MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perpneq Structured version   Visualization version   GIF version

Theorem perpneq 27656
Description: Two perpendicular lines are different. Theorem 8.14 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 18-Oct-2019.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
isperp.b (𝜑𝐵 ∈ ran 𝐿)
perpcom.1 (𝜑𝐴(⟂G‘𝐺)𝐵)
Assertion
Ref Expression
perpneq (𝜑𝐴𝐵)

Proof of Theorem perpneq
Dummy variables 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isperp.p . . . . . . 7 𝑃 = (Base‘𝐺)
2 isperp.i . . . . . . 7 𝐼 = (Itv‘𝐺)
3 isperp.l . . . . . . 7 𝐿 = (LineG‘𝐺)
4 isperp.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
54adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝐺 ∈ TarskiG)
65ad5antr 732 . . . . . . 7 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐺 ∈ TarskiG)
74ad5antr 732 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐺 ∈ TarskiG)
8 isperp.a . . . . . . . . . 10 (𝜑𝐴 ∈ ran 𝐿)
98ad5antr 732 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐴 ∈ ran 𝐿)
10 simpr 485 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝑥 ∈ (𝐴𝐵))
1110elin1d 4158 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝑥𝐴)
1211ad4antr 730 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑥𝐴)
131, 3, 2, 7, 9, 12tglnpt 27491 . . . . . . . 8 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑥𝑃)
1413adantl4r 753 . . . . . . 7 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑥𝑃)
15 isperp.b . . . . . . . . . 10 (𝜑𝐵 ∈ ran 𝐿)
1615ad5antr 732 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐵 ∈ ran 𝐿)
17 simplr 767 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑣𝐵)
181, 3, 2, 7, 16, 17tglnpt 27491 . . . . . . . 8 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑣𝑃)
1918adantl4r 753 . . . . . . 7 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑣𝑃)
20 simp-4r 782 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑢𝐴)
211, 3, 2, 7, 9, 20tglnpt 27491 . . . . . . . 8 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑢𝑃)
2221adantl4r 753 . . . . . . 7 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑢𝑃)
23 isperp.d . . . . . . . . 9 = (dist‘𝐺)
24 eqid 2736 . . . . . . . . 9 (pInvG‘𝐺) = (pInvG‘𝐺)
25 simp-4r 782 . . . . . . . . . 10 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑢𝐴)
26 simplr 767 . . . . . . . . . 10 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑣𝐵)
27 simp-5r 784 . . . . . . . . . 10 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺))
28 id 22 . . . . . . . . . . . . 13 (𝑦 = 𝑢𝑦 = 𝑢)
29 eqidd 2737 . . . . . . . . . . . . 13 (𝑦 = 𝑢𝑥 = 𝑥)
30 eqidd 2737 . . . . . . . . . . . . 13 (𝑦 = 𝑢𝑧 = 𝑧)
3128, 29, 30s3eqd 14753 . . . . . . . . . . . 12 (𝑦 = 𝑢 → ⟨“𝑦𝑥𝑧”⟩ = ⟨“𝑢𝑥𝑧”⟩)
3231eleq1d 2822 . . . . . . . . . . 11 (𝑦 = 𝑢 → (⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝑢𝑥𝑧”⟩ ∈ (∟G‘𝐺)))
33 eqidd 2737 . . . . . . . . . . . . 13 (𝑧 = 𝑣𝑢 = 𝑢)
34 eqidd 2737 . . . . . . . . . . . . 13 (𝑧 = 𝑣𝑥 = 𝑥)
35 id 22 . . . . . . . . . . . . 13 (𝑧 = 𝑣𝑧 = 𝑣)
3633, 34, 35s3eqd 14753 . . . . . . . . . . . 12 (𝑧 = 𝑣 → ⟨“𝑢𝑥𝑧”⟩ = ⟨“𝑢𝑥𝑣”⟩)
3736eleq1d 2822 . . . . . . . . . . 11 (𝑧 = 𝑣 → (⟨“𝑢𝑥𝑧”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
3832, 37rspc2va 3591 . . . . . . . . . 10 (((𝑢𝐴𝑣𝐵) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) → ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))
3925, 26, 27, 38syl21anc 836 . . . . . . . . 9 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))
40 simpllr 774 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑥𝑢)
4140necomd 2999 . . . . . . . . . 10 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑢𝑥)
4241adantl4r 753 . . . . . . . . 9 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑢𝑥)
43 simpr 485 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑥𝑣)
4443necomd 2999 . . . . . . . . . 10 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑣𝑥)
4544adantl4r 753 . . . . . . . . 9 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑣𝑥)
461, 23, 2, 3, 24, 6, 22, 14, 19, 39, 42, 45ragncol 27651 . . . . . . . 8 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → ¬ (𝑣 ∈ (𝑢𝐿𝑥) ∨ 𝑢 = 𝑥))
471, 3, 2, 6, 22, 14, 19, 46ncolrot2 27505 . . . . . . 7 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → ¬ (𝑥 ∈ (𝑣𝐿𝑢) ∨ 𝑣 = 𝑢))
481, 2, 3, 6, 14, 19, 22, 14, 47tglineneq 27586 . . . . . 6 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → (𝑥𝐿𝑣) ≠ (𝑢𝐿𝑥))
4948necomd 2999 . . . . 5 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → (𝑢𝐿𝑥) ≠ (𝑥𝐿𝑣))
501, 2, 3, 7, 21, 13, 41, 41, 9, 20, 12tglinethru 27578 . . . . . 6 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐴 = (𝑢𝐿𝑥))
5150adantl4r 753 . . . . 5 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐴 = (𝑢𝐿𝑥))
5210elin2d 4159 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝑥𝐵)
5352ad4antr 730 . . . . . . 7 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑥𝐵)
541, 2, 3, 7, 13, 18, 43, 43, 16, 53, 17tglinethru 27578 . . . . . 6 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐵 = (𝑥𝐿𝑣))
5554adantl4r 753 . . . . 5 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐵 = (𝑥𝐿𝑣))
5649, 51, 553netr4d 3021 . . . 4 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐴𝐵)
5715adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝐵 ∈ ran 𝐿)
581, 2, 3, 5, 57, 52tglnpt2 27583 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐵)) → ∃𝑣𝐵 𝑥𝑣)
5958ad5ant12 754 . . . 4 (((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) → ∃𝑣𝐵 𝑥𝑣)
6056, 59r19.29a 3159 . . 3 (((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) → 𝐴𝐵)
618adantr 481 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝐴 ∈ ran 𝐿)
621, 2, 3, 5, 61, 11tglnpt2 27583 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐵)) → ∃𝑢𝐴 𝑥𝑢)
6362adantr 481 . . 3 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) → ∃𝑢𝐴 𝑥𝑢)
6460, 63r19.29a 3159 . 2 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) → 𝐴𝐵)
65 perpcom.1 . . 3 (𝜑𝐴(⟂G‘𝐺)𝐵)
661, 23, 2, 3, 4, 8, 15isperp 27654 . . 3 (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∃𝑥 ∈ (𝐴𝐵)∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)))
6765, 66mpbid 231 . 2 (𝜑 → ∃𝑥 ∈ (𝐴𝐵)∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺))
6864, 67r19.29a 3159 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  cin 3909   class class class wbr 5105  ran crn 5634  cfv 6496  (class class class)co 7357  ⟨“cs3 14731  Basecbs 17083  distcds 17142  TarskiGcstrkg 27369  Itvcitv 27375  LineGclng 27376  pInvGcmir 27594  ∟Gcrag 27635  ⟂Gcperpg 27637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-concat 14459  df-s1 14484  df-s2 14737  df-s3 14738  df-trkgc 27390  df-trkgb 27391  df-trkgcb 27392  df-trkg 27395  df-cgrg 27453  df-mir 27595  df-rag 27636  df-perpg 27638
This theorem is referenced by:  isperp2  27657  footne  27665  lmieu  27726
  Copyright terms: Public domain W3C validator