MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perpneq Structured version   Visualization version   GIF version

Theorem perpneq 26511
Description: Two perpendicular lines are different. Theorem 8.14 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 18-Oct-2019.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
isperp.b (𝜑𝐵 ∈ ran 𝐿)
perpcom.1 (𝜑𝐴(⟂G‘𝐺)𝐵)
Assertion
Ref Expression
perpneq (𝜑𝐴𝐵)

Proof of Theorem perpneq
Dummy variables 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isperp.p . . . . . . 7 𝑃 = (Base‘𝐺)
2 isperp.i . . . . . . 7 𝐼 = (Itv‘𝐺)
3 isperp.l . . . . . . 7 𝐿 = (LineG‘𝐺)
4 isperp.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
54adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝐺 ∈ TarskiG)
65ad5antr 733 . . . . . . 7 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐺 ∈ TarskiG)
74ad5antr 733 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐺 ∈ TarskiG)
8 isperp.a . . . . . . . . . 10 (𝜑𝐴 ∈ ran 𝐿)
98ad5antr 733 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐴 ∈ ran 𝐿)
10 simpr 488 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝑥 ∈ (𝐴𝐵))
1110elin1d 4128 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝑥𝐴)
1211ad4antr 731 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑥𝐴)
131, 3, 2, 7, 9, 12tglnpt 26346 . . . . . . . 8 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑥𝑃)
1413adantl4r 754 . . . . . . 7 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑥𝑃)
15 isperp.b . . . . . . . . . 10 (𝜑𝐵 ∈ ran 𝐿)
1615ad5antr 733 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐵 ∈ ran 𝐿)
17 simplr 768 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑣𝐵)
181, 3, 2, 7, 16, 17tglnpt 26346 . . . . . . . 8 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑣𝑃)
1918adantl4r 754 . . . . . . 7 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑣𝑃)
20 simp-4r 783 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑢𝐴)
211, 3, 2, 7, 9, 20tglnpt 26346 . . . . . . . 8 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑢𝑃)
2221adantl4r 754 . . . . . . 7 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑢𝑃)
23 isperp.d . . . . . . . . 9 = (dist‘𝐺)
24 eqid 2801 . . . . . . . . 9 (pInvG‘𝐺) = (pInvG‘𝐺)
25 simp-4r 783 . . . . . . . . . 10 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑢𝐴)
26 simplr 768 . . . . . . . . . 10 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑣𝐵)
27 simp-5r 785 . . . . . . . . . 10 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺))
28 id 22 . . . . . . . . . . . . 13 (𝑦 = 𝑢𝑦 = 𝑢)
29 eqidd 2802 . . . . . . . . . . . . 13 (𝑦 = 𝑢𝑥 = 𝑥)
30 eqidd 2802 . . . . . . . . . . . . 13 (𝑦 = 𝑢𝑧 = 𝑧)
3128, 29, 30s3eqd 14221 . . . . . . . . . . . 12 (𝑦 = 𝑢 → ⟨“𝑦𝑥𝑧”⟩ = ⟨“𝑢𝑥𝑧”⟩)
3231eleq1d 2877 . . . . . . . . . . 11 (𝑦 = 𝑢 → (⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝑢𝑥𝑧”⟩ ∈ (∟G‘𝐺)))
33 eqidd 2802 . . . . . . . . . . . . 13 (𝑧 = 𝑣𝑢 = 𝑢)
34 eqidd 2802 . . . . . . . . . . . . 13 (𝑧 = 𝑣𝑥 = 𝑥)
35 id 22 . . . . . . . . . . . . 13 (𝑧 = 𝑣𝑧 = 𝑣)
3633, 34, 35s3eqd 14221 . . . . . . . . . . . 12 (𝑧 = 𝑣 → ⟨“𝑢𝑥𝑧”⟩ = ⟨“𝑢𝑥𝑣”⟩)
3736eleq1d 2877 . . . . . . . . . . 11 (𝑧 = 𝑣 → (⟨“𝑢𝑥𝑧”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
3832, 37rspc2va 3585 . . . . . . . . . 10 (((𝑢𝐴𝑣𝐵) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) → ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))
3925, 26, 27, 38syl21anc 836 . . . . . . . . 9 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))
40 simpllr 775 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑥𝑢)
4140necomd 3045 . . . . . . . . . 10 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑢𝑥)
4241adantl4r 754 . . . . . . . . 9 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑢𝑥)
43 simpr 488 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑥𝑣)
4443necomd 3045 . . . . . . . . . 10 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑣𝑥)
4544adantl4r 754 . . . . . . . . 9 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑣𝑥)
461, 23, 2, 3, 24, 6, 22, 14, 19, 39, 42, 45ragncol 26506 . . . . . . . 8 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → ¬ (𝑣 ∈ (𝑢𝐿𝑥) ∨ 𝑢 = 𝑥))
471, 3, 2, 6, 22, 14, 19, 46ncolrot2 26360 . . . . . . 7 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → ¬ (𝑥 ∈ (𝑣𝐿𝑢) ∨ 𝑣 = 𝑢))
481, 2, 3, 6, 14, 19, 22, 14, 47tglineneq 26441 . . . . . 6 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → (𝑥𝐿𝑣) ≠ (𝑢𝐿𝑥))
4948necomd 3045 . . . . 5 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → (𝑢𝐿𝑥) ≠ (𝑥𝐿𝑣))
501, 2, 3, 7, 21, 13, 41, 41, 9, 20, 12tglinethru 26433 . . . . . 6 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐴 = (𝑢𝐿𝑥))
5150adantl4r 754 . . . . 5 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐴 = (𝑢𝐿𝑥))
5210elin2d 4129 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝑥𝐵)
5352ad4antr 731 . . . . . . 7 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝑥𝐵)
541, 2, 3, 7, 13, 18, 43, 43, 16, 53, 17tglinethru 26433 . . . . . 6 ((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐵 = (𝑥𝐿𝑣))
5554adantl4r 754 . . . . 5 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐵 = (𝑥𝐿𝑣))
5649, 51, 553netr4d 3067 . . . 4 (((((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) ∧ 𝑣𝐵) ∧ 𝑥𝑣) → 𝐴𝐵)
5715adantr 484 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝐵 ∈ ran 𝐿)
581, 2, 3, 5, 57, 52tglnpt2 26438 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐵)) → ∃𝑣𝐵 𝑥𝑣)
5958ad5ant12 755 . . . 4 (((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) → ∃𝑣𝐵 𝑥𝑣)
6056, 59r19.29a 3251 . . 3 (((((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) ∧ 𝑢𝐴) ∧ 𝑥𝑢) → 𝐴𝐵)
618adantr 484 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝐴 ∈ ran 𝐿)
621, 2, 3, 5, 61, 11tglnpt2 26438 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐵)) → ∃𝑢𝐴 𝑥𝑢)
6362adantr 484 . . 3 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) → ∃𝑢𝐴 𝑥𝑢)
6460, 63r19.29a 3251 . 2 (((𝜑𝑥 ∈ (𝐴𝐵)) ∧ ∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)) → 𝐴𝐵)
65 perpcom.1 . . 3 (𝜑𝐴(⟂G‘𝐺)𝐵)
661, 23, 2, 3, 4, 8, 15isperp 26509 . . 3 (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∃𝑥 ∈ (𝐴𝐵)∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺)))
6765, 66mpbid 235 . 2 (𝜑 → ∃𝑥 ∈ (𝐴𝐵)∀𝑦𝐴𝑧𝐵 ⟨“𝑦𝑥𝑧”⟩ ∈ (∟G‘𝐺))
6864, 67r19.29a 3251 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112  wne 2990  wral 3109  wrex 3110  cin 3883   class class class wbr 5033  ran crn 5524  cfv 6328  (class class class)co 7139  ⟨“cs3 14199  Basecbs 16478  distcds 16569  TarskiGcstrkg 26227  Itvcitv 26233  LineGclng 26234  pInvGcmir 26449  ∟Gcrag 26490  ⟂Gcperpg 26492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-dju 9318  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-fz 12890  df-fzo 13033  df-hash 13691  df-word 13862  df-concat 13918  df-s1 13945  df-s2 14205  df-s3 14206  df-trkgc 26245  df-trkgb 26246  df-trkgcb 26247  df-trkg 26250  df-cgrg 26308  df-mir 26450  df-rag 26491  df-perpg 26493
This theorem is referenced by:  isperp2  26512  footne  26520  lmieu  26581
  Copyright terms: Public domain W3C validator