MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1bdd2 Structured version   Visualization version   GIF version

Theorem lo1bdd2 15570
Description: If an eventually bounded function is bounded on every interval 𝐴 ∩ (-∞, 𝑦) by a function 𝑀(𝑦), then the function is bounded on the whole domain. (Contributed by Mario Carneiro, 9-Apr-2016.)
Hypotheses
Ref Expression
lo1bdd2.1 (𝜑𝐴 ⊆ ℝ)
lo1bdd2.2 (𝜑𝐶 ∈ ℝ)
lo1bdd2.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
lo1bdd2.4 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
lo1bdd2.5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) → 𝑀 ∈ ℝ)
lo1bdd2.6 (((𝜑𝑥𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶𝑦) ∧ 𝑥 < 𝑦)) → 𝐵𝑀)
Assertion
Ref Expression
lo1bdd2 (𝜑 → ∃𝑚 ∈ ℝ ∀𝑥𝐴 𝐵𝑚)
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑦   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦   𝑚,𝑀,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐵(𝑥)   𝐶(𝑚)   𝑀(𝑦)

Proof of Theorem lo1bdd2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 lo1bdd2.4 . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
2 lo1bdd2.1 . . . 4 (𝜑𝐴 ⊆ ℝ)
3 lo1bdd2.3 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
4 lo1bdd2.2 . . . 4 (𝜑𝐶 ∈ ℝ)
52, 3, 4ello1mpt2 15568 . . 3 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ (𝐶[,)+∞)∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛)))
61, 5mpbid 232 . 2 (𝜑 → ∃𝑦 ∈ (𝐶[,)+∞)∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛))
7 elicopnf 13505 . . . . . . . . . . 11 (𝐶 ∈ ℝ → (𝑦 ∈ (𝐶[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝐶𝑦)))
84, 7syl 17 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (𝐶[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝐶𝑦)))
98biimpa 476 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐶[,)+∞)) → (𝑦 ∈ ℝ ∧ 𝐶𝑦))
10 lo1bdd2.5 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) → 𝑀 ∈ ℝ)
119, 10syldan 590 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐶[,)+∞)) → 𝑀 ∈ ℝ)
1211ad2antrr 725 . . . . . . 7 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ (𝑛 ∈ ℝ ∧ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛))) ∧ 𝑛𝑀) → 𝑀 ∈ ℝ)
13 simplrl 776 . . . . . . 7 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ (𝑛 ∈ ℝ ∧ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛))) ∧ ¬ 𝑛𝑀) → 𝑛 ∈ ℝ)
1412, 13ifclda 4583 . . . . . 6 (((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ (𝑛 ∈ ℝ ∧ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛))) → if(𝑛𝑀, 𝑀, 𝑛) ∈ ℝ)
152ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) → 𝐴 ⊆ ℝ)
1615sselda 4008 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
179simpld 494 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐶[,)+∞)) → 𝑦 ∈ ℝ)
1817ad2antrr 725 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
1916, 18ltnled 11437 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
20 lo1bdd2.6 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ ((𝑦 ∈ ℝ ∧ 𝐶𝑦) ∧ 𝑥 < 𝑦)) → 𝐵𝑀)
2120expr 456 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) → (𝑥 < 𝑦𝐵𝑀))
2221an32s 651 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝐶𝑦)) ∧ 𝑥𝐴) → (𝑥 < 𝑦𝐵𝑀))
239, 22syldanl 601 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑥𝐴) → (𝑥 < 𝑦𝐵𝑀))
2423adantlr 714 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝑥 < 𝑦𝐵𝑀))
25 simplr 768 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑛 ∈ ℝ)
2611ad2antrr 725 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑀 ∈ ℝ)
27 max2 13249 . . . . . . . . . . . . 13 ((𝑛 ∈ ℝ ∧ 𝑀 ∈ ℝ) → 𝑀 ≤ if(𝑛𝑀, 𝑀, 𝑛))
2825, 26, 27syl2anc 583 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑀 ≤ if(𝑛𝑀, 𝑀, 𝑛))
293ad4ant14 751 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
3011ad5ant12 755 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) ∧ 𝑛𝑀) → 𝑀 ∈ ℝ)
31 simpllr 775 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) ∧ ¬ 𝑛𝑀) → 𝑛 ∈ ℝ)
3230, 31ifclda 4583 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → if(𝑛𝑀, 𝑀, 𝑛) ∈ ℝ)
33 letr 11384 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ if(𝑛𝑀, 𝑀, 𝑛) ∈ ℝ) → ((𝐵𝑀𝑀 ≤ if(𝑛𝑀, 𝑀, 𝑛)) → 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
3429, 26, 32, 33syl3anc 1371 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐵𝑀𝑀 ≤ if(𝑛𝑀, 𝑀, 𝑛)) → 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
3528, 34mpan2d 693 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝐵𝑀𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
3624, 35syld 47 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝑥 < 𝑦𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
3719, 36sylbird 260 . . . . . . . . 9 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (¬ 𝑦𝑥𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
38 max1 13247 . . . . . . . . . . 11 ((𝑛 ∈ ℝ ∧ 𝑀 ∈ ℝ) → 𝑛 ≤ if(𝑛𝑀, 𝑀, 𝑛))
3925, 26, 38syl2anc 583 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → 𝑛 ≤ if(𝑛𝑀, 𝑀, 𝑛))
40 letr 11384 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ if(𝑛𝑀, 𝑀, 𝑛) ∈ ℝ) → ((𝐵𝑛𝑛 ≤ if(𝑛𝑀, 𝑀, 𝑛)) → 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
4129, 25, 32, 40syl3anc 1371 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐵𝑛𝑛 ≤ if(𝑛𝑀, 𝑀, 𝑛)) → 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
4239, 41mpan2d 693 . . . . . . . . 9 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → (𝐵𝑛𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
4337, 42jad 187 . . . . . . . 8 ((((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑦𝑥𝐵𝑛) → 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
4443ralimdva 3173 . . . . . . 7 (((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) → (∀𝑥𝐴 (𝑦𝑥𝐵𝑛) → ∀𝑥𝐴 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)))
4544impr 454 . . . . . 6 (((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ (𝑛 ∈ ℝ ∧ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛))) → ∀𝑥𝐴 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛))
46 brralrspcev 5226 . . . . . 6 ((if(𝑛𝑀, 𝑀, 𝑛) ∈ ℝ ∧ ∀𝑥𝐴 𝐵 ≤ if(𝑛𝑀, 𝑀, 𝑛)) → ∃𝑚 ∈ ℝ ∀𝑥𝐴 𝐵𝑚)
4714, 45, 46syl2anc 583 . . . . 5 (((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ (𝑛 ∈ ℝ ∧ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛))) → ∃𝑚 ∈ ℝ ∀𝑥𝐴 𝐵𝑚)
4847expr 456 . . . 4 (((𝜑𝑦 ∈ (𝐶[,)+∞)) ∧ 𝑛 ∈ ℝ) → (∀𝑥𝐴 (𝑦𝑥𝐵𝑛) → ∃𝑚 ∈ ℝ ∀𝑥𝐴 𝐵𝑚))
4948rexlimdva 3161 . . 3 ((𝜑𝑦 ∈ (𝐶[,)+∞)) → (∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛) → ∃𝑚 ∈ ℝ ∀𝑥𝐴 𝐵𝑚))
5049rexlimdva 3161 . 2 (𝜑 → (∃𝑦 ∈ (𝐶[,)+∞)∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑛) → ∃𝑚 ∈ ℝ ∀𝑥𝐴 𝐵𝑚))
516, 50mpd 15 1 (𝜑 → ∃𝑚 ∈ ℝ ∀𝑥𝐴 𝐵𝑚)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2108  wral 3067  wrex 3076  wss 3976  ifcif 4548   class class class wbr 5166  cmpt 5249  (class class class)co 7448  cr 11183  +∞cpnf 11321   < clt 11324  cle 11325  [,)cico 13409  ≤𝑂(1)clo1 15533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-ico 13413  df-lo1 15537
This theorem is referenced by:  lo1bddrp  15571  o1bdd2  15587
  Copyright terms: Public domain W3C validator