5 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑌𝑋)
14 simpl 482 . . . . . . 7 ((𝑋𝑌 ∧ (𝑊𝑋) = (𝑅 ∩ (𝑌 × 𝑋))) → 𝑋𝑌)
1514a1i 11 . . . . . 6 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → ((𝑋𝑌 ∧ (𝑊𝑋) = (𝑅 ∩ (𝑌 × 𝑋))) → 𝑋𝑌))
16 simplrr 777 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (𝑌𝐹𝑅) ∈ 𝑌)
172adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝐴𝑉)
1817adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → 𝐴𝑉)
191, 2, 3, 4fpwwe2lem11 10570 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋 ∈ dom 𝑊)
20 funfvbrb 7005 . . . . . . . . . . . . . . . . . . . 20 (Fun 𝑊 → (𝑋 ∈ dom 𝑊𝑋𝑊(𝑊𝑋)))
216, 20syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋 ∈ dom 𝑊𝑋𝑊(𝑊𝑋)))
2219, 21mpbid 232 . . . . . . . . . . . . . . . . . 18 (𝜑𝑋𝑊(𝑊𝑋))
231, 2fpwwe2lem2 10561 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑋𝑊(𝑊𝑋) ↔ ((𝑋𝐴 ∧ (𝑊𝑋) ⊆ (𝑋 × 𝑋)) ∧ ((𝑊𝑋) We 𝑋 ∧ ∀𝑦𝑋 [((𝑊𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊𝑋) ∩ (𝑢 × 𝑢))) = 𝑦))))
2422, 23mpbid 232 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑋𝐴 ∧ (𝑊𝑋) ⊆ (𝑋 × 𝑋)) ∧ ((𝑊𝑋) We 𝑋 ∧ ∀𝑦𝑋 [((𝑊𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊𝑋) ∩ (𝑢 × 𝑢))) = 𝑦)))
2524ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑋𝐴 ∧ (𝑊𝑋) ⊆ (𝑋 × 𝑋)) ∧ ((𝑊𝑋) We 𝑋 ∧ ∀𝑦𝑋 [((𝑊𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊𝑋) ∩ (𝑢 × 𝑢))) = 𝑦)))
2625simpld 494 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (𝑋𝐴 ∧ (𝑊𝑋) ⊆ (𝑋 × 𝑋)))
2726simpld 494 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → 𝑋𝐴)
2818, 27ssexd 5274 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → 𝑋 ∈ V)
2928difexd 5281 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (𝑋𝑌) ∈ V)
3025simprd 495 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑊𝑋) We 𝑋 ∧ ∀𝑦𝑋 [((𝑊𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊𝑋) ∩ (𝑢 × 𝑢))) = 𝑦))
3130simpld 494 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (𝑊𝑋) We 𝑋)
32 wefr 5621 . . . . . . . . . . . . 13 ((𝑊𝑋) We 𝑋 → (𝑊𝑋) Fr 𝑋)
3331, 32syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (𝑊𝑋) Fr 𝑋)
34 difssd 4096 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (𝑋𝑌) ⊆ 𝑋)
35 fri 5589 . . . . . . . . . . . . 13 ((((𝑋𝑌) ∈ V ∧ (𝑊𝑋) Fr 𝑋) ∧ ((𝑋𝑌) ⊆ 𝑋 ∧ (𝑋𝑌) ≠ ∅)) → ∃𝑧 ∈ (𝑋𝑌)∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤(𝑊𝑋)𝑧)
3635expr 456 . . . . . . . . . . . 12 ((((𝑋𝑌) ∈ V ∧ (𝑊𝑋) Fr 𝑋) ∧ (𝑋𝑌) ⊆ 𝑋) → ((𝑋𝑌) ≠ ∅ → ∃𝑧 ∈ (𝑋𝑌)∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤(𝑊𝑋)𝑧))
3729, 33, 34, 36syl21anc 837 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑋𝑌) ≠ ∅ → ∃𝑧 ∈ (𝑋𝑌)∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤(𝑊𝑋)𝑧))
38 ssdif0 4325 . . . . . . . . . . . . . . 15 ((𝑋 ∩ ((𝑊𝑋) “ {𝑧})) ⊆ 𝑌 ↔ ((𝑋 ∩ ((𝑊𝑋) “ {𝑧})) ∖ 𝑌) = ∅)
39 indif1 4241 . . . . . . . . . . . . . . . 16 ((𝑋𝑌) ∩ ((𝑊𝑋) “ {𝑧})) = ((𝑋 ∩ ((𝑊𝑋) “ {𝑧})) ∖ 𝑌)
4039eqeq1i 2734 . . . . . . . . . . . . . . 15 (((𝑋𝑌) ∩ ((𝑊𝑋) “ {𝑧})) = ∅ ↔ ((𝑋 ∩ ((𝑊𝑋) “ {𝑧})) ∖ 𝑌) = ∅)
41 disj 4409 . . . . . . . . . . . . . . . 16 (((𝑋𝑌) ∩ ((𝑊𝑋) “ {𝑧})) = ∅ ↔ ∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤 ∈ ((𝑊𝑋) “ {𝑧}))
42 vex 3448 . . . . . . . . . . . . . . . . . . . 20 𝑤 ∈ V
4342eliniseg 6054 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ V → (𝑤 ∈ ((𝑊𝑋) “ {𝑧}) ↔ 𝑤(𝑊𝑋)𝑧))
4443elv 3449 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ((𝑊𝑋) “ {𝑧}) ↔ 𝑤(𝑊𝑋)𝑧)
4544notbii 320 . . . . . . . . . . . . . . . . 17 𝑤 ∈ ((𝑊𝑋) “ {𝑧}) ↔ ¬ 𝑤(𝑊𝑋)𝑧)
4645ralbii 3075 . . . . . . . . . . . . . . . 16 (∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤 ∈ ((𝑊𝑋) “ {𝑧}) ↔ ∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤(𝑊𝑋)𝑧)
4741, 46bitri 275 . . . . . . . . . . . . . . 15 (((𝑋𝑌) ∩ ((𝑊𝑋) “ {𝑧})) = ∅ ↔ ∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤(𝑊𝑋)𝑧)
4838, 40, 473bitr2i 299 . . . . . . . . . . . . . 14 ((𝑋 ∩ ((𝑊𝑋) “ {𝑧})) ⊆ 𝑌 ↔ ∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤(𝑊𝑋)𝑧)
49 cnvimass 6042 . . . . . . . . . . . . . . . . 17 ((𝑊𝑋) “ {𝑧}) ⊆ dom (𝑊𝑋)
5026simprd 495 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (𝑊𝑋) ⊆ (𝑋 × 𝑋))
51 dmss 5856 . . . . . . . . . . . . . . . . . . 19 ((𝑊𝑋) ⊆ (𝑋 × 𝑋) → dom (𝑊𝑋) ⊆ dom (𝑋 × 𝑋))
5250, 51syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → dom (𝑊𝑋) ⊆ dom (𝑋 × 𝑋))
53 dmxpid 5883 . . . . . . . . . . . . . . . . . 18 dom (𝑋 × 𝑋) = 𝑋
5452, 53sseqtrdi 3984 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → dom (𝑊𝑋) ⊆ 𝑋)
5549, 54sstrid 3955 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑊𝑋) “ {𝑧}) ⊆ 𝑋)
56 sseqin2 4182 . . . . . . . . . . . . . . . 16 (((𝑊𝑋) “ {𝑧}) ⊆ 𝑋 ↔ (𝑋 ∩ ((𝑊𝑋) “ {𝑧})) = ((𝑊𝑋) “ {𝑧}))
5755, 56sylib 218 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (𝑋 ∩ ((𝑊𝑋) “ {𝑧})) = ((𝑊𝑋) “ {𝑧}))
5857sseq1d 3975 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑋 ∩ ((𝑊𝑋) “ {𝑧})) ⊆ 𝑌 ↔ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌))
5948, 58bitr3id 285 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤(𝑊𝑋)𝑧 ↔ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌))
6059rexbidv 3157 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (∃𝑧 ∈ (𝑋𝑌)∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤(𝑊𝑋)𝑧 ↔ ∃𝑧 ∈ (𝑋𝑌)((𝑊𝑋) “ {𝑧}) ⊆ 𝑌))
61 eldifn 4091 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ (𝑋𝑌) → ¬ 𝑧𝑌)
6261ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → ¬ 𝑧𝑌)
63 eleq1w 2811 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 𝑧 → (𝑤𝑌𝑧𝑌))
6463notbid 318 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑧 → (¬ 𝑤𝑌 ↔ ¬ 𝑧𝑌))
6562, 64syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑤 = 𝑧 → ¬ 𝑤𝑌))
6665con2d 134 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑤𝑌 → ¬ 𝑤 = 𝑧))
6766imp 406 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → ¬ 𝑤 = 𝑧)
6862adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → ¬ 𝑧𝑌)
69 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → 𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))
7069ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → 𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))
7170breqd 5113 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → (𝑧𝑅𝑤𝑧((𝑊𝑋) ∩ (𝑋 × 𝑌))𝑤))
72 eldifi 4090 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ (𝑋𝑌) → 𝑧𝑋)
7372ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑧𝑋)
7473adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → 𝑧𝑋)
75 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → 𝑤𝑌)
76 brxp 5680 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧(𝑋 × 𝑌)𝑤 ↔ (𝑧𝑋𝑤𝑌))
7774, 75, 76sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → 𝑧(𝑋 × 𝑌)𝑤)
78 brin 5154 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧((𝑊𝑋) ∩ (𝑋 × 𝑌))𝑤 ↔ (𝑧(𝑊𝑋)𝑤𝑧(𝑋 × 𝑌)𝑤))
7978rbaib 538 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧(𝑋 × 𝑌)𝑤 → (𝑧((𝑊𝑋) ∩ (𝑋 × 𝑌))𝑤𝑧(𝑊𝑋)𝑤))
8077, 79syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → (𝑧((𝑊𝑋) ∩ (𝑋 × 𝑌))𝑤𝑧(𝑊𝑋)𝑤))
8171, 80bitrd 279 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → (𝑧𝑅𝑤𝑧(𝑊𝑋)𝑤))
821, 2fpwwe2lem2 10561 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (𝑌𝑊𝑅 ↔ ((𝑌𝐴𝑅 ⊆ (𝑌 × 𝑌)) ∧ (𝑅 We 𝑌 ∧ ∀𝑦𝑌 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))))
8382biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑌𝑊𝑅) → ((𝑌𝐴𝑅 ⊆ (𝑌 × 𝑌)) ∧ (𝑅 We 𝑌 ∧ ∀𝑦𝑌 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)))
8483adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → ((𝑌𝐴𝑅 ⊆ (𝑌 × 𝑌)) ∧ (𝑅 We 𝑌 ∧ ∀𝑦𝑌 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)))
8584simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → (𝑌𝐴𝑅 ⊆ (𝑌 × 𝑌)))
8685simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑅 ⊆ (𝑌 × 𝑌))
8786ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → 𝑅 ⊆ (𝑌 × 𝑌))
8887ssbrd 5145 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → (𝑧𝑅𝑤𝑧(𝑌 × 𝑌)𝑤))
89 brxp 5680 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧(𝑌 × 𝑌)𝑤 ↔ (𝑧𝑌𝑤𝑌))
9089simplbi 497 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧(𝑌 × 𝑌)𝑤𝑧𝑌)
9188, 90syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → (𝑧𝑅𝑤𝑧𝑌))
9281, 91sylbird 260 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → (𝑧(𝑊𝑋)𝑤𝑧𝑌))
9368, 92mtod 198 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → ¬ 𝑧(𝑊𝑋)𝑤)
9431ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → (𝑊𝑋) We 𝑋)
95 weso 5622 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑊𝑋) We 𝑋 → (𝑊𝑋) Or 𝑋)
9694, 95syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → (𝑊𝑋) Or 𝑋)
9713ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑌𝑋)
9897sselda 3943 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → 𝑤𝑋)
99 sotric 5569 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑊𝑋) Or 𝑋 ∧ (𝑤𝑋𝑧𝑋)) → (𝑤(𝑊𝑋)𝑧 ↔ ¬ (𝑤 = 𝑧𝑧(𝑊𝑋)𝑤)))
100 ioran 985 . . . . . . . . . . . . . . . . . . . . . . 23 (¬ (𝑤 = 𝑧𝑧(𝑊𝑋)𝑤) ↔ (¬ 𝑤 = 𝑧 ∧ ¬ 𝑧(𝑊𝑋)𝑤))
10199, 100bitrdi 287 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊𝑋) Or 𝑋 ∧ (𝑤𝑋𝑧𝑋)) → (𝑤(𝑊𝑋)𝑧 ↔ (¬ 𝑤 = 𝑧 ∧ ¬ 𝑧(𝑊𝑋)𝑤)))
10296, 98, 74, 101syl12anc 836 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → (𝑤(𝑊𝑋)𝑧 ↔ (¬ 𝑤 = 𝑧 ∧ ¬ 𝑧(𝑊𝑋)𝑤)))
10367, 93, 102mpbir2and 713 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → 𝑤(𝑊𝑋)𝑧)
104103, 44sylibr 234 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤𝑌) → 𝑤 ∈ ((𝑊𝑋) “ {𝑧}))
105104ex 412 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑤𝑌𝑤 ∈ ((𝑊𝑋) “ {𝑧})))
106105ssrdv 3949 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑌 ⊆ ((𝑊𝑋) “ {𝑧}))
107 simprr 772 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)
108106, 107eqssd 3961 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑌 = ((𝑊𝑋) “ {𝑧}))
109 in32 4189 . . . . . . . . . . . . . . . . . 18 (((𝑊𝑋) ∩ (𝑋 × 𝑌)) ∩ (𝑌 × 𝑌)) = (((𝑊𝑋) ∩ (𝑌 × 𝑌)) ∩ (𝑋 × 𝑌))
110 simplrr 777 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))
111110ineq1d 4178 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑅 ∩ (𝑌 × 𝑌)) = (((𝑊𝑋) ∩ (𝑋 × 𝑌)) ∩ (𝑌 × 𝑌)))
11286ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑅 ⊆ (𝑌 × 𝑌))
113 dfss2 3929 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ⊆ (𝑌 × 𝑌) ↔ (𝑅 ∩ (𝑌 × 𝑌)) = 𝑅)
114112, 113sylib 218 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑅 ∩ (𝑌 × 𝑌)) = 𝑅)
115111, 114eqtr3d 2766 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (((𝑊𝑋) ∩ (𝑋 × 𝑌)) ∩ (𝑌 × 𝑌)) = 𝑅)
116 inss2 4197 . . . . . . . . . . . . . . . . . . . 20 ((𝑊𝑋) ∩ (𝑌 × 𝑌)) ⊆ (𝑌 × 𝑌)
117 xpss1 5650 . . . . . . . . . . . . . . . . . . . . 21 (𝑌𝑋 → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑌))
11897, 117syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑌))
119116, 118sstrid 3955 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → ((𝑊𝑋) ∩ (𝑌 × 𝑌)) ⊆ (𝑋 × 𝑌))
120 dfss2 3929 . . . . . . . . . . . . . . . . . . 19 (((𝑊𝑋) ∩ (𝑌 × 𝑌)) ⊆ (𝑋 × 𝑌) ↔ (((𝑊𝑋) ∩ (𝑌 × 𝑌)) ∩ (𝑋 × 𝑌)) = ((𝑊𝑋) ∩ (𝑌 × 𝑌)))
121119, 120sylib 218 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (((𝑊𝑋) ∩ (𝑌 × 𝑌)) ∩ (𝑋 × 𝑌)) = ((𝑊𝑋) ∩ (𝑌 × 𝑌)))
122109, 115, 1213eqtr3a 2788 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑅 = ((𝑊𝑋) ∩ (𝑌 × 𝑌)))
123108sqxpeqd 5663 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑌 × 𝑌) = (((𝑊𝑋) “ {𝑧}) × ((𝑊𝑋) “ {𝑧})))
124123ineq2d 4179 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → ((𝑊𝑋) ∩ (𝑌 × 𝑌)) = ((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑧}) × ((𝑊𝑋) “ {𝑧}))))
125122, 124eqtrd 2764 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑅 = ((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑧}) × ((𝑊𝑋) “ {𝑧}))))
126108, 125oveq12d 7387 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑌𝐹𝑅) = (((𝑊𝑋) “ {𝑧})𝐹((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑧}) × ((𝑊𝑋) “ {𝑧})))))
12718adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝐴𝑉)
12822adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑋𝑊(𝑊𝑋))
129128ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑋𝑊(𝑊𝑋))
1301, 127, 129fpwwe2lem3 10562 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑧𝑋) → (((𝑊𝑋) “ {𝑧})𝐹((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑧}) × ((𝑊𝑋) “ {𝑧})))) = 𝑧)
13173, 130mpdan 687 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (((𝑊𝑋) “ {𝑧})𝐹((𝑊𝑋) ∩ (((𝑊𝑋) “ {𝑧}) × ((𝑊𝑋) “ {𝑧})))) = 𝑧)
132126, 131eqtrd 2764 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑌𝐹𝑅) = 𝑧)
133132, 62eqneltrd 2848 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋𝑌) ∧ ((𝑊𝑋) “ {𝑧}) ⊆ 𝑌)) → ¬ (𝑌𝐹𝑅) ∈ 𝑌)
134133rexlimdvaa 3135 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (∃𝑧 ∈ (𝑋𝑌)((𝑊𝑋) “ {𝑧}) ⊆ 𝑌 → ¬ (𝑌𝐹𝑅) ∈ 𝑌))
13560, 134sylbid 240 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (∃𝑧 ∈ (𝑋𝑌)∀𝑤 ∈ (𝑋𝑌) ¬ 𝑤(𝑊𝑋)𝑧 → ¬ (𝑌𝐹𝑅) ∈ 𝑌))
13637, 135syld 47 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑋𝑌) ≠ ∅ → ¬ (𝑌𝐹𝑅) ∈ 𝑌))
137136necon4ad 2944 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑌𝐹𝑅) ∈ 𝑌 → (𝑋𝑌) = ∅))
13816, 137mpd 15 . . . . . . . 8 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → (𝑋𝑌) = ∅)
139 ssdif0 4325 . . . . . . . 8 (𝑋𝑌 ↔ (𝑋𝑌) = ∅)
140138, 139sylibr 234 . . . . . . 7 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))) → 𝑋𝑌)
141140ex 412 . . . . . 6 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → ((𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌))) → 𝑋𝑌))
1423adantlr 715 . . . . . . 7 (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
143 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑌𝑊𝑅)
1441, 17, 142, 128, 143fpwwe2lem9 10568 . . . . . 6 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → ((𝑋𝑌 ∧ (𝑊𝑋) = (𝑅 ∩ (𝑌 × 𝑋))) ∨ (𝑌𝑋𝑅 = ((𝑊𝑋) ∩ (𝑋 × 𝑌)))))
14515, 141, 144mpjaod 860 . . . . 5 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑋𝑌)
14613, 145eqssd 3961 . . . 4 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑌 = 𝑋)
1476adantr 480 . . . . . 6 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → Fun 𝑊)
148146, 143eqbrtrrd 5126 . . . . . 6 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑋𝑊𝑅)
149 funbrfv 6891 . . . . . 6 (Fun 𝑊 → (𝑋𝑊𝑅 → (𝑊𝑋) = 𝑅))
150147, 148, 149sylc 65 . . . . 5 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → (𝑊𝑋) = 𝑅)
151150eqcomd 2735 . . . 4 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑅 = (𝑊𝑋))
152146, 151jca 511 . . 3 ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → (𝑌 = 𝑋𝑅 = (𝑊𝑋)))
153152ex 412 . 2 (𝜑 → ((𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌) → (𝑌 = 𝑋𝑅 = (𝑊𝑋))))
1541, 2, 3, 4fpwwe2lem12 10571 . . . 4 (𝜑 → (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)
15522, 154jca 511 . . 3 (𝜑 → (𝑋𝑊(𝑊𝑋) ∧ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋))
156 breq12 5107 . . . 4 ((𝑌 = 𝑋𝑅 = (𝑊𝑋)) → (𝑌𝑊𝑅𝑋𝑊(𝑊𝑋)))
157 oveq12 7378 . . . . 5 ((𝑌 = 𝑋𝑅 = (𝑊𝑋)) → (𝑌𝐹𝑅) = (𝑋𝐹(𝑊𝑋)))
158 simpl 482 . . . . 5 ((𝑌 = 𝑋𝑅 = (𝑊𝑋)) → 𝑌 = 𝑋)
159157, 158eleq12d 2822 . . . 4 ((𝑌 = 𝑋𝑅 = (𝑊𝑋)) → ((𝑌𝐹𝑅) ∈ 𝑌 ↔ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋))
160156, 159anbi12d 632 . . 3 ((𝑌 = 𝑋𝑅 = (𝑊𝑋)) → ((𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌) ↔ (𝑋𝑊(𝑊𝑋) ∧ (𝑋𝐹(𝑊𝑋)) ∈ 𝑋)))
161155, 160syl5ibrcom 247 . 2 (𝜑 → ((𝑌 = 𝑋𝑅 = (𝑊𝑋)) → (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)))
162153, 161impbid 212 1 (𝜑 → ((𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌) ↔ (𝑌 = 𝑋𝑅 = (𝑊𝑋))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3444  [wsbc 3750  cdif 3908  cin 3910  wss 3911  c0 4292  𝒫 cpw 4559  {csn 4585   cuni 4867   class class class wbr 5102  {copab 5164   Or wor 5538   Fr wfr 5581   We wwe 5583   × cxp 5629  ccnv 5630  dom cdm 5631  cima 5634  Fun wfun 6493  cfv 6499  (class class class)co 7369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-oi 9439
This theorem is referenced by:  fpwwe  10575  canthwelem  10579  pwfseqlem4  10591
  Copyright terms: Public domain W3C validator