MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad5ant13 Structured version   Visualization version   GIF version

Theorem ad5ant13 757
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad5ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad5ant13 (((((𝜑𝜃) ∧ 𝜓) ∧ 𝜏) ∧ 𝜂) → 𝜒)

Proof of Theorem ad5ant13
StepHypRef Expression
1 ad5ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantlr 715 . 2 (((𝜑𝜃) ∧ 𝜓) → 𝜒)
32ad2antrr 726 1 (((((𝜑𝜃) ∧ 𝜓) ∧ 𝜏) ∧ 𝜂) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400
This theorem is referenced by:  natpropd  17513  ghmcmn  19245  ustuqtop2  23167  tocyccntz  31157  matunitlindflem1  35540  supxrgelem  42582  xrralrecnnle  42628  limsupvaluz2  42985  supcnvlimsup  42987  meaiuninc3v  43728  smfaddlem1  44001  smflimlem4  44012
  Copyright terms: Public domain W3C validator