Step | Hyp | Ref
| Expression |
1 | | fneq2 6525 |
. . . 4
⊢ (𝑤 = ∅ → (𝑓 Fn 𝑤 ↔ 𝑓 Fn ∅)) |
2 | | raleq 3342 |
. . . 4
⊢ (𝑤 = ∅ → (∀𝑥 ∈ 𝑤 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) ↔ ∀𝑥 ∈ ∅ (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
3 | 1, 2 | anbi12d 631 |
. . 3
⊢ (𝑤 = ∅ → ((𝑓 Fn 𝑤 ∧ ∀𝑥 ∈ 𝑤 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ↔ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
4 | 3 | exbidv 1924 |
. 2
⊢ (𝑤 = ∅ → (∃𝑓(𝑓 Fn 𝑤 ∧ ∀𝑥 ∈ 𝑤 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ↔ ∃𝑓(𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
5 | | fneq2 6525 |
. . . 4
⊢ (𝑤 = 𝑦 → (𝑓 Fn 𝑤 ↔ 𝑓 Fn 𝑦)) |
6 | | raleq 3342 |
. . . 4
⊢ (𝑤 = 𝑦 → (∀𝑥 ∈ 𝑤 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) ↔ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
7 | 5, 6 | anbi12d 631 |
. . 3
⊢ (𝑤 = 𝑦 → ((𝑓 Fn 𝑤 ∧ ∀𝑥 ∈ 𝑤 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ↔ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
8 | 7 | exbidv 1924 |
. 2
⊢ (𝑤 = 𝑦 → (∃𝑓(𝑓 Fn 𝑤 ∧ ∀𝑥 ∈ 𝑤 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ↔ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
9 | | fneq2 6525 |
. . . 4
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝑓 Fn 𝑤 ↔ 𝑓 Fn (𝑦 ∪ {𝑧}))) |
10 | | raleq 3342 |
. . . 4
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (∀𝑥 ∈ 𝑤 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) ↔ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
11 | 9, 10 | anbi12d 631 |
. . 3
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑓 Fn 𝑤 ∧ ∀𝑥 ∈ 𝑤 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ↔ (𝑓 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
12 | 11 | exbidv 1924 |
. 2
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (∃𝑓(𝑓 Fn 𝑤 ∧ ∀𝑥 ∈ 𝑤 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ↔ ∃𝑓(𝑓 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
13 | | fneq2 6525 |
. . . 4
⊢ (𝑤 = 𝐴 → (𝑓 Fn 𝑤 ↔ 𝑓 Fn 𝐴)) |
14 | | raleq 3342 |
. . . 4
⊢ (𝑤 = 𝐴 → (∀𝑥 ∈ 𝑤 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
15 | 13, 14 | anbi12d 631 |
. . 3
⊢ (𝑤 = 𝐴 → ((𝑓 Fn 𝑤 ∧ ∀𝑥 ∈ 𝑤 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
16 | 15 | exbidv 1924 |
. 2
⊢ (𝑤 = 𝐴 → (∃𝑓(𝑓 Fn 𝑤 ∧ ∀𝑥 ∈ 𝑤 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ↔ ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
17 | | 0ex 5231 |
. . . 4
⊢ ∅
∈ V |
18 | | fneq1 6524 |
. . . 4
⊢ (𝑓 = ∅ → (𝑓 Fn ∅ ↔ ∅ Fn
∅)) |
19 | | eqid 2738 |
. . . . 5
⊢ ∅ =
∅ |
20 | | fn0 6564 |
. . . . 5
⊢ (∅
Fn ∅ ↔ ∅ = ∅) |
21 | 19, 20 | mpbir 230 |
. . . 4
⊢ ∅
Fn ∅ |
22 | 17, 18, 21 | ceqsexv2d 3481 |
. . 3
⊢
∃𝑓 𝑓 Fn ∅ |
23 | | ral0 4443 |
. . 3
⊢
∀𝑥 ∈
∅ (𝑥 ≠ ∅
→ (𝑓‘𝑥) ∈ 𝑥) |
24 | 22, 23 | exan 1865 |
. 2
⊢
∃𝑓(𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
25 | | dffn2 6602 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 Fn 𝑦 ↔ 𝑓:𝑦⟶V) |
26 | 25 | biimpi 215 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 Fn 𝑦 → 𝑓:𝑦⟶V) |
27 | 26 | ad2antrl 725 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑧 = ∅) ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) → 𝑓:𝑦⟶V) |
28 | | vex 3436 |
. . . . . . . . . . . . . . 15
⊢ 𝑧 ∈ V |
29 | 28 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑧 = ∅) ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) → 𝑧 ∈ V) |
30 | | simpllr 773 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑧 = ∅) ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) → ¬ 𝑧 ∈ 𝑦) |
31 | | vex 3436 |
. . . . . . . . . . . . . . 15
⊢ 𝑤 ∈ V |
32 | 31 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑧 = ∅) ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) → 𝑤 ∈ V) |
33 | | fsnunf 7057 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:𝑦⟶V ∧ (𝑧 ∈ V ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑤 ∈ V) → (𝑓 ∪ {〈𝑧, 𝑤〉}):(𝑦 ∪ {𝑧})⟶V) |
34 | 27, 29, 30, 32, 33 | syl121anc 1374 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑧 = ∅) ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) → (𝑓 ∪ {〈𝑧, 𝑤〉}):(𝑦 ∪ {𝑧})⟶V) |
35 | | dffn2 6602 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∪ {〈𝑧, 𝑤〉}) Fn (𝑦 ∪ {𝑧}) ↔ (𝑓 ∪ {〈𝑧, 𝑤〉}):(𝑦 ∪ {𝑧})⟶V) |
36 | 34, 35 | sylibr 233 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑧 = ∅) ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) → (𝑓 ∪ {〈𝑧, 𝑤〉}) Fn (𝑦 ∪ {𝑧})) |
37 | | simplr 766 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑧 = ∅) ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) → 𝑧 = ∅) |
38 | | simprr 770 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑧 = ∅) ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) → ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
39 | | nfv 1917 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥(𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦) |
40 | | nfra1 3144 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) |
41 | 39, 40 | nfan 1902 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥((𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
42 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝑦) |
43 | | simpllr 773 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) → ¬ 𝑧 ∈ 𝑦) |
44 | 43 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) → ¬ 𝑧 ∈ 𝑦) |
45 | 44 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → ¬ 𝑧 ∈ 𝑦) |
46 | 42, 45 | jca 512 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → (𝑥 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑦)) |
47 | | nelne2 3042 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑦) → 𝑥 ≠ 𝑧) |
48 | 47 | necomd 2999 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑦) → 𝑧 ≠ 𝑥) |
49 | 46, 48 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → 𝑧 ≠ 𝑥) |
50 | | fvunsn 7051 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ≠ 𝑥 → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) = (𝑓‘𝑥)) |
51 | 49, 50 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) = (𝑓‘𝑥)) |
52 | | simpllr 773 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) → ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
53 | 52 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
54 | | simplr 766 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → 𝑥 ≠ ∅) |
55 | | neeq1 3006 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑢 = 𝑥 → (𝑢 ≠ ∅ ↔ 𝑥 ≠ ∅)) |
56 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑢 = 𝑥 → (𝑓‘𝑢) = (𝑓‘𝑥)) |
57 | 56 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑢 = 𝑥 → ((𝑓‘𝑢) ∈ 𝑢 ↔ (𝑓‘𝑥) ∈ 𝑢)) |
58 | | eleq2w 2822 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑢 = 𝑥 → ((𝑓‘𝑥) ∈ 𝑢 ↔ (𝑓‘𝑥) ∈ 𝑥)) |
59 | 57, 58 | bitrd 278 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑢 = 𝑥 → ((𝑓‘𝑢) ∈ 𝑢 ↔ (𝑓‘𝑥) ∈ 𝑥)) |
60 | 55, 59 | imbi12d 345 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢 = 𝑥 → ((𝑢 ≠ ∅ → (𝑓‘𝑢) ∈ 𝑢) ↔ (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
61 | 60 | cbvralvw 3383 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑢 ∈
𝑦 (𝑢 ≠ ∅ → (𝑓‘𝑢) ∈ 𝑢) ↔ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
62 | 60 | rspcv 3557 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ 𝑦 → (∀𝑢 ∈ 𝑦 (𝑢 ≠ ∅ → (𝑓‘𝑢) ∈ 𝑢) → (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
63 | 61, 62 | syl5bir 242 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ 𝑦 → (∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) → (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
64 | 42, 53, 54, 63 | syl3c 66 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → (𝑓‘𝑥) ∈ 𝑥) |
65 | 51, 64 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥) |
66 | | simp-4l 780 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) → 𝑧 = ∅) |
67 | 66 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → 𝑧 = ∅) |
68 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → 𝑥 ∈ {𝑧}) |
69 | | simplr 766 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → 𝑥 ≠ ∅) |
70 | | elsni 4578 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ {𝑧} → 𝑥 = 𝑧) |
71 | 70 | 3ad2ant2 1133 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 = ∅ ∧ 𝑥 ∈ {𝑧} ∧ 𝑥 ≠ ∅) → 𝑥 = 𝑧) |
72 | | simp1 1135 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 = ∅ ∧ 𝑥 ∈ {𝑧} ∧ 𝑥 ≠ ∅) → 𝑧 = ∅) |
73 | 71, 72 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 = ∅ ∧ 𝑥 ∈ {𝑧} ∧ 𝑥 ≠ ∅) → 𝑥 = ∅) |
74 | | simp3 1137 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 = ∅ ∧ 𝑥 ∈ {𝑧} ∧ 𝑥 ≠ ∅) → 𝑥 ≠ ∅) |
75 | 73, 74 | pm2.21ddne 3029 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 = ∅ ∧ 𝑥 ∈ {𝑧} ∧ 𝑥 ≠ ∅) → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥) |
76 | 67, 68, 69, 75 | syl3anc 1370 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥) |
77 | | simplr 766 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) → 𝑥 ∈ (𝑦 ∪ {𝑧})) |
78 | | elun 4083 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑥 ∈ 𝑦 ∨ 𝑥 ∈ {𝑧})) |
79 | 77, 78 | sylib 217 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) → (𝑥 ∈ 𝑦 ∨ 𝑥 ∈ {𝑧})) |
80 | 65, 76, 79 | mpjaodan 956 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑧 = ∅
∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥) |
81 | 80 | ex 413 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) → (𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥)) |
82 | 81 | ex 413 |
. . . . . . . . . . . . . 14
⊢ (((𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) → (𝑥 ∈ (𝑦 ∪ {𝑧}) → (𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥))) |
83 | 41, 82 | ralrimi 3141 |
. . . . . . . . . . . . 13
⊢ (((𝑧 = ∅ ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) → ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥)) |
84 | 37, 30, 38, 83 | syl21anc 835 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑧 = ∅) ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) → ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥)) |
85 | 36, 84 | jca 512 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑧 = ∅) ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) → ((𝑓 ∪ {〈𝑧, 𝑤〉}) Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥))) |
86 | 85 | ex 413 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑧 = ∅) → ((𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) → ((𝑓 ∪ {〈𝑧, 𝑤〉}) Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥)))) |
87 | 86 | eximdv 1920 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑧 = ∅) → (∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) → ∃𝑓((𝑓 ∪ {〈𝑧, 𝑤〉}) Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥)))) |
88 | | vex 3436 |
. . . . . . . . . . . 12
⊢ 𝑓 ∈ V |
89 | | snex 5354 |
. . . . . . . . . . . 12
⊢
{〈𝑧, 𝑤〉} ∈
V |
90 | 88, 89 | unex 7596 |
. . . . . . . . . . 11
⊢ (𝑓 ∪ {〈𝑧, 𝑤〉}) ∈ V |
91 | | fneq1 6524 |
. . . . . . . . . . . 12
⊢ (𝑔 = (𝑓 ∪ {〈𝑧, 𝑤〉}) → (𝑔 Fn (𝑦 ∪ {𝑧}) ↔ (𝑓 ∪ {〈𝑧, 𝑤〉}) Fn (𝑦 ∪ {𝑧}))) |
92 | | fveq1 6773 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = (𝑓 ∪ {〈𝑧, 𝑤〉}) → (𝑔‘𝑥) = ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥)) |
93 | 92 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = (𝑓 ∪ {〈𝑧, 𝑤〉}) → ((𝑔‘𝑥) ∈ 𝑥 ↔ ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥)) |
94 | 93 | imbi2d 341 |
. . . . . . . . . . . . 13
⊢ (𝑔 = (𝑓 ∪ {〈𝑧, 𝑤〉}) → ((𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥) ↔ (𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥))) |
95 | 94 | ralbidv 3112 |
. . . . . . . . . . . 12
⊢ (𝑔 = (𝑓 ∪ {〈𝑧, 𝑤〉}) → (∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥) ↔ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥))) |
96 | 91, 95 | anbi12d 631 |
. . . . . . . . . . 11
⊢ (𝑔 = (𝑓 ∪ {〈𝑧, 𝑤〉}) → ((𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) ↔ ((𝑓 ∪ {〈𝑧, 𝑤〉}) Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥)))) |
97 | 90, 96 | spcev 3545 |
. . . . . . . . . 10
⊢ (((𝑓 ∪ {〈𝑧, 𝑤〉}) Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥)) → ∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥))) |
98 | 97 | eximi 1837 |
. . . . . . . . 9
⊢
(∃𝑓((𝑓 ∪ {〈𝑧, 𝑤〉}) Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥)) → ∃𝑓∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥))) |
99 | 87, 98 | syl6 35 |
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑧 = ∅) → (∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) → ∃𝑓∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)))) |
100 | | ax5e 1915 |
. . . . . . . 8
⊢
(∃𝑓∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) → ∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥))) |
101 | 99, 100 | syl6 35 |
. . . . . . 7
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑧 = ∅) → (∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) → ∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)))) |
102 | 101 | imp 407 |
. . . . . 6
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ 𝑧 = ∅) ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) → ∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥))) |
103 | 102 | an32s 649 |
. . . . 5
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) ∧ 𝑧 = ∅) → ∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥))) |
104 | | fneq1 6524 |
. . . . . . 7
⊢ (𝑓 = 𝑔 → (𝑓 Fn (𝑦 ∪ {𝑧}) ↔ 𝑔 Fn (𝑦 ∪ {𝑧}))) |
105 | | fveq1 6773 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → (𝑓‘𝑥) = (𝑔‘𝑥)) |
106 | 105 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → ((𝑓‘𝑥) ∈ 𝑥 ↔ (𝑔‘𝑥) ∈ 𝑥)) |
107 | 106 | imbi2d 341 |
. . . . . . . 8
⊢ (𝑓 = 𝑔 → ((𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) ↔ (𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥))) |
108 | 107 | ralbidv 3112 |
. . . . . . 7
⊢ (𝑓 = 𝑔 → (∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥) ↔ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥))) |
109 | 104, 108 | anbi12d 631 |
. . . . . 6
⊢ (𝑓 = 𝑔 → ((𝑓 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ↔ (𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)))) |
110 | 109 | cbvexvw 2040 |
. . . . 5
⊢
(∃𝑓(𝑓 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) ↔ ∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥))) |
111 | 103, 110 | sylibr 233 |
. . . 4
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) ∧ 𝑧 = ∅) → ∃𝑓(𝑓 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
112 | | simpllr 773 |
. . . . . 6
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) ∧ ¬ 𝑧 = ∅) → ¬ 𝑧 ∈ 𝑦) |
113 | | simpr 485 |
. . . . . . . 8
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) ∧ ¬ 𝑧 = ∅) → ¬ 𝑧 = ∅) |
114 | | neq0 4279 |
. . . . . . . 8
⊢ (¬
𝑧 = ∅ ↔
∃𝑤 𝑤 ∈ 𝑧) |
115 | 113, 114 | sylib 217 |
. . . . . . 7
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) ∧ ¬ 𝑧 = ∅) → ∃𝑤 𝑤 ∈ 𝑧) |
116 | | simplr 766 |
. . . . . . 7
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) ∧ ¬ 𝑧 = ∅) → ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
117 | 115, 116 | jca 512 |
. . . . . 6
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) ∧ ¬ 𝑧 = ∅) → (∃𝑤 𝑤 ∈ 𝑧 ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
118 | 112, 117 | jca 512 |
. . . . 5
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) ∧ ¬ 𝑧 = ∅) → (¬ 𝑧 ∈ 𝑦 ∧ (∃𝑤 𝑤 ∈ 𝑧 ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))))) |
119 | | exdistrv 1959 |
. . . . . . . . 9
⊢
(∃𝑤∃𝑓(𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) ↔ (∃𝑤 𝑤 ∈ 𝑧 ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
120 | | simprrl 778 |
. . . . . . . . . . . . . . . 16
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) → 𝑓 Fn 𝑦) |
121 | 120, 25 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) → 𝑓:𝑦⟶V) |
122 | 28 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) → 𝑧 ∈ V) |
123 | | simpl 483 |
. . . . . . . . . . . . . . 15
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) → ¬ 𝑧 ∈ 𝑦) |
124 | 31 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) → 𝑤 ∈ V) |
125 | 121, 122,
123, 124, 33 | syl121anc 1374 |
. . . . . . . . . . . . . 14
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) → (𝑓 ∪ {〈𝑧, 𝑤〉}):(𝑦 ∪ {𝑧})⟶V) |
126 | 125, 35 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) → (𝑓 ∪ {〈𝑧, 𝑤〉}) Fn (𝑦 ∪ {𝑧})) |
127 | | nfv 1917 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥 ¬ 𝑧 ∈ 𝑦 |
128 | | nfv 1917 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥 𝑤 ∈ 𝑧 |
129 | | nfv 1917 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥 𝑓 Fn 𝑦 |
130 | 129, 40 | nfan 1902 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
131 | 128, 130 | nfan 1902 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥(𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
132 | 127, 131 | nfan 1902 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥(¬ 𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
133 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ 𝑦) |
134 | | simp-4l 780 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → ¬ 𝑧 ∈ 𝑦) |
135 | 133, 134 | jca 512 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → (𝑥 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑦)) |
136 | 48, 50 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ 𝑦 ∧ ¬ 𝑧 ∈ 𝑦) → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) = (𝑓‘𝑥)) |
137 | 135, 136 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) = (𝑓‘𝑥)) |
138 | | simprrr 779 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) → ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
139 | 138 | ad5ant12 753 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) |
140 | | simplr 766 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → 𝑥 ≠ ∅) |
141 | 133, 139,
140, 63 | syl3c 66 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → (𝑓‘𝑥) ∈ 𝑥) |
142 | 137, 141 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . 17
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ 𝑦) → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥) |
143 | | simplrl 774 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) → 𝑤 ∈ 𝑧) |
144 | 143 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) → 𝑤 ∈ 𝑧) |
145 | 144 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → 𝑤 ∈ 𝑧) |
146 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → 𝑥 ∈ {𝑧}) |
147 | 146, 70 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → 𝑥 = 𝑧) |
148 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑧 → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) = ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑧)) |
149 | 147, 148 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) = ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑧)) |
150 | 28 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → 𝑧 ∈ V) |
151 | 31 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → 𝑤 ∈ V) |
152 | | simp-4l 780 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → ¬ 𝑧 ∈ 𝑦) |
153 | 120 | ad5ant12 753 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → 𝑓 Fn 𝑦) |
154 | 153 | fndmd 6538 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → dom 𝑓 = 𝑦) |
155 | 152, 154 | neleqtrrd 2861 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → ¬ 𝑧 ∈ dom 𝑓) |
156 | | fsnunfv 7059 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 ∈ V ∧ 𝑤 ∈ V ∧ ¬ 𝑧 ∈ dom 𝑓) → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑧) = 𝑤) |
157 | 150, 151,
155, 156 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑧) = 𝑤) |
158 | 149, 157 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) = 𝑤) |
159 | 145, 158,
147 | 3eltr4d 2854 |
. . . . . . . . . . . . . . . . 17
⊢
(((((¬ 𝑧 ∈
𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) ∧ 𝑥 ∈ {𝑧}) → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥) |
160 | | simplr 766 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) → 𝑥 ∈ (𝑦 ∪ {𝑧})) |
161 | 160, 78 | sylib 217 |
. . . . . . . . . . . . . . . . 17
⊢ ((((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) → (𝑥 ∈ 𝑦 ∨ 𝑥 ∈ {𝑧})) |
162 | 142, 159,
161 | mpjaodan 956 |
. . . . . . . . . . . . . . . 16
⊢ ((((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) ∧ 𝑥 ≠ ∅) → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥) |
163 | 162 | ex 413 |
. . . . . . . . . . . . . . 15
⊢ (((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) ∧ 𝑥 ∈ (𝑦 ∪ {𝑧})) → (𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥)) |
164 | 163 | ex 413 |
. . . . . . . . . . . . . 14
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) → (𝑥 ∈ (𝑦 ∪ {𝑧}) → (𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥))) |
165 | 132, 164 | ralrimi 3141 |
. . . . . . . . . . . . 13
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) → ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥)) |
166 | 126, 165 | jca 512 |
. . . . . . . . . . . 12
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) → ((𝑓 ∪ {〈𝑧, 𝑤〉}) Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → ((𝑓 ∪ {〈𝑧, 𝑤〉})‘𝑥) ∈ 𝑥))) |
167 | 166, 97 | syl 17 |
. . . . . . . . . . 11
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) → ∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥))) |
168 | 167 | ex 413 |
. . . . . . . . . 10
⊢ (¬
𝑧 ∈ 𝑦 → ((𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) → ∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)))) |
169 | 168 | 2eximdv 1922 |
. . . . . . . . 9
⊢ (¬
𝑧 ∈ 𝑦 → (∃𝑤∃𝑓(𝑤 ∈ 𝑧 ∧ (𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) → ∃𝑤∃𝑓∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)))) |
170 | 119, 169 | syl5bir 242 |
. . . . . . . 8
⊢ (¬
𝑧 ∈ 𝑦 → ((∃𝑤 𝑤 ∈ 𝑧 ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) → ∃𝑤∃𝑓∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)))) |
171 | 170 | imp 407 |
. . . . . . 7
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (∃𝑤 𝑤 ∈ 𝑧 ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) → ∃𝑤∃𝑓∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥))) |
172 | 100 | exlimiv 1933 |
. . . . . . 7
⊢
(∃𝑤∃𝑓∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥)) → ∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥))) |
173 | 171, 172 | syl 17 |
. . . . . 6
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (∃𝑤 𝑤 ∈ 𝑧 ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) → ∃𝑔(𝑔 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑔‘𝑥) ∈ 𝑥))) |
174 | 173, 110 | sylibr 233 |
. . . . 5
⊢ ((¬
𝑧 ∈ 𝑦 ∧ (∃𝑤 𝑤 ∈ 𝑧 ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) → ∃𝑓(𝑓 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
175 | 118, 174 | syl 17 |
. . . 4
⊢ ((((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) ∧ ¬ 𝑧 = ∅) → ∃𝑓(𝑓 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
176 | 111, 175 | pm2.61dan 810 |
. . 3
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ ∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) → ∃𝑓(𝑓 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |
177 | 176 | ex 413 |
. 2
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (∃𝑓(𝑓 Fn 𝑦 ∧ ∀𝑥 ∈ 𝑦 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)) → ∃𝑓(𝑓 Fn (𝑦 ∪ {𝑧}) ∧ ∀𝑥 ∈ (𝑦 ∪ {𝑧})(𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥)))) |
178 | 4, 8, 12, 16, 24, 177 | findcard2s 8948 |
1
⊢ (𝐴 ∈ Fin → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ≠ ∅ → (𝑓‘𝑥) ∈ 𝑥))) |