MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcnp3 Structured version   Visualization version   GIF version

Theorem metcnp3 23696
Description: Two ways to express that 𝐹 is continuous at 𝑃 for metric spaces. Proposition 14-4.2 of [Gleason] p. 240. (Contributed by NM, 17-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpen‘𝐶)
metcn.4 𝐾 = (MetOpen‘𝐷)
Assertion
Ref Expression
metcnp3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))))
Distinct variable groups:   𝑦,𝑧,𝐹   𝑦,𝐽,𝑧   𝑦,𝐾,𝑧   𝑦,𝑋,𝑧   𝑦,𝑌,𝑧   𝑦,𝐶,𝑧   𝑦,𝐷,𝑧   𝑦,𝑃,𝑧

Proof of Theorem metcnp3
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metcn.2 . . . . 5 𝐽 = (MetOpen‘𝐶)
21mopntopon 23592 . . . 4 (𝐶 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
323ad2ant1 1132 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → 𝐽 ∈ (TopOn‘𝑋))
4 metcn.4 . . . . 5 𝐾 = (MetOpen‘𝐷)
54mopnval 23591 . . . 4 (𝐷 ∈ (∞Met‘𝑌) → 𝐾 = (topGen‘ran (ball‘𝐷)))
653ad2ant2 1133 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → 𝐾 = (topGen‘ran (ball‘𝐷)))
74mopntopon 23592 . . . 4 (𝐷 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌))
873ad2ant2 1133 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → 𝐾 ∈ (TopOn‘𝑌))
9 simp3 1137 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → 𝑃𝑋)
103, 6, 8, 9tgcnp 22404 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢 ∈ ran (ball‘𝐷)((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
11 simpll2 1212 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑌))
12 simplr 766 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → 𝐹:𝑋𝑌)
13 simpll3 1213 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → 𝑃𝑋)
1412, 13ffvelrnd 6962 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → (𝐹𝑃) ∈ 𝑌)
15 simpr 485 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
16 blcntr 23566 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝐹𝑃) ∈ 𝑌𝑦 ∈ ℝ+) → (𝐹𝑃) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦))
1711, 14, 15, 16syl3anc 1370 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → (𝐹𝑃) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦))
18 rpxr 12739 . . . . . . . . . 10 (𝑦 ∈ ℝ+𝑦 ∈ ℝ*)
1918adantl 482 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ*)
20 blelrn 23570 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝐹𝑃) ∈ 𝑌𝑦 ∈ ℝ*) → ((𝐹𝑃)(ball‘𝐷)𝑦) ∈ ran (ball‘𝐷))
2111, 14, 19, 20syl3anc 1370 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → ((𝐹𝑃)(ball‘𝐷)𝑦) ∈ ran (ball‘𝐷))
22 eleq2 2827 . . . . . . . . . 10 (𝑢 = ((𝐹𝑃)(ball‘𝐷)𝑦) → ((𝐹𝑃) ∈ 𝑢 ↔ (𝐹𝑃) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)))
23 sseq2 3947 . . . . . . . . . . . 12 (𝑢 = ((𝐹𝑃)(ball‘𝐷)𝑦) → ((𝐹𝑣) ⊆ 𝑢 ↔ (𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
2423anbi2d 629 . . . . . . . . . . 11 (𝑢 = ((𝐹𝑃)(ball‘𝐷)𝑦) → ((𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢) ↔ (𝑃𝑣 ∧ (𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))))
2524rexbidv 3226 . . . . . . . . . 10 (𝑢 = ((𝐹𝑃)(ball‘𝐷)𝑦) → (∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢) ↔ ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))))
2622, 25imbi12d 345 . . . . . . . . 9 (𝑢 = ((𝐹𝑃)(ball‘𝐷)𝑦) → (((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)) ↔ ((𝐹𝑃) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))))
2726rspcv 3557 . . . . . . . 8 (((𝐹𝑃)(ball‘𝐷)𝑦) ∈ ran (ball‘𝐷) → (∀𝑢 ∈ ran (ball‘𝐷)((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)) → ((𝐹𝑃) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))))
2821, 27syl 17 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → (∀𝑢 ∈ ran (ball‘𝐷)((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)) → ((𝐹𝑃) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))))
2917, 28mpid 44 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → (∀𝑢 ∈ ran (ball‘𝐷)((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))))
30 simpl1 1190 . . . . . . . . . . . 12 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → 𝐶 ∈ (∞Met‘𝑋))
3130ad2antrr 723 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑣𝐽)) ∧ 𝑃𝑣) → 𝐶 ∈ (∞Met‘𝑋))
32 simplrr 775 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑣𝐽)) ∧ 𝑃𝑣) → 𝑣𝐽)
33 simpr 485 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑣𝐽)) ∧ 𝑃𝑣) → 𝑃𝑣)
341mopni2 23649 . . . . . . . . . . 11 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑣𝐽𝑃𝑣) → ∃𝑧 ∈ ℝ+ (𝑃(ball‘𝐶)𝑧) ⊆ 𝑣)
3531, 32, 33, 34syl3anc 1370 . . . . . . . . . 10 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑣𝐽)) ∧ 𝑃𝑣) → ∃𝑧 ∈ ℝ+ (𝑃(ball‘𝐶)𝑧) ⊆ 𝑣)
36 sstr2 3928 . . . . . . . . . . . 12 ((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ (𝐹𝑣) → ((𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
37 imass2 6010 . . . . . . . . . . . 12 ((𝑃(ball‘𝐶)𝑧) ⊆ 𝑣 → (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ (𝐹𝑣))
3836, 37syl11 33 . . . . . . . . . . 11 ((𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → ((𝑃(ball‘𝐶)𝑧) ⊆ 𝑣 → (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
3938reximdv 3202 . . . . . . . . . 10 ((𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → (∃𝑧 ∈ ℝ+ (𝑃(ball‘𝐶)𝑧) ⊆ 𝑣 → ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
4035, 39syl5com 31 . . . . . . . . 9 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑣𝐽)) ∧ 𝑃𝑣) → ((𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
4140expimpd 454 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑣𝐽)) → ((𝑃𝑣 ∧ (𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)) → ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
4241expr 457 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → (𝑣𝐽 → ((𝑃𝑣 ∧ (𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)) → ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))))
4342rexlimdv 3212 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → (∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)) → ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
4429, 43syld 47 . . . . 5 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → (∀𝑢 ∈ ran (ball‘𝐷)((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)) → ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
4544ralrimdva 3106 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑢 ∈ ran (ball‘𝐷)((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)) → ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
46 simpl2 1191 . . . . . . . . 9 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → 𝐷 ∈ (∞Met‘𝑌))
47 blss 23578 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑌) ∧ 𝑢 ∈ ran (ball‘𝐷) ∧ (𝐹𝑃) ∈ 𝑢) → ∃𝑦 ∈ ℝ+ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢)
48473expib 1121 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑌) → ((𝑢 ∈ ran (ball‘𝐷) ∧ (𝐹𝑃) ∈ 𝑢) → ∃𝑦 ∈ ℝ+ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢))
4946, 48syl 17 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → ((𝑢 ∈ ran (ball‘𝐷) ∧ (𝐹𝑃) ∈ 𝑢) → ∃𝑦 ∈ ℝ+ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢))
50 r19.29r 3185 . . . . . . . . . 10 ((∃𝑦 ∈ ℝ+ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)) → ∃𝑦 ∈ ℝ+ (((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢 ∧ ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
5130ad5ant12 753 . . . . . . . . . . . . . . . 16 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))) → 𝐶 ∈ (∞Met‘𝑋))
5213ad2antrr 723 . . . . . . . . . . . . . . . 16 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))) → 𝑃𝑋)
53 rpxr 12739 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℝ+𝑧 ∈ ℝ*)
5453ad2antrl 725 . . . . . . . . . . . . . . . 16 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))) → 𝑧 ∈ ℝ*)
551blopn 23656 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑧 ∈ ℝ*) → (𝑃(ball‘𝐶)𝑧) ∈ 𝐽)
5651, 52, 54, 55syl3anc 1370 . . . . . . . . . . . . . . 15 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))) → (𝑃(ball‘𝐶)𝑧) ∈ 𝐽)
57 simprl 768 . . . . . . . . . . . . . . . 16 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))) → 𝑧 ∈ ℝ+)
58 blcntr 23566 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑧 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐶)𝑧))
5951, 52, 57, 58syl3anc 1370 . . . . . . . . . . . . . . 15 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))) → 𝑃 ∈ (𝑃(ball‘𝐶)𝑧))
60 sstr 3929 . . . . . . . . . . . . . . . . 17 (((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) → (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ 𝑢)
6160ad2ant2l 743 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)) ∧ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢)) → (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ 𝑢)
6261ancoms 459 . . . . . . . . . . . . . . 15 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))) → (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ 𝑢)
63 eleq2 2827 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝑃(ball‘𝐶)𝑧) → (𝑃𝑣𝑃 ∈ (𝑃(ball‘𝐶)𝑧)))
64 imaeq2 5965 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝑃(ball‘𝐶)𝑧) → (𝐹𝑣) = (𝐹 “ (𝑃(ball‘𝐶)𝑧)))
6564sseq1d 3952 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝑃(ball‘𝐶)𝑧) → ((𝐹𝑣) ⊆ 𝑢 ↔ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ 𝑢))
6663, 65anbi12d 631 . . . . . . . . . . . . . . . 16 (𝑣 = (𝑃(ball‘𝐶)𝑧) → ((𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢) ↔ (𝑃 ∈ (𝑃(ball‘𝐶)𝑧) ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ 𝑢)))
6766rspcev 3561 . . . . . . . . . . . . . . 15 (((𝑃(ball‘𝐶)𝑧) ∈ 𝐽 ∧ (𝑃 ∈ (𝑃(ball‘𝐶)𝑧) ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ 𝑢)) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))
6856, 59, 62, 67syl12anc 834 . . . . . . . . . . . . . 14 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))
6968expr 457 . . . . . . . . . . . . 13 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ 𝑧 ∈ ℝ+) → ((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
7069rexlimdva 3213 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) → (∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
7170expimpd 454 . . . . . . . . . . 11 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → ((((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢 ∧ ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
7271rexlimdva 3213 . . . . . . . . . 10 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → (∃𝑦 ∈ ℝ+ (((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢 ∧ ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
7350, 72syl5 34 . . . . . . . . 9 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → ((∃𝑦 ∈ ℝ+ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
7473expd 416 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → (∃𝑦 ∈ ℝ+ ((𝐹𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢 → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))))
7549, 74syld 47 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → ((𝑢 ∈ ran (ball‘𝐷) ∧ (𝐹𝑃) ∈ 𝑢) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))))
7675com23 86 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → ((𝑢 ∈ ran (ball‘𝐷) ∧ (𝐹𝑃) ∈ 𝑢) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))))
7776exp4a 432 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → (𝑢 ∈ ran (ball‘𝐷) → ((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
7877ralrimdv 3105 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) → ∀𝑢 ∈ ran (ball‘𝐷)((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))))
7945, 78impbid 211 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑢 ∈ ran (ball‘𝐷)((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)))
8079pm5.32da 579 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → ((𝐹:𝑋𝑌 ∧ ∀𝑢 ∈ ran (ball‘𝐷)((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))))
8110, 80bitrd 278 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3887  ran crn 5590  cima 5592  wf 6429  cfv 6433  (class class class)co 7275  *cxr 11008  +crp 12730  topGenctg 17148  ∞Metcxmet 20582  ballcbl 20584  MetOpencmopn 20587  TopOnctopon 22059   CnP ccnp 22376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-bl 20592  df-mopn 20593  df-top 22043  df-topon 22060  df-bases 22096  df-cnp 22379
This theorem is referenced by:  metcnp  23697
  Copyright terms: Public domain W3C validator