MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccatin1 Structured version   Visualization version   GIF version

Theorem swrdccatin1 14089
Description: The subword of a concatenation of two words within the first of the concatenated words. (Contributed by Alexander van der Vekens, 28-Mar-2018.)
Assertion
Ref Expression
swrdccatin1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))

Proof of Theorem swrdccatin1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7166 . . . . . 6 ((♯‘𝐴) = 0 → (0...(♯‘𝐴)) = (0...0))
21eleq2d 2900 . . . . 5 ((♯‘𝐴) = 0 → (𝑁 ∈ (0...(♯‘𝐴)) ↔ 𝑁 ∈ (0...0)))
3 elfz1eq 12921 . . . . . 6 (𝑁 ∈ (0...0) → 𝑁 = 0)
4 elfz1eq 12921 . . . . . . . 8 (𝑀 ∈ (0...0) → 𝑀 = 0)
5 swrd00 14008 . . . . . . . . . 10 ((𝐴 ++ 𝐵) substr ⟨0, 0⟩) = ∅
6 swrd00 14008 . . . . . . . . . 10 (𝐴 substr ⟨0, 0⟩) = ∅
75, 6eqtr4i 2849 . . . . . . . . 9 ((𝐴 ++ 𝐵) substr ⟨0, 0⟩) = (𝐴 substr ⟨0, 0⟩)
8 opeq1 4805 . . . . . . . . . 10 (𝑀 = 0 → ⟨𝑀, 0⟩ = ⟨0, 0⟩)
98oveq2d 7174 . . . . . . . . 9 (𝑀 = 0 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 0⟩) = ((𝐴 ++ 𝐵) substr ⟨0, 0⟩))
108oveq2d 7174 . . . . . . . . 9 (𝑀 = 0 → (𝐴 substr ⟨𝑀, 0⟩) = (𝐴 substr ⟨0, 0⟩))
117, 9, 103eqtr4a 2884 . . . . . . . 8 (𝑀 = 0 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 0⟩) = (𝐴 substr ⟨𝑀, 0⟩))
124, 11syl 17 . . . . . . 7 (𝑀 ∈ (0...0) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 0⟩) = (𝐴 substr ⟨𝑀, 0⟩))
13 oveq2 7166 . . . . . . . . 9 (𝑁 = 0 → (0...𝑁) = (0...0))
1413eleq2d 2900 . . . . . . . 8 (𝑁 = 0 → (𝑀 ∈ (0...𝑁) ↔ 𝑀 ∈ (0...0)))
15 opeq2 4806 . . . . . . . . . 10 (𝑁 = 0 → ⟨𝑀, 𝑁⟩ = ⟨𝑀, 0⟩)
1615oveq2d 7174 . . . . . . . . 9 (𝑁 = 0 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 ++ 𝐵) substr ⟨𝑀, 0⟩))
1715oveq2d 7174 . . . . . . . . 9 (𝑁 = 0 → (𝐴 substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 0⟩))
1816, 17eqeq12d 2839 . . . . . . . 8 (𝑁 = 0 → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩) ↔ ((𝐴 ++ 𝐵) substr ⟨𝑀, 0⟩) = (𝐴 substr ⟨𝑀, 0⟩)))
1914, 18imbi12d 347 . . . . . . 7 (𝑁 = 0 → ((𝑀 ∈ (0...𝑁) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)) ↔ (𝑀 ∈ (0...0) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 0⟩) = (𝐴 substr ⟨𝑀, 0⟩))))
2012, 19mpbiri 260 . . . . . 6 (𝑁 = 0 → (𝑀 ∈ (0...𝑁) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))
213, 20syl 17 . . . . 5 (𝑁 ∈ (0...0) → (𝑀 ∈ (0...𝑁) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))
222, 21syl6bi 255 . . . 4 ((♯‘𝐴) = 0 → (𝑁 ∈ (0...(♯‘𝐴)) → (𝑀 ∈ (0...𝑁) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩))))
2322impcomd 414 . . 3 ((♯‘𝐴) = 0 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))
2423adantl 484 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) = 0) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))
25 ccatcl 13928 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
2625ad2antrr 724 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
27 simprl 769 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) → 𝑀 ∈ (0...𝑁))
28 elfzelfzccat 13936 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(♯‘𝐴)) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))))
2928imp 409 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))))
3029ad2ant2rl 747 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))))
31 swrdvalfn 14015 . . . . 5 (((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
3226, 27, 30, 31syl3anc 1367 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
33 3anass 1091 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) ↔ (𝐴 ∈ Word 𝑉 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))))
3433simplbi2 503 . . . . . . 7 (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → (𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))))
3534ad2antrr 724 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → (𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))))
3635imp 409 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) → (𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))))
37 swrdvalfn 14015 . . . . 5 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → (𝐴 substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
3836, 37syl 17 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) → (𝐴 substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
39 simp-4l 781 . . . . . 6 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → 𝐴 ∈ Word 𝑉)
40 simp-4r 782 . . . . . 6 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → 𝐵 ∈ Word 𝑉)
41 elfznn0 13003 . . . . . . . . . 10 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℕ0)
42 nn0addcl 11935 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑘 + 𝑀) ∈ ℕ0)
4342expcom 416 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (𝑘 ∈ ℕ0 → (𝑘 + 𝑀) ∈ ℕ0))
4441, 43syl 17 . . . . . . . . 9 (𝑀 ∈ (0...𝑁) → (𝑘 ∈ ℕ0 → (𝑘 + 𝑀) ∈ ℕ0))
4544ad2antrl 726 . . . . . . . 8 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) → (𝑘 ∈ ℕ0 → (𝑘 + 𝑀) ∈ ℕ0))
46 elfzonn0 13085 . . . . . . . 8 (𝑘 ∈ (0..^(𝑁𝑀)) → 𝑘 ∈ ℕ0)
4745, 46impel 508 . . . . . . 7 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (𝑘 + 𝑀) ∈ ℕ0)
48 lencl 13885 . . . . . . . . . . 11 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
49 elnnne0 11914 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ ℕ ↔ ((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐴) ≠ 0))
5049simplbi2 503 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℕ0 → ((♯‘𝐴) ≠ 0 → (♯‘𝐴) ∈ ℕ))
5148, 50syl 17 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉 → ((♯‘𝐴) ≠ 0 → (♯‘𝐴) ∈ ℕ))
5251adantr 483 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘𝐴) ≠ 0 → (♯‘𝐴) ∈ ℕ))
5352imp 409 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) → (♯‘𝐴) ∈ ℕ)
5453ad2antrr 724 . . . . . . 7 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (♯‘𝐴) ∈ ℕ)
55 elfzo0 13081 . . . . . . . . 9 (𝑘 ∈ (0..^(𝑁𝑀)) ↔ (𝑘 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑘 < (𝑁𝑀)))
56 elfz2nn0 13001 . . . . . . . . . . . 12 (𝑁 ∈ (0...(♯‘𝐴)) ↔ (𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0𝑁 ≤ (♯‘𝐴)))
57 nn0re 11909 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
5857ad2antrl 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → 𝑘 ∈ ℝ)
59 nn0re 11909 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
6059ad2antll 727 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → 𝑀 ∈ ℝ)
61 nn0re 11909 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
6261ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → 𝑁 ∈ ℝ)
6358, 60, 62ltaddsubd 11242 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → ((𝑘 + 𝑀) < 𝑁𝑘 < (𝑁𝑀)))
64 nn0readdcl 11964 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑘 + 𝑀) ∈ ℝ)
6564adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → (𝑘 + 𝑀) ∈ ℝ)
66 nn0re 11909 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ∈ ℝ)
6766ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → (♯‘𝐴) ∈ ℝ)
68 ltletr 10734 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑘 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (♯‘𝐴) ∈ ℝ) → (((𝑘 + 𝑀) < 𝑁𝑁 ≤ (♯‘𝐴)) → (𝑘 + 𝑀) < (♯‘𝐴)))
6965, 62, 67, 68syl3anc 1367 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → (((𝑘 + 𝑀) < 𝑁𝑁 ≤ (♯‘𝐴)) → (𝑘 + 𝑀) < (♯‘𝐴)))
7069expd 418 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → ((𝑘 + 𝑀) < 𝑁 → (𝑁 ≤ (♯‘𝐴) → (𝑘 + 𝑀) < (♯‘𝐴))))
7163, 70sylbird 262 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → (𝑘 < (𝑁𝑀) → (𝑁 ≤ (♯‘𝐴) → (𝑘 + 𝑀) < (♯‘𝐴))))
7271ex 415 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) → ((𝑘 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑘 < (𝑁𝑀) → (𝑁 ≤ (♯‘𝐴) → (𝑘 + 𝑀) < (♯‘𝐴)))))
7372com24 95 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) → (𝑁 ≤ (♯‘𝐴) → (𝑘 < (𝑁𝑀) → ((𝑘 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑘 + 𝑀) < (♯‘𝐴)))))
74733impia 1113 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0𝑁 ≤ (♯‘𝐴)) → (𝑘 < (𝑁𝑀) → ((𝑘 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑘 + 𝑀) < (♯‘𝐴))))
7574com13 88 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑘 < (𝑁𝑀) → ((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0𝑁 ≤ (♯‘𝐴)) → (𝑘 + 𝑀) < (♯‘𝐴))))
7675impancom 454 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ0𝑘 < (𝑁𝑀)) → (𝑀 ∈ ℕ0 → ((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0𝑁 ≤ (♯‘𝐴)) → (𝑘 + 𝑀) < (♯‘𝐴))))
77763adant2 1127 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑘 < (𝑁𝑀)) → (𝑀 ∈ ℕ0 → ((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0𝑁 ≤ (♯‘𝐴)) → (𝑘 + 𝑀) < (♯‘𝐴))))
7877com13 88 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0𝑁 ≤ (♯‘𝐴)) → (𝑀 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑘 < (𝑁𝑀)) → (𝑘 + 𝑀) < (♯‘𝐴))))
7956, 78sylbi 219 . . . . . . . . . . 11 (𝑁 ∈ (0...(♯‘𝐴)) → (𝑀 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑘 < (𝑁𝑀)) → (𝑘 + 𝑀) < (♯‘𝐴))))
8041, 79mpan9 509 . . . . . . . . . 10 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → ((𝑘 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑘 < (𝑁𝑀)) → (𝑘 + 𝑀) < (♯‘𝐴)))
8180adantl 484 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) → ((𝑘 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑘 < (𝑁𝑀)) → (𝑘 + 𝑀) < (♯‘𝐴)))
8255, 81syl5bi 244 . . . . . . . 8 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) → (𝑘 ∈ (0..^(𝑁𝑀)) → (𝑘 + 𝑀) < (♯‘𝐴)))
8382imp 409 . . . . . . 7 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (𝑘 + 𝑀) < (♯‘𝐴))
84 elfzo0 13081 . . . . . . 7 ((𝑘 + 𝑀) ∈ (0..^(♯‘𝐴)) ↔ ((𝑘 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝑘 + 𝑀) < (♯‘𝐴)))
8547, 54, 83, 84syl3anbrc 1339 . . . . . 6 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (𝑘 + 𝑀) ∈ (0..^(♯‘𝐴)))
86 ccatval1 13932 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝑘 + 𝑀) ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)) = (𝐴‘(𝑘 + 𝑀)))
8739, 40, 85, 86syl3anc 1367 . . . . 5 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)) = (𝐴‘(𝑘 + 𝑀)))
8825ad5ant12 754 . . . . . 6 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
89 simplrl 775 . . . . . 6 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → 𝑀 ∈ (0...𝑁))
9030adantr 483 . . . . . 6 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))))
91 simpr 487 . . . . . 6 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → 𝑘 ∈ (0..^(𝑁𝑀)))
92 swrdfv 14012 . . . . . 6 ((((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)))
9388, 89, 90, 91, 92syl31anc 1369 . . . . 5 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)))
94 swrdfv 14012 . . . . . 6 (((𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → ((𝐴 substr ⟨𝑀, 𝑁⟩)‘𝑘) = (𝐴‘(𝑘 + 𝑀)))
9536, 94sylan 582 . . . . 5 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → ((𝐴 substr ⟨𝑀, 𝑁⟩)‘𝑘) = (𝐴‘(𝑘 + 𝑀)))
9687, 93, 953eqtr4d 2868 . . . 4 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐴 substr ⟨𝑀, 𝑁⟩)‘𝑘))
9732, 38, 96eqfnfvd 6807 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩))
9897ex 415 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))
9924, 98pm2.61dane 3106 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  c0 4293  cop 4575   class class class wbr 5068   Fn wfn 6352  cfv 6357  (class class class)co 7158  cr 10538  0cc0 10539   + caddc 10542   < clt 10677  cle 10678  cmin 10872  cn 11640  0cn0 11900  ...cfz 12895  ..^cfzo 13036  chash 13693  Word cword 13864   ++ cconcat 13924   substr csubstr 14004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-concat 13925  df-substr 14005
This theorem is referenced by:  pfxccat3  14098  pfxccatpfx1  14100  swrdccatin1d  14107
  Copyright terms: Public domain W3C validator