MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perpneq Structured version   Visualization version   GIF version

Theorem perpneq 28693
Description: Two perpendicular lines are different. Theorem 8.14 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 18-Oct-2019.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
isperp.b (𝜑𝐵 ∈ ran 𝐿)
perpcom.1 (𝜑𝐴(⟂G‘𝐺)𝐵)
Assertion
Ref Expression
perpneq (𝜑𝐴𝐵)

Proof of Theorem perpneq
Dummy variables 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isperp.p . . . . . . 7 𝑃 = (Base‘𝐺)
2 isperp.i . . . . . . 7 𝐼 = (Itv‘𝐺)
3 isperp.l . . . . . . 7 𝐿 = (LineG‘𝐺)
4 isperp.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝐺 ∈ TarskiG)
65ad5antr 734 . . . . . . 7 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐺 ∈ TarskiG)
74ad5antr 734 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐺 ∈ TarskiG)
8 isperp.a . . . . . . . . . 10 (𝜑𝐴 ∈ ran 𝐿)
98ad5antr 734 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐴 ∈ ran 𝐿)
10 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝑥 ∈ (𝐴𝐵))
1110elin1d 4179 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝑥𝐴)
1211ad4antr 732 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑥𝐴)
131, 3, 2, 7, 9, 12tglnpt 28528 . . . . . . . 8 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑥𝑃)
1413adantl4r 755 . . . . . . 7 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑥𝑃)
15 isperp.b . . . . . . . . . 10 (𝜑𝐵 ∈ ran 𝐿)
1615ad5antr 734 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐵 ∈ ran 𝐿)
17 simplr 768 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑣𝐵)
181, 3, 2, 7, 16, 17tglnpt 28528 . . . . . . . 8 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑣𝑃)
1918adantl4r 755 . . . . . . 7 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑣𝑃)
20 simp-4r 783 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑢𝐴)
211, 3, 2, 7, 9, 20tglnpt 28528 . . . . . . . 8 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑢𝑃)
2221adantl4r 755 . . . . . . 7 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑢𝑃)
23 isperp.d . . . . . . . . 9 = (dist‘𝐺)
24 eqid 2735 . . . . . . . . 9 (pInvG‘𝐺) = (pInvG‘𝐺)
25 simp-4r 783 . . . . . . . . . 10 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑢𝐴)
26 simplr 768 . . . . . . . . . 10 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑣𝐵)
27 simp-5r 785 . . . . . . . . . 10 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺))
28 id 22 . . . . . . . . . . . . 13 (𝑦 = 𝑢𝑦 = 𝑢)
29 eqidd 2736 . . . . . . . . . . . . 13 (𝑦 = 𝑢𝑥 = 𝑥)
30 eqidd 2736 . . . . . . . . . . . . 13 (𝑦 = 𝑢𝑧 = 𝑧)
3128, 29, 30s3eqd 14883 . . . . . . . . . . . 12 (𝑦 = 𝑢 → ⟨“𝑦𝑥𝑧”⟩ = ⟨“𝑢𝑥𝑧”⟩)
3231eleq1d 2819 . . . . . . . . . . 11 (𝑦 = 𝑢 → (⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝑢𝑥𝑧”⟩ ∈ (∟G‘𝐺)))
33 eqidd 2736 . . . . . . . . . . . . 13 (𝑧 = 𝑣𝑢 = 𝑢)
34 eqidd 2736 . . . . . . . . . . . . 13 (𝑧 = 𝑣𝑥 = 𝑥)
35 id 22 . . . . . . . . . . . . 13 (𝑧 = 𝑣𝑧 = 𝑣)
3633, 34, 35s3eqd 14883 . . . . . . . . . . . 12 (𝑧 = 𝑣 → ⟨“𝑢𝑥𝑧”⟩ = ⟨“𝑢𝑥𝑣”⟩)
3736eleq1d 2819 . . . . . . . . . . 11 (𝑧 = 𝑣 → (⟨“𝑢𝑥𝑧”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
3832, 37rspc2va 3613 . . . . . . . . . 10 (((𝑢𝐴𝑣𝐵) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) → ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))
3925, 26, 27, 38syl21anc 837 . . . . . . . . 9 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))
40 simpllr 775 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑥𝑢)
4140necomd 2987 . . . . . . . . . 10 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑢𝑥)
4241adantl4r 755 . . . . . . . . 9 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑢𝑥)
43 simpr 484 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑥𝑣)
4443necomd 2987 . . . . . . . . . 10 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑣𝑥)
4544adantl4r 755 . . . . . . . . 9 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑣𝑥)
461, 23, 2, 3, 24, 6, 22, 14, 19, 39, 42, 45ragncol 28688 . . . . . . . 8 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → ¬ (𝑣 ∈ (𝑢𝐿𝑥) ∨ 𝑢 = 𝑥))
471, 3, 2, 6, 22, 14, 19, 46ncolrot2 28542 . . . . . . 7 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → ¬ (𝑥 ∈ (𝑣𝐿𝑢) ∨ 𝑣 = 𝑢))
481, 2, 3, 6, 14, 19, 22, 14, 47tglineneq 28623 . . . . . 6 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → (𝑥𝐿𝑣) ≠ (𝑢𝐿𝑥))
4948necomd 2987 . . . . 5 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → (𝑢𝐿𝑥) ≠ (𝑥𝐿𝑣))
501, 2, 3, 7, 21, 13, 41, 41, 9, 20, 12tglinethru 28615 . . . . . 6 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐴 = (𝑢𝐿𝑥))
5150adantl4r 755 . . . . 5 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐴 = (𝑢𝐿𝑥))
5210elin2d 4180 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝑥𝐵)
5352ad4antr 732 . . . . . . 7 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑥𝐵)
541, 2, 3, 7, 13, 18, 43, 43, 16, 53, 17tglinethru 28615 . . . . . 6 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐵 = (𝑥𝐿𝑣))
5554adantl4r 755 . . . . 5 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐵 = (𝑥𝐿𝑣))
5649, 51, 553netr4d 3009 . . . 4 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐴𝐵)
5715adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝐵 ∈ ran 𝐿)
581, 2, 3, 5, 57, 52tglnpt2 28620 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐵)) → ∃𝑣𝐵 𝑥𝑣)
5958ad3antrrr 730 . . . 4 (((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) → ∃𝑣𝐵 𝑥𝑣)
6056, 59r19.29a 3148 . . 3 (((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) → 𝐴𝐵)
618adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝐴 ∈ ran 𝐿)
621, 2, 3, 5, 61, 11tglnpt2 28620 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐵)) → ∃𝑢𝐴 𝑥𝑢)
6362adantr 480 . . 3 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) → ∃𝑢𝐴 𝑥𝑢)
6460, 63r19.29a 3148 . 2 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) → 𝐴𝐵)
65 perpcom.1 . . 3 (𝜑𝐴(⟂G‘𝐺)𝐵)
661, 23, 2, 3, 4, 8, 15isperp 28691 . . 3 (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∃𝑥 ∈ (𝐴𝐵)∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)))
6765, 66mpbid 232 . 2 (𝜑 → ∃𝑥 ∈ (𝐴𝐵)∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺))
6864, 67r19.29a 3148 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  cin 3925   class class class wbr 5119  ran crn 5655  cfv 6531  (class class class)co 7405  ⟨“cs3 14861  Basecbs 17228  distcds 17280  TarskiGcstrkg 28406  Itvcitv 28412  LineGclng 28413  pInvGcmir 28631  ∟Gcrag 28672  ⟂Gcperpg 28674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-concat 14589  df-s1 14614  df-s2 14867  df-s3 14868  df-trkgc 28427  df-trkgb 28428  df-trkgcb 28429  df-trkg 28432  df-cgrg 28490  df-mir 28632  df-rag 28673  df-perpg 28675
This theorem is referenced by:  isperp2  28694  footne  28702  lmieu  28763
  Copyright terms: Public domain W3C validator