![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad5ant13 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
Ref | Expression |
---|---|
ad5ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad5ant13 | ⊢ (((((𝜑 ∧ 𝜃) ∧ 𝜓) ∧ 𝜏) ∧ 𝜂) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad5ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantlr 714 | . 2 ⊢ (((𝜑 ∧ 𝜃) ∧ 𝜓) → 𝜒) |
3 | 2 | ad2antrr 725 | 1 ⊢ (((((𝜑 ∧ 𝜃) ∧ 𝜓) ∧ 𝜏) ∧ 𝜂) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: natpropd 18046 ghmcmn 19873 ustuqtop2 24272 tocyccntz 33137 lmhmqusker 33410 dfufd2lem 33542 matunitlindflem1 37576 supxrgelem 45252 xrralrecnnle 45298 limsupvaluz2 45659 supcnvlimsup 45661 meaiuninc3v 46405 smfaddlem1 46684 smflimlem4 46695 |
Copyright terms: Public domain | W3C validator |