MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccatin1 Structured version   Visualization version   GIF version

Theorem swrdccatin1 14697
Description: The subword of a concatenation of two words within the first of the concatenated words. (Contributed by Alexander van der Vekens, 28-Mar-2018.)
Assertion
Ref Expression
swrdccatin1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))

Proof of Theorem swrdccatin1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7398 . . . . . 6 ((♯‘𝐴) = 0 → (0...(♯‘𝐴)) = (0...0))
21eleq2d 2815 . . . . 5 ((♯‘𝐴) = 0 → (𝑁 ∈ (0...(♯‘𝐴)) ↔ 𝑁 ∈ (0...0)))
3 elfz1eq 13503 . . . . . 6 (𝑁 ∈ (0...0) → 𝑁 = 0)
4 elfz1eq 13503 . . . . . . . 8 (𝑀 ∈ (0...0) → 𝑀 = 0)
5 swrd00 14616 . . . . . . . . . 10 ((𝐴 ++ 𝐵) substr ⟨0, 0⟩) = ∅
6 swrd00 14616 . . . . . . . . . 10 (𝐴 substr ⟨0, 0⟩) = ∅
75, 6eqtr4i 2756 . . . . . . . . 9 ((𝐴 ++ 𝐵) substr ⟨0, 0⟩) = (𝐴 substr ⟨0, 0⟩)
8 opeq1 4840 . . . . . . . . . 10 (𝑀 = 0 → ⟨𝑀, 0⟩ = ⟨0, 0⟩)
98oveq2d 7406 . . . . . . . . 9 (𝑀 = 0 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 0⟩) = ((𝐴 ++ 𝐵) substr ⟨0, 0⟩))
108oveq2d 7406 . . . . . . . . 9 (𝑀 = 0 → (𝐴 substr ⟨𝑀, 0⟩) = (𝐴 substr ⟨0, 0⟩))
117, 9, 103eqtr4a 2791 . . . . . . . 8 (𝑀 = 0 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 0⟩) = (𝐴 substr ⟨𝑀, 0⟩))
124, 11syl 17 . . . . . . 7 (𝑀 ∈ (0...0) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 0⟩) = (𝐴 substr ⟨𝑀, 0⟩))
13 oveq2 7398 . . . . . . . . 9 (𝑁 = 0 → (0...𝑁) = (0...0))
1413eleq2d 2815 . . . . . . . 8 (𝑁 = 0 → (𝑀 ∈ (0...𝑁) ↔ 𝑀 ∈ (0...0)))
15 opeq2 4841 . . . . . . . . . 10 (𝑁 = 0 → ⟨𝑀, 𝑁⟩ = ⟨𝑀, 0⟩)
1615oveq2d 7406 . . . . . . . . 9 (𝑁 = 0 → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 ++ 𝐵) substr ⟨𝑀, 0⟩))
1715oveq2d 7406 . . . . . . . . 9 (𝑁 = 0 → (𝐴 substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 0⟩))
1816, 17eqeq12d 2746 . . . . . . . 8 (𝑁 = 0 → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩) ↔ ((𝐴 ++ 𝐵) substr ⟨𝑀, 0⟩) = (𝐴 substr ⟨𝑀, 0⟩)))
1914, 18imbi12d 344 . . . . . . 7 (𝑁 = 0 → ((𝑀 ∈ (0...𝑁) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)) ↔ (𝑀 ∈ (0...0) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 0⟩) = (𝐴 substr ⟨𝑀, 0⟩))))
2012, 19mpbiri 258 . . . . . 6 (𝑁 = 0 → (𝑀 ∈ (0...𝑁) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))
213, 20syl 17 . . . . 5 (𝑁 ∈ (0...0) → (𝑀 ∈ (0...𝑁) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))
222, 21biimtrdi 253 . . . 4 ((♯‘𝐴) = 0 → (𝑁 ∈ (0...(♯‘𝐴)) → (𝑀 ∈ (0...𝑁) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩))))
2322impcomd 411 . . 3 ((♯‘𝐴) = 0 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))
2423adantl 481 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) = 0) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))
25 ccatcl 14546 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
2625ad2antrr 726 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
27 simprl 770 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) → 𝑀 ∈ (0...𝑁))
28 elfzelfzccat 14552 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(♯‘𝐴)) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))))
2928imp 406 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))))
3029ad2ant2rl 749 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))))
31 swrdvalfn 14623 . . . . 5 (((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
3226, 27, 30, 31syl3anc 1373 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
33 3anass 1094 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) ↔ (𝐴 ∈ Word 𝑉 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))))
3433simplbi2 500 . . . . . . 7 (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → (𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))))
3534ad2antrr 726 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → (𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))))
3635imp 406 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) → (𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))))
37 swrdvalfn 14623 . . . . 5 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → (𝐴 substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
3836, 37syl 17 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) → (𝐴 substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
39 simp-4l 782 . . . . . 6 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → 𝐴 ∈ Word 𝑉)
40 simp-4r 783 . . . . . 6 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → 𝐵 ∈ Word 𝑉)
41 elfznn0 13588 . . . . . . . . . 10 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℕ0)
42 nn0addcl 12484 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑘 + 𝑀) ∈ ℕ0)
4342expcom 413 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (𝑘 ∈ ℕ0 → (𝑘 + 𝑀) ∈ ℕ0))
4441, 43syl 17 . . . . . . . . 9 (𝑀 ∈ (0...𝑁) → (𝑘 ∈ ℕ0 → (𝑘 + 𝑀) ∈ ℕ0))
4544ad2antrl 728 . . . . . . . 8 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) → (𝑘 ∈ ℕ0 → (𝑘 + 𝑀) ∈ ℕ0))
46 elfzonn0 13675 . . . . . . . 8 (𝑘 ∈ (0..^(𝑁𝑀)) → 𝑘 ∈ ℕ0)
4745, 46impel 505 . . . . . . 7 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (𝑘 + 𝑀) ∈ ℕ0)
48 lencl 14505 . . . . . . . . . . 11 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
49 elnnne0 12463 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ ℕ ↔ ((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐴) ≠ 0))
5049simplbi2 500 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℕ0 → ((♯‘𝐴) ≠ 0 → (♯‘𝐴) ∈ ℕ))
5148, 50syl 17 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉 → ((♯‘𝐴) ≠ 0 → (♯‘𝐴) ∈ ℕ))
5251adantr 480 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘𝐴) ≠ 0 → (♯‘𝐴) ∈ ℕ))
5352imp 406 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) → (♯‘𝐴) ∈ ℕ)
5453ad2antrr 726 . . . . . . 7 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (♯‘𝐴) ∈ ℕ)
55 elfzo0 13668 . . . . . . . . 9 (𝑘 ∈ (0..^(𝑁𝑀)) ↔ (𝑘 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑘 < (𝑁𝑀)))
56 elfz2nn0 13586 . . . . . . . . . . . 12 (𝑁 ∈ (0...(♯‘𝐴)) ↔ (𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0𝑁 ≤ (♯‘𝐴)))
57 nn0re 12458 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
5857ad2antrl 728 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → 𝑘 ∈ ℝ)
59 nn0re 12458 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
6059ad2antll 729 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → 𝑀 ∈ ℝ)
61 nn0re 12458 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
6261ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → 𝑁 ∈ ℝ)
6358, 60, 62ltaddsubd 11785 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → ((𝑘 + 𝑀) < 𝑁𝑘 < (𝑁𝑀)))
64 nn0readdcl 12516 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑘 + 𝑀) ∈ ℝ)
6564adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → (𝑘 + 𝑀) ∈ ℝ)
66 nn0re 12458 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ∈ ℝ)
6766ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → (♯‘𝐴) ∈ ℝ)
68 ltletr 11273 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑘 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (♯‘𝐴) ∈ ℝ) → (((𝑘 + 𝑀) < 𝑁𝑁 ≤ (♯‘𝐴)) → (𝑘 + 𝑀) < (♯‘𝐴)))
6965, 62, 67, 68syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → (((𝑘 + 𝑀) < 𝑁𝑁 ≤ (♯‘𝐴)) → (𝑘 + 𝑀) < (♯‘𝐴)))
7069expd 415 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → ((𝑘 + 𝑀) < 𝑁 → (𝑁 ≤ (♯‘𝐴) → (𝑘 + 𝑀) < (♯‘𝐴))))
7163, 70sylbird 260 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) ∧ (𝑘 ∈ ℕ0𝑀 ∈ ℕ0)) → (𝑘 < (𝑁𝑀) → (𝑁 ≤ (♯‘𝐴) → (𝑘 + 𝑀) < (♯‘𝐴))))
7271ex 412 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) → ((𝑘 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑘 < (𝑁𝑀) → (𝑁 ≤ (♯‘𝐴) → (𝑘 + 𝑀) < (♯‘𝐴)))))
7372com24 95 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) → (𝑁 ≤ (♯‘𝐴) → (𝑘 < (𝑁𝑀) → ((𝑘 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑘 + 𝑀) < (♯‘𝐴)))))
74733impia 1117 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0𝑁 ≤ (♯‘𝐴)) → (𝑘 < (𝑁𝑀) → ((𝑘 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑘 + 𝑀) < (♯‘𝐴))))
7574com13 88 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑘 < (𝑁𝑀) → ((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0𝑁 ≤ (♯‘𝐴)) → (𝑘 + 𝑀) < (♯‘𝐴))))
7675impancom 451 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ0𝑘 < (𝑁𝑀)) → (𝑀 ∈ ℕ0 → ((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0𝑁 ≤ (♯‘𝐴)) → (𝑘 + 𝑀) < (♯‘𝐴))))
77763adant2 1131 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑘 < (𝑁𝑀)) → (𝑀 ∈ ℕ0 → ((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0𝑁 ≤ (♯‘𝐴)) → (𝑘 + 𝑀) < (♯‘𝐴))))
7877com13 88 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0𝑁 ≤ (♯‘𝐴)) → (𝑀 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑘 < (𝑁𝑀)) → (𝑘 + 𝑀) < (♯‘𝐴))))
7956, 78sylbi 217 . . . . . . . . . . 11 (𝑁 ∈ (0...(♯‘𝐴)) → (𝑀 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑘 < (𝑁𝑀)) → (𝑘 + 𝑀) < (♯‘𝐴))))
8041, 79mpan9 506 . . . . . . . . . 10 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → ((𝑘 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑘 < (𝑁𝑀)) → (𝑘 + 𝑀) < (♯‘𝐴)))
8180adantl 481 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) → ((𝑘 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝑘 < (𝑁𝑀)) → (𝑘 + 𝑀) < (♯‘𝐴)))
8255, 81biimtrid 242 . . . . . . . 8 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) → (𝑘 ∈ (0..^(𝑁𝑀)) → (𝑘 + 𝑀) < (♯‘𝐴)))
8382imp 406 . . . . . . 7 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (𝑘 + 𝑀) < (♯‘𝐴))
84 elfzo0 13668 . . . . . . 7 ((𝑘 + 𝑀) ∈ (0..^(♯‘𝐴)) ↔ ((𝑘 + 𝑀) ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ ∧ (𝑘 + 𝑀) < (♯‘𝐴)))
8547, 54, 83, 84syl3anbrc 1344 . . . . . 6 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (𝑘 + 𝑀) ∈ (0..^(♯‘𝐴)))
86 ccatval1 14549 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝑘 + 𝑀) ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)) = (𝐴‘(𝑘 + 𝑀)))
8739, 40, 85, 86syl3anc 1373 . . . . 5 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)) = (𝐴‘(𝑘 + 𝑀)))
8825ad3antrrr 730 . . . . . 6 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
89 simplrl 776 . . . . . 6 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → 𝑀 ∈ (0...𝑁))
9030adantr 480 . . . . . 6 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))))
91 simpr 484 . . . . . 6 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → 𝑘 ∈ (0..^(𝑁𝑀)))
92 swrdfv 14620 . . . . . 6 ((((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)))
9388, 89, 90, 91, 92syl31anc 1375 . . . . 5 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐴 ++ 𝐵)‘(𝑘 + 𝑀)))
94 swrdfv 14620 . . . . . 6 (((𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → ((𝐴 substr ⟨𝑀, 𝑁⟩)‘𝑘) = (𝐴‘(𝑘 + 𝑀)))
9536, 94sylan 580 . . . . 5 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → ((𝐴 substr ⟨𝑀, 𝑁⟩)‘𝑘) = (𝐴‘(𝑘 + 𝑀)))
9687, 93, 953eqtr4d 2775 . . . 4 (((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) ∧ 𝑘 ∈ (0..^(𝑁𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝑘) = ((𝐴 substr ⟨𝑀, 𝑁⟩)‘𝑘))
9732, 38, 96eqfnfvd 7009 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩))
9897ex 412 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐴) ≠ 0) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))
9924, 98pm2.61dane 3013 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  c0 4299  cop 4598   class class class wbr 5110   Fn wfn 6509  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075   + caddc 11078   < clt 11215  cle 11216  cmin 11412  cn 12193  0cn0 12449  ...cfz 13475  ..^cfzo 13622  chash 14302  Word cword 14485   ++ cconcat 14542   substr csubstr 14612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-substr 14613
This theorem is referenced by:  pfxccat3  14706  pfxccatpfx1  14708  swrdccatin1d  14715
  Copyright terms: Public domain W3C validator