| Step | Hyp | Ref
| Expression |
| 1 | | lo1bdd2.4 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1)) |
| 2 | | lo1bdd2.1 |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 3 | | lo1bdd2.3 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 4 | | lo1bdd2.2 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 5 | 2, 3, 4 | ello1mpt2 15558 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ ≤𝑂(1) ↔
∃𝑦 ∈ (𝐶[,)+∞)∃𝑛 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛))) |
| 6 | 1, 5 | mpbid 232 |
. 2
⊢ (𝜑 → ∃𝑦 ∈ (𝐶[,)+∞)∃𝑛 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛)) |
| 7 | | elicopnf 13485 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ ℝ → (𝑦 ∈ (𝐶[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦))) |
| 8 | 4, 7 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ (𝐶[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦))) |
| 9 | 8 | biimpa 476 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) → (𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦)) |
| 10 | | lo1bdd2.5 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦)) → 𝑀 ∈ ℝ) |
| 11 | 9, 10 | syldan 591 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) → 𝑀 ∈ ℝ) |
| 12 | 11 | ad2antrr 726 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) ∧ (𝑛 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛))) ∧ 𝑛 ≤ 𝑀) → 𝑀 ∈ ℝ) |
| 13 | | simplrl 777 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) ∧ (𝑛 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛))) ∧ ¬ 𝑛 ≤ 𝑀) → 𝑛 ∈ ℝ) |
| 14 | 12, 13 | ifclda 4561 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) ∧ (𝑛 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛))) → if(𝑛 ≤ 𝑀, 𝑀, 𝑛) ∈ ℝ) |
| 15 | 2 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) → 𝐴 ⊆ ℝ) |
| 16 | 15 | sselda 3983 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
| 17 | 9 | simpld 494 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) → 𝑦 ∈ ℝ) |
| 18 | 17 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ ℝ) |
| 19 | 16, 18 | ltnled 11408 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (𝑥 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑥)) |
| 20 | | lo1bdd2.6 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝐵 ≤ 𝑀) |
| 21 | 20 | expr 456 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦)) → (𝑥 < 𝑦 → 𝐵 ≤ 𝑀)) |
| 22 | 21 | an32s 652 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦)) ∧ 𝑥 ∈ 𝐴) → (𝑥 < 𝑦 → 𝐵 ≤ 𝑀)) |
| 23 | 9, 22 | syldanl 602 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑥 ∈ 𝐴) → (𝑥 < 𝑦 → 𝐵 ≤ 𝑀)) |
| 24 | 23 | adantlr 715 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (𝑥 < 𝑦 → 𝐵 ≤ 𝑀)) |
| 25 | | simplr 769 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝑛 ∈ ℝ) |
| 26 | 11 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝑀 ∈ ℝ) |
| 27 | | max2 13229 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℝ ∧ 𝑀 ∈ ℝ) → 𝑀 ≤ if(𝑛 ≤ 𝑀, 𝑀, 𝑛)) |
| 28 | 25, 26, 27 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝑀 ≤ if(𝑛 ≤ 𝑀, 𝑀, 𝑛)) |
| 29 | 3 | ad4ant14 752 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 30 | 11 | ad5ant12 756 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ≤ 𝑀) → 𝑀 ∈ ℝ) |
| 31 | | simpllr 776 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝑛 ≤ 𝑀) → 𝑛 ∈ ℝ) |
| 32 | 30, 31 | ifclda 4561 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → if(𝑛 ≤ 𝑀, 𝑀, 𝑛) ∈ ℝ) |
| 33 | | letr 11355 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ if(𝑛 ≤ 𝑀, 𝑀, 𝑛) ∈ ℝ) → ((𝐵 ≤ 𝑀 ∧ 𝑀 ≤ if(𝑛 ≤ 𝑀, 𝑀, 𝑛)) → 𝐵 ≤ if(𝑛 ≤ 𝑀, 𝑀, 𝑛))) |
| 34 | 29, 26, 32, 33 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((𝐵 ≤ 𝑀 ∧ 𝑀 ≤ if(𝑛 ≤ 𝑀, 𝑀, 𝑛)) → 𝐵 ≤ if(𝑛 ≤ 𝑀, 𝑀, 𝑛))) |
| 35 | 28, 34 | mpan2d 694 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (𝐵 ≤ 𝑀 → 𝐵 ≤ if(𝑛 ≤ 𝑀, 𝑀, 𝑛))) |
| 36 | 24, 35 | syld 47 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (𝑥 < 𝑦 → 𝐵 ≤ if(𝑛 ≤ 𝑀, 𝑀, 𝑛))) |
| 37 | 19, 36 | sylbird 260 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (¬ 𝑦 ≤ 𝑥 → 𝐵 ≤ if(𝑛 ≤ 𝑀, 𝑀, 𝑛))) |
| 38 | | max1 13227 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℝ ∧ 𝑀 ∈ ℝ) → 𝑛 ≤ if(𝑛 ≤ 𝑀, 𝑀, 𝑛)) |
| 39 | 25, 26, 38 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝑛 ≤ if(𝑛 ≤ 𝑀, 𝑀, 𝑛)) |
| 40 | | letr 11355 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ if(𝑛 ≤ 𝑀, 𝑀, 𝑛) ∈ ℝ) → ((𝐵 ≤ 𝑛 ∧ 𝑛 ≤ if(𝑛 ≤ 𝑀, 𝑀, 𝑛)) → 𝐵 ≤ if(𝑛 ≤ 𝑀, 𝑀, 𝑛))) |
| 41 | 29, 25, 32, 40 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((𝐵 ≤ 𝑛 ∧ 𝑛 ≤ if(𝑛 ≤ 𝑀, 𝑀, 𝑛)) → 𝐵 ≤ if(𝑛 ≤ 𝑀, 𝑀, 𝑛))) |
| 42 | 39, 41 | mpan2d 694 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → (𝐵 ≤ 𝑛 → 𝐵 ≤ if(𝑛 ≤ 𝑀, 𝑀, 𝑛))) |
| 43 | 37, 42 | jad 187 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → ((𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛) → 𝐵 ≤ if(𝑛 ≤ 𝑀, 𝑀, 𝑛))) |
| 44 | 43 | ralimdva 3167 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) → (∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛) → ∀𝑥 ∈ 𝐴 𝐵 ≤ if(𝑛 ≤ 𝑀, 𝑀, 𝑛))) |
| 45 | 44 | impr 454 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) ∧ (𝑛 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛))) → ∀𝑥 ∈ 𝐴 𝐵 ≤ if(𝑛 ≤ 𝑀, 𝑀, 𝑛)) |
| 46 | | brralrspcev 5203 |
. . . . . 6
⊢
((if(𝑛 ≤ 𝑀, 𝑀, 𝑛) ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ if(𝑛 ≤ 𝑀, 𝑀, 𝑛)) → ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚) |
| 47 | 14, 45, 46 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) ∧ (𝑛 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛))) → ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚) |
| 48 | 47 | expr 456 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) → (∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛) → ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚)) |
| 49 | 48 | rexlimdva 3155 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐶[,)+∞)) → (∃𝑛 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛) → ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚)) |
| 50 | 49 | rexlimdva 3155 |
. 2
⊢ (𝜑 → (∃𝑦 ∈ (𝐶[,)+∞)∃𝑛 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛) → ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚)) |
| 51 | 6, 50 | mpd 15 |
1
⊢ (𝜑 → ∃𝑚 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑚) |