| Step | Hyp | Ref
| Expression |
| 1 | | metcn.2 |
. . . . 5
⊢ 𝐽 = (MetOpen‘𝐶) |
| 2 | 1 | mopntopon 24449 |
. . . 4
⊢ (𝐶 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 3 | 2 | 3ad2ant1 1134 |
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 4 | | metcn.4 |
. . . . 5
⊢ 𝐾 = (MetOpen‘𝐷) |
| 5 | 4 | mopnval 24448 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑌) → 𝐾 = (topGen‘ran (ball‘𝐷))) |
| 6 | 5 | 3ad2ant2 1135 |
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → 𝐾 = (topGen‘ran (ball‘𝐷))) |
| 7 | 4 | mopntopon 24449 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌)) |
| 8 | 7 | 3ad2ant2 1135 |
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → 𝐾 ∈ (TopOn‘𝑌)) |
| 9 | | simp3 1139 |
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → 𝑃 ∈ 𝑋) |
| 10 | 3, 6, 8, 9 | tgcnp 23261 |
. 2
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ ran (ball‘𝐷)((𝐹‘𝑃) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))))) |
| 11 | | simpll2 1214 |
. . . . . . . 8
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑌)) |
| 12 | | simplr 769 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) → 𝐹:𝑋⟶𝑌) |
| 13 | | simpll3 1215 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) → 𝑃 ∈ 𝑋) |
| 14 | 12, 13 | ffvelcdmd 7105 |
. . . . . . . 8
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) → (𝐹‘𝑃) ∈ 𝑌) |
| 15 | | simpr 484 |
. . . . . . . 8
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈
ℝ+) |
| 16 | | blcntr 24423 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝐹‘𝑃) ∈ 𝑌 ∧ 𝑦 ∈ ℝ+) → (𝐹‘𝑃) ∈ ((𝐹‘𝑃)(ball‘𝐷)𝑦)) |
| 17 | 11, 14, 15, 16 | syl3anc 1373 |
. . . . . . 7
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) → (𝐹‘𝑃) ∈ ((𝐹‘𝑃)(ball‘𝐷)𝑦)) |
| 18 | | rpxr 13044 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℝ+
→ 𝑦 ∈
ℝ*) |
| 19 | 18 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈
ℝ*) |
| 20 | | blelrn 24427 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝐹‘𝑃) ∈ 𝑌 ∧ 𝑦 ∈ ℝ*) → ((𝐹‘𝑃)(ball‘𝐷)𝑦) ∈ ran (ball‘𝐷)) |
| 21 | 11, 14, 19, 20 | syl3anc 1373 |
. . . . . . . 8
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) → ((𝐹‘𝑃)(ball‘𝐷)𝑦) ∈ ran (ball‘𝐷)) |
| 22 | | eleq2 2830 |
. . . . . . . . . 10
⊢ (𝑢 = ((𝐹‘𝑃)(ball‘𝐷)𝑦) → ((𝐹‘𝑃) ∈ 𝑢 ↔ (𝐹‘𝑃) ∈ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) |
| 23 | | sseq2 4010 |
. . . . . . . . . . . 12
⊢ (𝑢 = ((𝐹‘𝑃)(ball‘𝐷)𝑦) → ((𝐹 “ 𝑣) ⊆ 𝑢 ↔ (𝐹 “ 𝑣) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) |
| 24 | 23 | anbi2d 630 |
. . . . . . . . . . 11
⊢ (𝑢 = ((𝐹‘𝑃)(ball‘𝐷)𝑦) → ((𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢) ↔ (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)))) |
| 25 | 24 | rexbidv 3179 |
. . . . . . . . . 10
⊢ (𝑢 = ((𝐹‘𝑃)(ball‘𝐷)𝑦) → (∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢) ↔ ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)))) |
| 26 | 22, 25 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑢 = ((𝐹‘𝑃)(ball‘𝐷)𝑦) → (((𝐹‘𝑃) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)) ↔ ((𝐹‘𝑃) ∈ ((𝐹‘𝑃)(ball‘𝐷)𝑦) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))))) |
| 27 | 26 | rspcv 3618 |
. . . . . . . 8
⊢ (((𝐹‘𝑃)(ball‘𝐷)𝑦) ∈ ran (ball‘𝐷) → (∀𝑢 ∈ ran (ball‘𝐷)((𝐹‘𝑃) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)) → ((𝐹‘𝑃) ∈ ((𝐹‘𝑃)(ball‘𝐷)𝑦) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))))) |
| 28 | 21, 27 | syl 17 |
. . . . . . 7
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) →
(∀𝑢 ∈ ran
(ball‘𝐷)((𝐹‘𝑃) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)) → ((𝐹‘𝑃) ∈ ((𝐹‘𝑃)(ball‘𝐷)𝑦) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))))) |
| 29 | 17, 28 | mpid 44 |
. . . . . 6
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) →
(∀𝑢 ∈ ran
(ball‘𝐷)((𝐹‘𝑃) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)))) |
| 30 | | simpl1 1192 |
. . . . . . . . . . . 12
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐶 ∈ (∞Met‘𝑋)) |
| 31 | 30 | ad2antrr 726 |
. . . . . . . . . . 11
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ ℝ+ ∧ 𝑣 ∈ 𝐽)) ∧ 𝑃 ∈ 𝑣) → 𝐶 ∈ (∞Met‘𝑋)) |
| 32 | | simplrr 778 |
. . . . . . . . . . 11
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ ℝ+ ∧ 𝑣 ∈ 𝐽)) ∧ 𝑃 ∈ 𝑣) → 𝑣 ∈ 𝐽) |
| 33 | | simpr 484 |
. . . . . . . . . . 11
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ ℝ+ ∧ 𝑣 ∈ 𝐽)) ∧ 𝑃 ∈ 𝑣) → 𝑃 ∈ 𝑣) |
| 34 | 1 | mopni2 24506 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑣 ∈ 𝐽 ∧ 𝑃 ∈ 𝑣) → ∃𝑧 ∈ ℝ+ (𝑃(ball‘𝐶)𝑧) ⊆ 𝑣) |
| 35 | 31, 32, 33, 34 | syl3anc 1373 |
. . . . . . . . . 10
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ ℝ+ ∧ 𝑣 ∈ 𝐽)) ∧ 𝑃 ∈ 𝑣) → ∃𝑧 ∈ ℝ+ (𝑃(ball‘𝐶)𝑧) ⊆ 𝑣) |
| 36 | | sstr2 3990 |
. . . . . . . . . . . 12
⊢ ((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ (𝐹 “ 𝑣) → ((𝐹 “ 𝑣) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦) → (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) |
| 37 | | imass2 6120 |
. . . . . . . . . . . 12
⊢ ((𝑃(ball‘𝐶)𝑧) ⊆ 𝑣 → (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ (𝐹 “ 𝑣)) |
| 38 | 36, 37 | syl11 33 |
. . . . . . . . . . 11
⊢ ((𝐹 “ 𝑣) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦) → ((𝑃(ball‘𝐶)𝑧) ⊆ 𝑣 → (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) |
| 39 | 38 | reximdv 3170 |
. . . . . . . . . 10
⊢ ((𝐹 “ 𝑣) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦) → (∃𝑧 ∈ ℝ+ (𝑃(ball‘𝐶)𝑧) ⊆ 𝑣 → ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) |
| 40 | 35, 39 | syl5com 31 |
. . . . . . . . 9
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ ℝ+ ∧ 𝑣 ∈ 𝐽)) ∧ 𝑃 ∈ 𝑣) → ((𝐹 “ 𝑣) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦) → ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) |
| 41 | 40 | expimpd 453 |
. . . . . . . 8
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ ℝ+ ∧ 𝑣 ∈ 𝐽)) → ((𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)) → ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) |
| 42 | 41 | expr 456 |
. . . . . . 7
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) → (𝑣 ∈ 𝐽 → ((𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)) → ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)))) |
| 43 | 42 | rexlimdv 3153 |
. . . . . 6
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) →
(∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)) → ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) |
| 44 | 29, 43 | syld 47 |
. . . . 5
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) →
(∀𝑢 ∈ ran
(ball‘𝐷)((𝐹‘𝑃) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)) → ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) |
| 45 | 44 | ralrimdva 3154 |
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑢 ∈ ran (ball‘𝐷)((𝐹‘𝑃) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)) → ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
(𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) |
| 46 | | simpl2 1193 |
. . . . . . . . 9
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐷 ∈ (∞Met‘𝑌)) |
| 47 | | blss 24435 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑌) ∧ 𝑢 ∈ ran (ball‘𝐷) ∧ (𝐹‘𝑃) ∈ 𝑢) → ∃𝑦 ∈ ℝ+ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) |
| 48 | 47 | 3expib 1123 |
. . . . . . . . 9
⊢ (𝐷 ∈ (∞Met‘𝑌) → ((𝑢 ∈ ran (ball‘𝐷) ∧ (𝐹‘𝑃) ∈ 𝑢) → ∃𝑦 ∈ ℝ+ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢)) |
| 49 | 46, 48 | syl 17 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((𝑢 ∈ ran (ball‘𝐷) ∧ (𝐹‘𝑃) ∈ 𝑢) → ∃𝑦 ∈ ℝ+ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢)) |
| 50 | | r19.29r 3116 |
. . . . . . . . . 10
⊢
((∃𝑦 ∈
ℝ+ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
(𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)) → ∃𝑦 ∈ ℝ+ (((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢 ∧ ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) |
| 51 | 30 | ad5ant12 756 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) → 𝐶 ∈ (∞Met‘𝑋)) |
| 52 | 13 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) → 𝑃 ∈ 𝑋) |
| 53 | | rpxr 13044 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ℝ+
→ 𝑧 ∈
ℝ*) |
| 54 | 53 | ad2antrl 728 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) → 𝑧 ∈ ℝ*) |
| 55 | 1 | blopn 24513 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑧 ∈ ℝ*) → (𝑃(ball‘𝐶)𝑧) ∈ 𝐽) |
| 56 | 51, 52, 54, 55 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) → (𝑃(ball‘𝐶)𝑧) ∈ 𝐽) |
| 57 | | simprl 771 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) → 𝑧 ∈ ℝ+) |
| 58 | | blcntr 24423 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑧 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐶)𝑧)) |
| 59 | 51, 52, 57, 58 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) → 𝑃 ∈ (𝑃(ball‘𝐶)𝑧)) |
| 60 | | sstr 3992 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ∧ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) → (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ 𝑢) |
| 61 | 60 | ad2ant2l 746 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑧 ∈ ℝ+
∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)) ∧ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢)) → (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ 𝑢) |
| 62 | 61 | ancoms 458 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) → (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ 𝑢) |
| 63 | | eleq2 2830 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = (𝑃(ball‘𝐶)𝑧) → (𝑃 ∈ 𝑣 ↔ 𝑃 ∈ (𝑃(ball‘𝐶)𝑧))) |
| 64 | | imaeq2 6074 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 = (𝑃(ball‘𝐶)𝑧) → (𝐹 “ 𝑣) = (𝐹 “ (𝑃(ball‘𝐶)𝑧))) |
| 65 | 64 | sseq1d 4015 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = (𝑃(ball‘𝐶)𝑧) → ((𝐹 “ 𝑣) ⊆ 𝑢 ↔ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ 𝑢)) |
| 66 | 63, 65 | anbi12d 632 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = (𝑃(ball‘𝐶)𝑧) → ((𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢) ↔ (𝑃 ∈ (𝑃(ball‘𝐶)𝑧) ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ 𝑢))) |
| 67 | 66 | rspcev 3622 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃(ball‘𝐶)𝑧) ∈ 𝐽 ∧ (𝑃 ∈ (𝑃(ball‘𝐶)𝑧) ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ 𝑢)) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)) |
| 68 | 56, 59, 62, 67 | syl12anc 837 |
. . . . . . . . . . . . . 14
⊢
((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)) |
| 69 | 68 | expr 456 |
. . . . . . . . . . . . 13
⊢
((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ 𝑧 ∈ ℝ+) → ((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))) |
| 70 | 69 | rexlimdva 3155 |
. . . . . . . . . . . 12
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) → (∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))) |
| 71 | 70 | expimpd 453 |
. . . . . . . . . . 11
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) → ((((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢 ∧ ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))) |
| 72 | 71 | rexlimdva 3155 |
. . . . . . . . . 10
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∃𝑦 ∈ ℝ+ (((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢 ∧ ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))) |
| 73 | 50, 72 | syl5 34 |
. . . . . . . . 9
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((∃𝑦 ∈ ℝ+ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
(𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))) |
| 74 | 73 | expd 415 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∃𝑦 ∈ ℝ+ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢 → (∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
(𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)))) |
| 75 | 49, 74 | syld 47 |
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((𝑢 ∈ ran (ball‘𝐷) ∧ (𝐹‘𝑃) ∈ 𝑢) → (∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
(𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)))) |
| 76 | 75 | com23 86 |
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
(𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦) → ((𝑢 ∈ ran (ball‘𝐷) ∧ (𝐹‘𝑃) ∈ 𝑢) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)))) |
| 77 | 76 | exp4a 431 |
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
(𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦) → (𝑢 ∈ ran (ball‘𝐷) → ((𝐹‘𝑃) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))))) |
| 78 | 77 | ralrimdv 3152 |
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
(𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦) → ∀𝑢 ∈ ran (ball‘𝐷)((𝐹‘𝑃) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)))) |
| 79 | 45, 78 | impbid 212 |
. . 3
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑢 ∈ ran (ball‘𝐷)((𝐹‘𝑃) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)) ↔ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
(𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) |
| 80 | 79 | pm5.32da 579 |
. 2
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ ran (ball‘𝐷)((𝐹‘𝑃) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
(𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)))) |
| 81 | 10, 80 | bitrd 279 |
1
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
(𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)))) |