MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1bdd2 Structured version   Visualization version   GIF version

Theorem lo1bdd2 15161
Description: If an eventually bounded function is bounded on every interval 𝐴 ∩ (-∞, 𝑦) by a function 𝑀(𝑦), then the function is bounded on the whole domain. (Contributed by Mario Carneiro, 9-Apr-2016.)
Hypotheses
Ref Expression
lo1bdd2.1 (𝜑𝐴 ⊆ ℝ)
lo1bdd2.2 (𝜑𝐶 ∈ ℝ)
lo1bdd2.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
lo1bdd2.4 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
lo1bdd2.5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) → 𝑀 ∈ ℝ)
lo1bdd2.6 (((𝜑𝑥𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶𝑦) ∧ 𝑥 < 𝑦)) → 𝐵𝑀)
Assertion
Ref Expression
lo1bdd2 (𝜑 → ∃𝑚 ∈ ℝ ∀𝑥𝐴 𝐵𝑚)
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑦   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦   𝑚,𝑀,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐵(𝑥)   𝐶(𝑚)   𝑀(𝑦)

Proof of Theorem lo1bdd2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 lo1bdd2.4 . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
2 lo1bdd2.1 . . . 4 (𝜑𝐴 ⊆ ℝ)
3 lo1bdd2.3 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
4 lo1bdd2.2 . . . 4 (𝜑𝐶 ∈ ℝ)
52, 3, 4ello1mpt2 15159 . . 3 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ (𝐶[,)+∞)∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛)))
61, 5mpbid 231 . 2 (𝜑 → ∃𝑦 ∈ (𝐶[,)+∞)∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛))
7 elicopnf 13106 . . . . . . . . . . 11 (𝐶 ∈ ℝ → (𝑦 ∈ (𝐶[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝐶𝑦)))
84, 7syl 17 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝐶[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝐶𝑦)))
98biimpa 476 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐶[,)+∞)) → (𝑦 ∈ ℝ ∧ 𝐶𝑦))
10 lo1bdd2.5 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) → 𝑀 ∈ ℝ)
119, 10syldan 590 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐶[,)+∞)) → 𝑀 ∈ ℝ)
1211ad2antrr 722 . . . . . . 7 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ (𝑛 ∈ ℝ ∧ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛))) ∧ 𝑛𝑀) → 𝑀 ∈ ℝ)
13 simplrl 773 . . . . . . 7 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ (𝑛 ∈ ℝ ∧ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛))) ∧ ¬ 𝑛𝑀) → 𝑛 ∈ ℝ)
1412, 13ifclda 4491 . . . . . 6 (((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ (𝑛 ∈ ℝ ∧ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛))) → if(𝑛𝑀, 𝑀, 𝑛) ∈ ℝ)
152ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) → 𝐴 ⊆ ℝ)
1615sselda 3917 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
179simpld 494 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐶[,)+∞)) → 𝑦 ∈ ℝ)
1817ad2antrr 722 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
1916, 18ltnled 11052 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
20 lo1bdd2.6 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶𝑦) ∧ 𝑥 < 𝑦)) → 𝐵𝑀)
2120expr 456 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) → (𝑥 < 𝑦𝐵𝑀))
2221an32s 648 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) ∧ 𝑥𝐴) → (𝑥 < 𝑦𝐵𝑀))
239, 22syldanl 601 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑥𝐴) → (𝑥 < 𝑦𝐵𝑀))
2423adantlr 711 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝑥 < 𝑦𝐵𝑀))
25 simplr 765 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑛 ∈ ℝ)
2611ad2antrr 722 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑀 ∈ ℝ)
27 max2 12850 . . . . . . . . . . . . 13 ((𝑛 ∈ ℝ ∧ 𝑀 ∈ ℝ) → 𝑀 ≤ if(𝑛𝑀, 𝑀, 𝑛))
2825, 26, 27syl2anc 583 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑀 ≤ if(𝑛𝑀, 𝑀, 𝑛))
293ad4ant14 748 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
3011ad5ant12 752 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑛𝑀) → 𝑀 ∈ ℝ)
31 simpllr 772 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) ∧ ¬ 𝑛𝑀) → 𝑛 ∈ ℝ)
3230, 31ifclda 4491 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → if(𝑛𝑀, 𝑀, 𝑛) ∈ ℝ)
33 letr 10999 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ if(𝑛𝑀, 𝑀, 𝑛) ∈ ℝ) → ((𝐵𝑀𝑀 ≤ if(𝑛𝑀, 𝑀, 𝑛)) → 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
3429, 26, 32, 33syl3anc 1369 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐵𝑀𝑀 ≤ if(𝑛𝑀, 𝑀, 𝑛)) → 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
3528, 34mpan2d 690 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝐵𝑀𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
3624, 35syld 47 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝑥 < 𝑦𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
3719, 36sylbird 259 . . . . . . . . 9 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (¬ 𝑦𝑥𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
38 max1 12848 . . . . . . . . . . 11 ((𝑛 ∈ ℝ ∧ 𝑀 ∈ ℝ) → 𝑛 ≤ if(𝑛𝑀, 𝑀, 𝑛))
3925, 26, 38syl2anc 583 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑛 ≤ if(𝑛𝑀, 𝑀, 𝑛))
40 letr 10999 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ if(𝑛𝑀, 𝑀, 𝑛) ∈ ℝ) → ((𝐵𝑛𝑛 ≤ if(𝑛𝑀, 𝑀, 𝑛)) → 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
4129, 25, 32, 40syl3anc 1369 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐵𝑛𝑛 ≤ if(𝑛𝑀, 𝑀, 𝑛)) → 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
4239, 41mpan2d 690 . . . . . . . . 9 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝐵𝑛𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
4337, 42jad 187 . . . . . . . 8 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑦𝑥𝐵𝑛) → 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
4443ralimdva 3102 . . . . . . 7 (((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) → (∀𝑥𝐴 (𝑦𝑥𝐵𝑛) → ∀𝑥𝐴 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
4544impr 454 . . . . . 6 (((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ (𝑛 ∈ ℝ ∧ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛))) → ∀𝑥𝐴 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛))
46 brralrspcev 5130 . . . . . 6 ((if(𝑛𝑀, 𝑀, 𝑛) ∈ ℝ ∧ ∀𝑥𝐴 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)) → ∃𝑚 ∈ ℝ ∀𝑥𝐴 𝐵𝑚)
4714, 45, 46syl2anc 583 . . . . 5 (((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ (𝑛 ∈ ℝ ∧ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛))) → ∃𝑚 ∈ ℝ ∀𝑥𝐴 𝐵𝑚)
4847expr 456 . . . 4 (((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) → (∀𝑥𝐴 (𝑦𝑥𝐵𝑛) → ∃𝑚 ∈ ℝ ∀𝑥𝐴 𝐵𝑚))
4948rexlimdva 3212 . . 3 ((𝜑𝑦 ∈ (𝐶[,)+∞)) → (∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛) → ∃𝑚 ∈ ℝ ∀𝑥𝐴 𝐵𝑚))
5049rexlimdva 3212 . 2 (𝜑 → (∃𝑦 ∈ (𝐶[,)+∞)∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛) → ∃𝑚 ∈ ℝ ∀𝑥𝐴 𝐵𝑚))
516, 50mpd 15 1 (𝜑 → ∃𝑚 ∈ ℝ ∀𝑥𝐴 𝐵𝑚)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wcel 2108  wral 3063  wrex 3064  wss 3883  ifcif 4456   class class class wbr 5070  cmpt 5153  (class class class)co 7255  cr 10801  +∞cpnf 10937   < clt 10940  cle 10941  [,)cico 13010  ≤𝑂(1)clo1 15124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-ico 13014  df-lo1 15128
This theorem is referenced by:  lo1bddrp  15162  o1bdd2  15178
  Copyright terms: Public domain W3C validator