Step | Hyp | Ref
| Expression |
1 | | fpwwe2.1 |
. . . . . . . . . . 11
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} |
2 | | fpwwe2.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
3 | | fpwwe2.3 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
4 | | fpwwe2.4 |
. . . . . . . . . . 11
⊢ 𝑋 = ∪
dom 𝑊 |
5 | 1, 2, 3, 4 | fpwwe2lem10 10396 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋)) |
6 | 5 | ffund 6604 |
. . . . . . . . 9
⊢ (𝜑 → Fun 𝑊) |
7 | | funbrfv2b 6827 |
. . . . . . . . 9
⊢ (Fun
𝑊 → (𝑌𝑊𝑅 ↔ (𝑌 ∈ dom 𝑊 ∧ (𝑊‘𝑌) = 𝑅))) |
8 | 6, 7 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑌𝑊𝑅 ↔ (𝑌 ∈ dom 𝑊 ∧ (𝑊‘𝑌) = 𝑅))) |
9 | 8 | simprbda 499 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌𝑊𝑅) → 𝑌 ∈ dom 𝑊) |
10 | 9 | adantrr 714 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑌 ∈ dom 𝑊) |
11 | | elssuni 4871 |
. . . . . . 7
⊢ (𝑌 ∈ dom 𝑊 → 𝑌 ⊆ ∪ dom
𝑊) |
12 | 11, 4 | sseqtrrdi 3972 |
. . . . . 6
⊢ (𝑌 ∈ dom 𝑊 → 𝑌 ⊆ 𝑋) |
13 | 10, 12 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑌 ⊆ 𝑋) |
14 | | simpl 483 |
. . . . . . 7
⊢ ((𝑋 ⊆ 𝑌 ∧ (𝑊‘𝑋) = (𝑅 ∩ (𝑌 × 𝑋))) → 𝑋 ⊆ 𝑌) |
15 | 14 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → ((𝑋 ⊆ 𝑌 ∧ (𝑊‘𝑋) = (𝑅 ∩ (𝑌 × 𝑋))) → 𝑋 ⊆ 𝑌)) |
16 | | simplrr 775 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (𝑌𝐹𝑅) ∈ 𝑌) |
17 | 2 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝐴 ∈ 𝑉) |
18 | 17 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → 𝐴 ∈ 𝑉) |
19 | 1, 2, 3, 4 | fpwwe2lem11 10397 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑋 ∈ dom 𝑊) |
20 | | funfvbrb 6928 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (Fun
𝑊 → (𝑋 ∈ dom 𝑊 ↔ 𝑋𝑊(𝑊‘𝑋))) |
21 | 6, 20 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑋 ∈ dom 𝑊 ↔ 𝑋𝑊(𝑊‘𝑋))) |
22 | 19, 21 | mpbid 231 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑋𝑊(𝑊‘𝑋)) |
23 | 1, 2 | fpwwe2lem2 10388 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑋𝑊(𝑊‘𝑋) ↔ ((𝑋 ⊆ 𝐴 ∧ (𝑊‘𝑋) ⊆ (𝑋 × 𝑋)) ∧ ((𝑊‘𝑋) We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡(𝑊‘𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊‘𝑋) ∩ (𝑢 × 𝑢))) = 𝑦)))) |
24 | 22, 23 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑋 ⊆ 𝐴 ∧ (𝑊‘𝑋) ⊆ (𝑋 × 𝑋)) ∧ ((𝑊‘𝑋) We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡(𝑊‘𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊‘𝑋) ∩ (𝑢 × 𝑢))) = 𝑦))) |
25 | 24 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑋 ⊆ 𝐴 ∧ (𝑊‘𝑋) ⊆ (𝑋 × 𝑋)) ∧ ((𝑊‘𝑋) We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡(𝑊‘𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊‘𝑋) ∩ (𝑢 × 𝑢))) = 𝑦))) |
26 | 25 | simpld 495 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (𝑋 ⊆ 𝐴 ∧ (𝑊‘𝑋) ⊆ (𝑋 × 𝑋))) |
27 | 26 | simpld 495 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → 𝑋 ⊆ 𝐴) |
28 | 18, 27 | ssexd 5248 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → 𝑋 ∈ V) |
29 | 28 | difexd 5253 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (𝑋 ∖ 𝑌) ∈ V) |
30 | 25 | simprd 496 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑊‘𝑋) We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡(𝑊‘𝑋) “ {𝑦}) / 𝑢](𝑢𝐹((𝑊‘𝑋) ∩ (𝑢 × 𝑢))) = 𝑦)) |
31 | 30 | simpld 495 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (𝑊‘𝑋) We 𝑋) |
32 | | wefr 5579 |
. . . . . . . . . . . . 13
⊢ ((𝑊‘𝑋) We 𝑋 → (𝑊‘𝑋) Fr 𝑋) |
33 | 31, 32 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (𝑊‘𝑋) Fr 𝑋) |
34 | | difssd 4067 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (𝑋 ∖ 𝑌) ⊆ 𝑋) |
35 | | fri 5549 |
. . . . . . . . . . . . 13
⊢ ((((𝑋 ∖ 𝑌) ∈ V ∧ (𝑊‘𝑋) Fr 𝑋) ∧ ((𝑋 ∖ 𝑌) ⊆ 𝑋 ∧ (𝑋 ∖ 𝑌) ≠ ∅)) → ∃𝑧 ∈ (𝑋 ∖ 𝑌)∀𝑤 ∈ (𝑋 ∖ 𝑌) ¬ 𝑤(𝑊‘𝑋)𝑧) |
36 | 35 | expr 457 |
. . . . . . . . . . . 12
⊢ ((((𝑋 ∖ 𝑌) ∈ V ∧ (𝑊‘𝑋) Fr 𝑋) ∧ (𝑋 ∖ 𝑌) ⊆ 𝑋) → ((𝑋 ∖ 𝑌) ≠ ∅ → ∃𝑧 ∈ (𝑋 ∖ 𝑌)∀𝑤 ∈ (𝑋 ∖ 𝑌) ¬ 𝑤(𝑊‘𝑋)𝑧)) |
37 | 29, 33, 34, 36 | syl21anc 835 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑋 ∖ 𝑌) ≠ ∅ → ∃𝑧 ∈ (𝑋 ∖ 𝑌)∀𝑤 ∈ (𝑋 ∖ 𝑌) ¬ 𝑤(𝑊‘𝑋)𝑧)) |
38 | | ssdif0 4297 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∩ (◡(𝑊‘𝑋) “ {𝑧})) ⊆ 𝑌 ↔ ((𝑋 ∩ (◡(𝑊‘𝑋) “ {𝑧})) ∖ 𝑌) = ∅) |
39 | | indif1 4205 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 ∖ 𝑌) ∩ (◡(𝑊‘𝑋) “ {𝑧})) = ((𝑋 ∩ (◡(𝑊‘𝑋) “ {𝑧})) ∖ 𝑌) |
40 | 39 | eqeq1i 2743 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 ∖ 𝑌) ∩ (◡(𝑊‘𝑋) “ {𝑧})) = ∅ ↔ ((𝑋 ∩ (◡(𝑊‘𝑋) “ {𝑧})) ∖ 𝑌) = ∅) |
41 | | disj 4381 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑋 ∖ 𝑌) ∩ (◡(𝑊‘𝑋) “ {𝑧})) = ∅ ↔ ∀𝑤 ∈ (𝑋 ∖ 𝑌) ¬ 𝑤 ∈ (◡(𝑊‘𝑋) “ {𝑧})) |
42 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑤 ∈ V |
43 | 42 | eliniseg 6002 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ V → (𝑤 ∈ (◡(𝑊‘𝑋) “ {𝑧}) ↔ 𝑤(𝑊‘𝑋)𝑧)) |
44 | 43 | elv 3438 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ (◡(𝑊‘𝑋) “ {𝑧}) ↔ 𝑤(𝑊‘𝑋)𝑧) |
45 | 44 | notbii 320 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝑤 ∈ (◡(𝑊‘𝑋) “ {𝑧}) ↔ ¬ 𝑤(𝑊‘𝑋)𝑧) |
46 | 45 | ralbii 3092 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑤 ∈
(𝑋 ∖ 𝑌) ¬ 𝑤 ∈ (◡(𝑊‘𝑋) “ {𝑧}) ↔ ∀𝑤 ∈ (𝑋 ∖ 𝑌) ¬ 𝑤(𝑊‘𝑋)𝑧) |
47 | 41, 46 | bitri 274 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 ∖ 𝑌) ∩ (◡(𝑊‘𝑋) “ {𝑧})) = ∅ ↔ ∀𝑤 ∈ (𝑋 ∖ 𝑌) ¬ 𝑤(𝑊‘𝑋)𝑧) |
48 | 38, 40, 47 | 3bitr2i 299 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∩ (◡(𝑊‘𝑋) “ {𝑧})) ⊆ 𝑌 ↔ ∀𝑤 ∈ (𝑋 ∖ 𝑌) ¬ 𝑤(𝑊‘𝑋)𝑧) |
49 | | cnvimass 5989 |
. . . . . . . . . . . . . . . . 17
⊢ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ dom (𝑊‘𝑋) |
50 | 26 | simprd 496 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (𝑊‘𝑋) ⊆ (𝑋 × 𝑋)) |
51 | | dmss 5811 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑊‘𝑋) ⊆ (𝑋 × 𝑋) → dom (𝑊‘𝑋) ⊆ dom (𝑋 × 𝑋)) |
52 | 50, 51 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → dom (𝑊‘𝑋) ⊆ dom (𝑋 × 𝑋)) |
53 | | dmxpid 5839 |
. . . . . . . . . . . . . . . . . 18
⊢ dom
(𝑋 × 𝑋) = 𝑋 |
54 | 52, 53 | sseqtrdi 3971 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → dom (𝑊‘𝑋) ⊆ 𝑋) |
55 | 49, 54 | sstrid 3932 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑋) |
56 | | sseqin2 4149 |
. . . . . . . . . . . . . . . 16
⊢ ((◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑋 ↔ (𝑋 ∩ (◡(𝑊‘𝑋) “ {𝑧})) = (◡(𝑊‘𝑋) “ {𝑧})) |
57 | 55, 56 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (𝑋 ∩ (◡(𝑊‘𝑋) “ {𝑧})) = (◡(𝑊‘𝑋) “ {𝑧})) |
58 | 57 | sseq1d 3952 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑋 ∩ (◡(𝑊‘𝑋) “ {𝑧})) ⊆ 𝑌 ↔ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) |
59 | 48, 58 | bitr3id 285 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (∀𝑤 ∈ (𝑋 ∖ 𝑌) ¬ 𝑤(𝑊‘𝑋)𝑧 ↔ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) |
60 | 59 | rexbidv 3226 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (∃𝑧 ∈ (𝑋 ∖ 𝑌)∀𝑤 ∈ (𝑋 ∖ 𝑌) ¬ 𝑤(𝑊‘𝑋)𝑧 ↔ ∃𝑧 ∈ (𝑋 ∖ 𝑌)(◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) |
61 | | eldifn 4062 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧 ∈ (𝑋 ∖ 𝑌) → ¬ 𝑧 ∈ 𝑌) |
62 | 61 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → ¬ 𝑧 ∈ 𝑌) |
63 | | eleq1w 2821 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 = 𝑧 → (𝑤 ∈ 𝑌 ↔ 𝑧 ∈ 𝑌)) |
64 | 63 | notbid 318 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = 𝑧 → (¬ 𝑤 ∈ 𝑌 ↔ ¬ 𝑧 ∈ 𝑌)) |
65 | 62, 64 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑤 = 𝑧 → ¬ 𝑤 ∈ 𝑌)) |
66 | 65 | con2d 134 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑤 ∈ 𝑌 → ¬ 𝑤 = 𝑧)) |
67 | 66 | imp 407 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → ¬ 𝑤 = 𝑧) |
68 | 62 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → ¬ 𝑧 ∈ 𝑌) |
69 | | simprr 770 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌))) |
70 | 69 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌))) |
71 | 70 | breqd 5085 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → (𝑧𝑅𝑤 ↔ 𝑧((𝑊‘𝑋) ∩ (𝑋 × 𝑌))𝑤)) |
72 | | eldifi 4061 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 ∈ (𝑋 ∖ 𝑌) → 𝑧 ∈ 𝑋) |
73 | 72 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑧 ∈ 𝑋) |
74 | 73 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → 𝑧 ∈ 𝑋) |
75 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → 𝑤 ∈ 𝑌) |
76 | | brxp 5636 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧(𝑋 × 𝑌)𝑤 ↔ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑌)) |
77 | 74, 75, 76 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → 𝑧(𝑋 × 𝑌)𝑤) |
78 | | brin 5126 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧((𝑊‘𝑋) ∩ (𝑋 × 𝑌))𝑤 ↔ (𝑧(𝑊‘𝑋)𝑤 ∧ 𝑧(𝑋 × 𝑌)𝑤)) |
79 | 78 | rbaib 539 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧(𝑋 × 𝑌)𝑤 → (𝑧((𝑊‘𝑋) ∩ (𝑋 × 𝑌))𝑤 ↔ 𝑧(𝑊‘𝑋)𝑤)) |
80 | 77, 79 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → (𝑧((𝑊‘𝑋) ∩ (𝑋 × 𝑌))𝑤 ↔ 𝑧(𝑊‘𝑋)𝑤)) |
81 | 71, 80 | bitrd 278 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → (𝑧𝑅𝑤 ↔ 𝑧(𝑊‘𝑋)𝑤)) |
82 | 1, 2 | fpwwe2lem2 10388 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → (𝑌𝑊𝑅 ↔ ((𝑌 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑌 × 𝑌)) ∧ (𝑅 We 𝑌 ∧ ∀𝑦 ∈ 𝑌 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)))) |
83 | 82 | biimpa 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑌𝑊𝑅) → ((𝑌 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑌 × 𝑌)) ∧ (𝑅 We 𝑌 ∧ ∀𝑦 ∈ 𝑌 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) |
84 | 83 | adantrr 714 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → ((𝑌 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑌 × 𝑌)) ∧ (𝑅 We 𝑌 ∧ ∀𝑦 ∈ 𝑌 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))) |
85 | 84 | simpld 495 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → (𝑌 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑌 × 𝑌))) |
86 | 85 | simprd 496 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑅 ⊆ (𝑌 × 𝑌)) |
87 | 86 | ad5ant12 753 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → 𝑅 ⊆ (𝑌 × 𝑌)) |
88 | 87 | ssbrd 5117 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → (𝑧𝑅𝑤 → 𝑧(𝑌 × 𝑌)𝑤)) |
89 | | brxp 5636 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧(𝑌 × 𝑌)𝑤 ↔ (𝑧 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌)) |
90 | 89 | simplbi 498 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑧(𝑌 × 𝑌)𝑤 → 𝑧 ∈ 𝑌) |
91 | 88, 90 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → (𝑧𝑅𝑤 → 𝑧 ∈ 𝑌)) |
92 | 81, 91 | sylbird 259 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → (𝑧(𝑊‘𝑋)𝑤 → 𝑧 ∈ 𝑌)) |
93 | 68, 92 | mtod 197 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → ¬ 𝑧(𝑊‘𝑋)𝑤) |
94 | 31 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → (𝑊‘𝑋) We 𝑋) |
95 | | weso 5580 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑊‘𝑋) We 𝑋 → (𝑊‘𝑋) Or 𝑋) |
96 | 94, 95 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → (𝑊‘𝑋) Or 𝑋) |
97 | 13 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑌 ⊆ 𝑋) |
98 | 97 | sselda 3921 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → 𝑤 ∈ 𝑋) |
99 | | sotric 5531 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑊‘𝑋) Or 𝑋 ∧ (𝑤 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑤(𝑊‘𝑋)𝑧 ↔ ¬ (𝑤 = 𝑧 ∨ 𝑧(𝑊‘𝑋)𝑤))) |
100 | | ioran 981 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
(𝑤 = 𝑧 ∨ 𝑧(𝑊‘𝑋)𝑤) ↔ (¬ 𝑤 = 𝑧 ∧ ¬ 𝑧(𝑊‘𝑋)𝑤)) |
101 | 99, 100 | bitrdi 287 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑊‘𝑋) Or 𝑋 ∧ (𝑤 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑤(𝑊‘𝑋)𝑧 ↔ (¬ 𝑤 = 𝑧 ∧ ¬ 𝑧(𝑊‘𝑋)𝑤))) |
102 | 96, 98, 74, 101 | syl12anc 834 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → (𝑤(𝑊‘𝑋)𝑧 ↔ (¬ 𝑤 = 𝑧 ∧ ¬ 𝑧(𝑊‘𝑋)𝑤))) |
103 | 67, 93, 102 | mpbir2and 710 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → 𝑤(𝑊‘𝑋)𝑧) |
104 | 103, 44 | sylibr 233 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑤 ∈ 𝑌) → 𝑤 ∈ (◡(𝑊‘𝑋) “ {𝑧})) |
105 | 104 | ex 413 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑤 ∈ 𝑌 → 𝑤 ∈ (◡(𝑊‘𝑋) “ {𝑧}))) |
106 | 105 | ssrdv 3927 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑌 ⊆ (◡(𝑊‘𝑋) “ {𝑧})) |
107 | | simprr 770 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌) |
108 | 106, 107 | eqssd 3938 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑌 = (◡(𝑊‘𝑋) “ {𝑧})) |
109 | | in32 4155 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑊‘𝑋) ∩ (𝑋 × 𝑌)) ∩ (𝑌 × 𝑌)) = (((𝑊‘𝑋) ∩ (𝑌 × 𝑌)) ∩ (𝑋 × 𝑌)) |
110 | | simplrr 775 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌))) |
111 | 110 | ineq1d 4145 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑅 ∩ (𝑌 × 𝑌)) = (((𝑊‘𝑋) ∩ (𝑋 × 𝑌)) ∩ (𝑌 × 𝑌))) |
112 | 86 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑅 ⊆ (𝑌 × 𝑌)) |
113 | | df-ss 3904 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑅 ⊆ (𝑌 × 𝑌) ↔ (𝑅 ∩ (𝑌 × 𝑌)) = 𝑅) |
114 | 112, 113 | sylib 217 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑅 ∩ (𝑌 × 𝑌)) = 𝑅) |
115 | 111, 114 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (((𝑊‘𝑋) ∩ (𝑋 × 𝑌)) ∩ (𝑌 × 𝑌)) = 𝑅) |
116 | | inss2 4163 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑊‘𝑋) ∩ (𝑌 × 𝑌)) ⊆ (𝑌 × 𝑌) |
117 | | xpss1 5608 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑌 ⊆ 𝑋 → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑌)) |
118 | 97, 117 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑌)) |
119 | 116, 118 | sstrid 3932 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → ((𝑊‘𝑋) ∩ (𝑌 × 𝑌)) ⊆ (𝑋 × 𝑌)) |
120 | | df-ss 3904 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑊‘𝑋) ∩ (𝑌 × 𝑌)) ⊆ (𝑋 × 𝑌) ↔ (((𝑊‘𝑋) ∩ (𝑌 × 𝑌)) ∩ (𝑋 × 𝑌)) = ((𝑊‘𝑋) ∩ (𝑌 × 𝑌))) |
121 | 119, 120 | sylib 217 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (((𝑊‘𝑋) ∩ (𝑌 × 𝑌)) ∩ (𝑋 × 𝑌)) = ((𝑊‘𝑋) ∩ (𝑌 × 𝑌))) |
122 | 109, 115,
121 | 3eqtr3a 2802 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑅 = ((𝑊‘𝑋) ∩ (𝑌 × 𝑌))) |
123 | 108 | sqxpeqd 5621 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑌 × 𝑌) = ((◡(𝑊‘𝑋) “ {𝑧}) × (◡(𝑊‘𝑋) “ {𝑧}))) |
124 | 123 | ineq2d 4146 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → ((𝑊‘𝑋) ∩ (𝑌 × 𝑌)) = ((𝑊‘𝑋) ∩ ((◡(𝑊‘𝑋) “ {𝑧}) × (◡(𝑊‘𝑋) “ {𝑧})))) |
125 | 122, 124 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑅 = ((𝑊‘𝑋) ∩ ((◡(𝑊‘𝑋) “ {𝑧}) × (◡(𝑊‘𝑋) “ {𝑧})))) |
126 | 108, 125 | oveq12d 7293 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑌𝐹𝑅) = ((◡(𝑊‘𝑋) “ {𝑧})𝐹((𝑊‘𝑋) ∩ ((◡(𝑊‘𝑋) “ {𝑧}) × (◡(𝑊‘𝑋) “ {𝑧}))))) |
127 | 18 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝐴 ∈ 𝑉) |
128 | 22 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑋𝑊(𝑊‘𝑋)) |
129 | 128 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → 𝑋𝑊(𝑊‘𝑋)) |
130 | 1, 127, 129 | fpwwe2lem3 10389 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) ∧ 𝑧 ∈ 𝑋) → ((◡(𝑊‘𝑋) “ {𝑧})𝐹((𝑊‘𝑋) ∩ ((◡(𝑊‘𝑋) “ {𝑧}) × (◡(𝑊‘𝑋) “ {𝑧})))) = 𝑧) |
131 | 73, 130 | mpdan 684 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → ((◡(𝑊‘𝑋) “ {𝑧})𝐹((𝑊‘𝑋) ∩ ((◡(𝑊‘𝑋) “ {𝑧}) × (◡(𝑊‘𝑋) “ {𝑧})))) = 𝑧) |
132 | 126, 131 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → (𝑌𝐹𝑅) = 𝑧) |
133 | 132, 62 | eqneltrd 2858 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) ∧ (𝑧 ∈ (𝑋 ∖ 𝑌) ∧ (◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌)) → ¬ (𝑌𝐹𝑅) ∈ 𝑌) |
134 | 133 | rexlimdvaa 3214 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (∃𝑧 ∈ (𝑋 ∖ 𝑌)(◡(𝑊‘𝑋) “ {𝑧}) ⊆ 𝑌 → ¬ (𝑌𝐹𝑅) ∈ 𝑌)) |
135 | 60, 134 | sylbid 239 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (∃𝑧 ∈ (𝑋 ∖ 𝑌)∀𝑤 ∈ (𝑋 ∖ 𝑌) ¬ 𝑤(𝑊‘𝑋)𝑧 → ¬ (𝑌𝐹𝑅) ∈ 𝑌)) |
136 | 37, 135 | syld 47 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑋 ∖ 𝑌) ≠ ∅ → ¬ (𝑌𝐹𝑅) ∈ 𝑌)) |
137 | 136 | necon4ad 2962 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → ((𝑌𝐹𝑅) ∈ 𝑌 → (𝑋 ∖ 𝑌) = ∅)) |
138 | 16, 137 | mpd 15 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → (𝑋 ∖ 𝑌) = ∅) |
139 | | ssdif0 4297 |
. . . . . . . 8
⊢ (𝑋 ⊆ 𝑌 ↔ (𝑋 ∖ 𝑌) = ∅) |
140 | 138, 139 | sylibr 233 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌)))) → 𝑋 ⊆ 𝑌) |
141 | 140 | ex 413 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → ((𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌))) → 𝑋 ⊆ 𝑌)) |
142 | 3 | adantlr 712 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
143 | | simprl 768 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑌𝑊𝑅) |
144 | 1, 17, 142, 128, 143 | fpwwe2lem9 10395 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → ((𝑋 ⊆ 𝑌 ∧ (𝑊‘𝑋) = (𝑅 ∩ (𝑌 × 𝑋))) ∨ (𝑌 ⊆ 𝑋 ∧ 𝑅 = ((𝑊‘𝑋) ∩ (𝑋 × 𝑌))))) |
145 | 15, 141, 144 | mpjaod 857 |
. . . . 5
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑋 ⊆ 𝑌) |
146 | 13, 145 | eqssd 3938 |
. . . 4
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑌 = 𝑋) |
147 | 6 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → Fun 𝑊) |
148 | 146, 143 | eqbrtrrd 5098 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑋𝑊𝑅) |
149 | | funbrfv 6820 |
. . . . . 6
⊢ (Fun
𝑊 → (𝑋𝑊𝑅 → (𝑊‘𝑋) = 𝑅)) |
150 | 147, 148,
149 | sylc 65 |
. . . . 5
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → (𝑊‘𝑋) = 𝑅) |
151 | 150 | eqcomd 2744 |
. . . 4
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → 𝑅 = (𝑊‘𝑋)) |
152 | 146, 151 | jca 512 |
. . 3
⊢ ((𝜑 ∧ (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌)) → (𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋))) |
153 | 152 | ex 413 |
. 2
⊢ (𝜑 → ((𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌) → (𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋)))) |
154 | 1, 2, 3, 4 | fpwwe2lem12 10398 |
. . . 4
⊢ (𝜑 → (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) |
155 | 22, 154 | jca 512 |
. . 3
⊢ (𝜑 → (𝑋𝑊(𝑊‘𝑋) ∧ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋)) |
156 | | breq12 5079 |
. . . 4
⊢ ((𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋)) → (𝑌𝑊𝑅 ↔ 𝑋𝑊(𝑊‘𝑋))) |
157 | | oveq12 7284 |
. . . . 5
⊢ ((𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋)) → (𝑌𝐹𝑅) = (𝑋𝐹(𝑊‘𝑋))) |
158 | | simpl 483 |
. . . . 5
⊢ ((𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋)) → 𝑌 = 𝑋) |
159 | 157, 158 | eleq12d 2833 |
. . . 4
⊢ ((𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋)) → ((𝑌𝐹𝑅) ∈ 𝑌 ↔ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋)) |
160 | 156, 159 | anbi12d 631 |
. . 3
⊢ ((𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋)) → ((𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌) ↔ (𝑋𝑊(𝑊‘𝑋) ∧ (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋))) |
161 | 155, 160 | syl5ibrcom 246 |
. 2
⊢ (𝜑 → ((𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋)) → (𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌))) |
162 | 153, 161 | impbid 211 |
1
⊢ (𝜑 → ((𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌) ↔ (𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋)))) |