Step | Hyp | Ref
| Expression |
1 | | metcn.2 |
. . . . 5
⊢ 𝐽 = (MetOpen‘𝐶) |
2 | 1 | mopntopon 23500 |
. . . 4
⊢ (𝐶 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
3 | 2 | 3ad2ant1 1131 |
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
4 | | metcn.4 |
. . . . 5
⊢ 𝐾 = (MetOpen‘𝐷) |
5 | 4 | mopnval 23499 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑌) → 𝐾 = (topGen‘ran (ball‘𝐷))) |
6 | 5 | 3ad2ant2 1132 |
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → 𝐾 = (topGen‘ran (ball‘𝐷))) |
7 | 4 | mopntopon 23500 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌)) |
8 | 7 | 3ad2ant2 1132 |
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → 𝐾 ∈ (TopOn‘𝑌)) |
9 | | simp3 1136 |
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → 𝑃 ∈ 𝑋) |
10 | 3, 6, 8, 9 | tgcnp 22312 |
. 2
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ ran (ball‘𝐷)((𝐹‘𝑃) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))))) |
11 | | simpll2 1211 |
. . . . . . . 8
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑌)) |
12 | | simplr 765 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) → 𝐹:𝑋⟶𝑌) |
13 | | simpll3 1212 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) → 𝑃 ∈ 𝑋) |
14 | 12, 13 | ffvelrnd 6944 |
. . . . . . . 8
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) → (𝐹‘𝑃) ∈ 𝑌) |
15 | | simpr 484 |
. . . . . . . 8
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈
ℝ+) |
16 | | blcntr 23474 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝐹‘𝑃) ∈ 𝑌 ∧ 𝑦 ∈ ℝ+) → (𝐹‘𝑃) ∈ ((𝐹‘𝑃)(ball‘𝐷)𝑦)) |
17 | 11, 14, 15, 16 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) → (𝐹‘𝑃) ∈ ((𝐹‘𝑃)(ball‘𝐷)𝑦)) |
18 | | rpxr 12668 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℝ+
→ 𝑦 ∈
ℝ*) |
19 | 18 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈
ℝ*) |
20 | | blelrn 23478 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝐹‘𝑃) ∈ 𝑌 ∧ 𝑦 ∈ ℝ*) → ((𝐹‘𝑃)(ball‘𝐷)𝑦) ∈ ran (ball‘𝐷)) |
21 | 11, 14, 19, 20 | syl3anc 1369 |
. . . . . . . 8
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) → ((𝐹‘𝑃)(ball‘𝐷)𝑦) ∈ ran (ball‘𝐷)) |
22 | | eleq2 2827 |
. . . . . . . . . 10
⊢ (𝑢 = ((𝐹‘𝑃)(ball‘𝐷)𝑦) → ((𝐹‘𝑃) ∈ 𝑢 ↔ (𝐹‘𝑃) ∈ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) |
23 | | sseq2 3943 |
. . . . . . . . . . . 12
⊢ (𝑢 = ((𝐹‘𝑃)(ball‘𝐷)𝑦) → ((𝐹 “ 𝑣) ⊆ 𝑢 ↔ (𝐹 “ 𝑣) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) |
24 | 23 | anbi2d 628 |
. . . . . . . . . . 11
⊢ (𝑢 = ((𝐹‘𝑃)(ball‘𝐷)𝑦) → ((𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢) ↔ (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)))) |
25 | 24 | rexbidv 3225 |
. . . . . . . . . 10
⊢ (𝑢 = ((𝐹‘𝑃)(ball‘𝐷)𝑦) → (∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢) ↔ ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)))) |
26 | 22, 25 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑢 = ((𝐹‘𝑃)(ball‘𝐷)𝑦) → (((𝐹‘𝑃) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)) ↔ ((𝐹‘𝑃) ∈ ((𝐹‘𝑃)(ball‘𝐷)𝑦) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))))) |
27 | 26 | rspcv 3547 |
. . . . . . . 8
⊢ (((𝐹‘𝑃)(ball‘𝐷)𝑦) ∈ ran (ball‘𝐷) → (∀𝑢 ∈ ran (ball‘𝐷)((𝐹‘𝑃) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)) → ((𝐹‘𝑃) ∈ ((𝐹‘𝑃)(ball‘𝐷)𝑦) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))))) |
28 | 21, 27 | syl 17 |
. . . . . . 7
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) →
(∀𝑢 ∈ ran
(ball‘𝐷)((𝐹‘𝑃) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)) → ((𝐹‘𝑃) ∈ ((𝐹‘𝑃)(ball‘𝐷)𝑦) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))))) |
29 | 17, 28 | mpid 44 |
. . . . . 6
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) →
(∀𝑢 ∈ ran
(ball‘𝐷)((𝐹‘𝑃) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)))) |
30 | | simpl1 1189 |
. . . . . . . . . . . 12
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐶 ∈ (∞Met‘𝑋)) |
31 | 30 | ad2antrr 722 |
. . . . . . . . . . 11
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ ℝ+ ∧ 𝑣 ∈ 𝐽)) ∧ 𝑃 ∈ 𝑣) → 𝐶 ∈ (∞Met‘𝑋)) |
32 | | simplrr 774 |
. . . . . . . . . . 11
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ ℝ+ ∧ 𝑣 ∈ 𝐽)) ∧ 𝑃 ∈ 𝑣) → 𝑣 ∈ 𝐽) |
33 | | simpr 484 |
. . . . . . . . . . 11
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ ℝ+ ∧ 𝑣 ∈ 𝐽)) ∧ 𝑃 ∈ 𝑣) → 𝑃 ∈ 𝑣) |
34 | 1 | mopni2 23555 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑣 ∈ 𝐽 ∧ 𝑃 ∈ 𝑣) → ∃𝑧 ∈ ℝ+ (𝑃(ball‘𝐶)𝑧) ⊆ 𝑣) |
35 | 31, 32, 33, 34 | syl3anc 1369 |
. . . . . . . . . 10
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ ℝ+ ∧ 𝑣 ∈ 𝐽)) ∧ 𝑃 ∈ 𝑣) → ∃𝑧 ∈ ℝ+ (𝑃(ball‘𝐶)𝑧) ⊆ 𝑣) |
36 | | sstr2 3924 |
. . . . . . . . . . . 12
⊢ ((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ (𝐹 “ 𝑣) → ((𝐹 “ 𝑣) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦) → (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) |
37 | | imass2 5999 |
. . . . . . . . . . . 12
⊢ ((𝑃(ball‘𝐶)𝑧) ⊆ 𝑣 → (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ (𝐹 “ 𝑣)) |
38 | 36, 37 | syl11 33 |
. . . . . . . . . . 11
⊢ ((𝐹 “ 𝑣) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦) → ((𝑃(ball‘𝐶)𝑧) ⊆ 𝑣 → (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) |
39 | 38 | reximdv 3201 |
. . . . . . . . . 10
⊢ ((𝐹 “ 𝑣) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦) → (∃𝑧 ∈ ℝ+ (𝑃(ball‘𝐶)𝑧) ⊆ 𝑣 → ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) |
40 | 35, 39 | syl5com 31 |
. . . . . . . . 9
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ ℝ+ ∧ 𝑣 ∈ 𝐽)) ∧ 𝑃 ∈ 𝑣) → ((𝐹 “ 𝑣) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦) → ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) |
41 | 40 | expimpd 453 |
. . . . . . . 8
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ ℝ+ ∧ 𝑣 ∈ 𝐽)) → ((𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)) → ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) |
42 | 41 | expr 456 |
. . . . . . 7
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) → (𝑣 ∈ 𝐽 → ((𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)) → ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)))) |
43 | 42 | rexlimdv 3211 |
. . . . . 6
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) →
(∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)) → ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) |
44 | 29, 43 | syld 47 |
. . . . 5
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) →
(∀𝑢 ∈ ran
(ball‘𝐷)((𝐹‘𝑃) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)) → ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) |
45 | 44 | ralrimdva 3112 |
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑢 ∈ ran (ball‘𝐷)((𝐹‘𝑃) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)) → ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
(𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) |
46 | | simpl2 1190 |
. . . . . . . . 9
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐷 ∈ (∞Met‘𝑌)) |
47 | | blss 23486 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑌) ∧ 𝑢 ∈ ran (ball‘𝐷) ∧ (𝐹‘𝑃) ∈ 𝑢) → ∃𝑦 ∈ ℝ+ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) |
48 | 47 | 3expib 1120 |
. . . . . . . . 9
⊢ (𝐷 ∈ (∞Met‘𝑌) → ((𝑢 ∈ ran (ball‘𝐷) ∧ (𝐹‘𝑃) ∈ 𝑢) → ∃𝑦 ∈ ℝ+ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢)) |
49 | 46, 48 | syl 17 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((𝑢 ∈ ran (ball‘𝐷) ∧ (𝐹‘𝑃) ∈ 𝑢) → ∃𝑦 ∈ ℝ+ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢)) |
50 | | r19.29r 3184 |
. . . . . . . . . 10
⊢
((∃𝑦 ∈
ℝ+ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
(𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)) → ∃𝑦 ∈ ℝ+ (((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢 ∧ ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) |
51 | 30 | ad5ant12 752 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) → 𝐶 ∈ (∞Met‘𝑋)) |
52 | 13 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) → 𝑃 ∈ 𝑋) |
53 | | rpxr 12668 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ℝ+
→ 𝑧 ∈
ℝ*) |
54 | 53 | ad2antrl 724 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) → 𝑧 ∈ ℝ*) |
55 | 1 | blopn 23562 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑧 ∈ ℝ*) → (𝑃(ball‘𝐶)𝑧) ∈ 𝐽) |
56 | 51, 52, 54, 55 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) → (𝑃(ball‘𝐶)𝑧) ∈ 𝐽) |
57 | | simprl 767 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) → 𝑧 ∈ ℝ+) |
58 | | blcntr 23474 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑧 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐶)𝑧)) |
59 | 51, 52, 57, 58 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) → 𝑃 ∈ (𝑃(ball‘𝐶)𝑧)) |
60 | | sstr 3925 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ∧ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) → (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ 𝑢) |
61 | 60 | ad2ant2l 742 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑧 ∈ ℝ+
∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)) ∧ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢)) → (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ 𝑢) |
62 | 61 | ancoms 458 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) → (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ 𝑢) |
63 | | eleq2 2827 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = (𝑃(ball‘𝐶)𝑧) → (𝑃 ∈ 𝑣 ↔ 𝑃 ∈ (𝑃(ball‘𝐶)𝑧))) |
64 | | imaeq2 5954 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 = (𝑃(ball‘𝐶)𝑧) → (𝐹 “ 𝑣) = (𝐹 “ (𝑃(ball‘𝐶)𝑧))) |
65 | 64 | sseq1d 3948 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = (𝑃(ball‘𝐶)𝑧) → ((𝐹 “ 𝑣) ⊆ 𝑢 ↔ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ 𝑢)) |
66 | 63, 65 | anbi12d 630 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = (𝑃(ball‘𝐶)𝑧) → ((𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢) ↔ (𝑃 ∈ (𝑃(ball‘𝐶)𝑧) ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ 𝑢))) |
67 | 66 | rspcev 3552 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃(ball‘𝐶)𝑧) ∈ 𝐽 ∧ (𝑃 ∈ (𝑃(ball‘𝐶)𝑧) ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ 𝑢)) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)) |
68 | 56, 59, 62, 67 | syl12anc 833 |
. . . . . . . . . . . . . 14
⊢
((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ (𝑧 ∈ ℝ+ ∧ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)) |
69 | 68 | expr 456 |
. . . . . . . . . . . . 13
⊢
((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) ∧ 𝑧 ∈ ℝ+) → ((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))) |
70 | 69 | rexlimdva 3212 |
. . . . . . . . . . . 12
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) ∧ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢) → (∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))) |
71 | 70 | expimpd 453 |
. . . . . . . . . . 11
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) → ((((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢 ∧ ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))) |
72 | 71 | rexlimdva 3212 |
. . . . . . . . . 10
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∃𝑦 ∈ ℝ+ (((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢 ∧ ∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))) |
73 | 50, 72 | syl5 34 |
. . . . . . . . 9
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((∃𝑦 ∈ ℝ+ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
(𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))) |
74 | 73 | expd 415 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∃𝑦 ∈ ℝ+ ((𝐹‘𝑃)(ball‘𝐷)𝑦) ⊆ 𝑢 → (∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
(𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)))) |
75 | 49, 74 | syld 47 |
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((𝑢 ∈ ran (ball‘𝐷) ∧ (𝐹‘𝑃) ∈ 𝑢) → (∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
(𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)))) |
76 | 75 | com23 86 |
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
(𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦) → ((𝑢 ∈ ran (ball‘𝐷) ∧ (𝐹‘𝑃) ∈ 𝑢) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)))) |
77 | 76 | exp4a 431 |
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
(𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦) → (𝑢 ∈ ran (ball‘𝐷) → ((𝐹‘𝑃) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))))) |
78 | 77 | ralrimdv 3111 |
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
(𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦) → ∀𝑢 ∈ ran (ball‘𝐷)((𝐹‘𝑃) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)))) |
79 | 45, 78 | impbid 211 |
. . 3
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑢 ∈ ran (ball‘𝐷)((𝐹‘𝑃) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢)) ↔ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
(𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦))) |
80 | 79 | pm5.32da 578 |
. 2
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ ran (ball‘𝐷)((𝐹‘𝑃) ∈ 𝑢 → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐹 “ 𝑣) ⊆ 𝑢))) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
(𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)))) |
81 | 10, 80 | bitrd 278 |
1
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
(𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)))) |