Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supcnvlimsup Structured version   Visualization version   GIF version

Theorem supcnvlimsup 45731
Description: If a function on a set of upper integers has a real superior limit, the supremum of the rightmost parts of the function, converges to that superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
supcnvlimsup.m (𝜑𝑀 ∈ ℤ)
supcnvlimsup.z 𝑍 = (ℤ𝑀)
supcnvlimsup.f (𝜑𝐹:𝑍⟶ℝ)
supcnvlimsup.r (𝜑 → (lim sup‘𝐹) ∈ ℝ)
Assertion
Ref Expression
supcnvlimsup (𝜑 → (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )) ⇝ (lim sup‘𝐹))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝑀(𝑘)

Proof of Theorem supcnvlimsup
Dummy variables 𝑖 𝑗 𝑥 𝑛 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supcnvlimsup.z . . 3 𝑍 = (ℤ𝑀)
2 supcnvlimsup.m . . 3 (𝜑𝑀 ∈ ℤ)
3 supcnvlimsup.f . . . . . . . . 9 (𝜑𝐹:𝑍⟶ℝ)
43adantr 480 . . . . . . . 8 ((𝜑𝑛𝑍) → 𝐹:𝑍⟶ℝ)
5 id 22 . . . . . . . . . 10 (𝑛𝑍𝑛𝑍)
61, 5uzssd2 45406 . . . . . . . . 9 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
76adantl 481 . . . . . . . 8 ((𝜑𝑛𝑍) → (ℤ𝑛) ⊆ 𝑍)
84, 7feqresmpt 6892 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐹 ↾ (ℤ𝑛)) = (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)))
98rneqd 5880 . . . . . 6 ((𝜑𝑛𝑍) → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)))
109supeq1d 9336 . . . . 5 ((𝜑𝑛𝑍) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)), ℝ*, < ))
11 nfcv 2891 . . . . . . . . 9 𝑚𝐹
12 supcnvlimsup.r . . . . . . . . . 10 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
1312renepnfd 11166 . . . . . . . . 9 (𝜑 → (lim sup‘𝐹) ≠ +∞)
1411, 1, 3, 13limsupubuz 45704 . . . . . . . 8 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥)
1514adantr 480 . . . . . . 7 ((𝜑𝑛𝑍) → ∃𝑥 ∈ ℝ ∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥)
16 ssralv 4004 . . . . . . . . . 10 ((ℤ𝑛) ⊆ 𝑍 → (∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
176, 16syl 17 . . . . . . . . 9 (𝑛𝑍 → (∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
1817adantl 481 . . . . . . . 8 ((𝜑𝑛𝑍) → (∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
1918reximdv 3144 . . . . . . 7 ((𝜑𝑛𝑍) → (∃𝑥 ∈ ℝ ∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
2015, 19mpd 15 . . . . . 6 ((𝜑𝑛𝑍) → ∃𝑥 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥)
21 nfv 1914 . . . . . . 7 𝑚(𝜑𝑛𝑍)
221eluzelz2 45392 . . . . . . . . 9 (𝑛𝑍𝑛 ∈ ℤ)
23 uzid 12750 . . . . . . . . 9 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
24 ne0i 4292 . . . . . . . . 9 (𝑛 ∈ (ℤ𝑛) → (ℤ𝑛) ≠ ∅)
2522, 23, 243syl 18 . . . . . . . 8 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
2625adantl 481 . . . . . . 7 ((𝜑𝑛𝑍) → (ℤ𝑛) ≠ ∅)
274adantr 480 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐹:𝑍⟶ℝ)
287sselda 3935 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
2927, 28ffvelcdmd 7019 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚) ∈ ℝ)
3021, 26, 29supxrre3rnmpt 45418 . . . . . 6 ((𝜑𝑛𝑍) → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)), ℝ*, < ) ∈ ℝ ↔ ∃𝑥 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
3120, 30mpbird 257 . . . . 5 ((𝜑𝑛𝑍) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)), ℝ*, < ) ∈ ℝ)
3210, 31eqeltrd 2828 . . . 4 ((𝜑𝑛𝑍) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) ∈ ℝ)
3332fmpttd 7049 . . 3 (𝜑 → (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )):𝑍⟶ℝ)
34 eqid 2729 . . . . . . . 8 (ℤ𝑖) = (ℤ𝑖)
351eluzelz2 45392 . . . . . . . 8 (𝑖𝑍𝑖 ∈ ℤ)
3635peano2zd 12583 . . . . . . . 8 (𝑖𝑍 → (𝑖 + 1) ∈ ℤ)
3735zred 12580 . . . . . . . . 9 (𝑖𝑍𝑖 ∈ ℝ)
38 lep1 11965 . . . . . . . . 9 (𝑖 ∈ ℝ → 𝑖 ≤ (𝑖 + 1))
3937, 38syl 17 . . . . . . . 8 (𝑖𝑍𝑖 ≤ (𝑖 + 1))
4034, 35, 36, 39eluzd 45398 . . . . . . 7 (𝑖𝑍 → (𝑖 + 1) ∈ (ℤ𝑖))
41 uzss 12758 . . . . . . 7 ((𝑖 + 1) ∈ (ℤ𝑖) → (ℤ‘(𝑖 + 1)) ⊆ (ℤ𝑖))
42 ssres2 5955 . . . . . . 7 ((ℤ‘(𝑖 + 1)) ⊆ (ℤ𝑖) → (𝐹 ↾ (ℤ‘(𝑖 + 1))) ⊆ (𝐹 ↾ (ℤ𝑖)))
43 rnss 5881 . . . . . . 7 ((𝐹 ↾ (ℤ‘(𝑖 + 1))) ⊆ (𝐹 ↾ (ℤ𝑖)) → ran (𝐹 ↾ (ℤ‘(𝑖 + 1))) ⊆ ran (𝐹 ↾ (ℤ𝑖)))
4440, 41, 42, 434syl 19 . . . . . 6 (𝑖𝑍 → ran (𝐹 ↾ (ℤ‘(𝑖 + 1))) ⊆ ran (𝐹 ↾ (ℤ𝑖)))
4544adantl 481 . . . . 5 ((𝜑𝑖𝑍) → ran (𝐹 ↾ (ℤ‘(𝑖 + 1))) ⊆ ran (𝐹 ↾ (ℤ𝑖)))
46 rnresss 5968 . . . . . . . 8 ran (𝐹 ↾ (ℤ𝑖)) ⊆ ran 𝐹
4746a1i 11 . . . . . . 7 ((𝜑𝑖𝑍) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ran 𝐹)
483frnd 6660 . . . . . . . 8 (𝜑 → ran 𝐹 ⊆ ℝ)
4948adantr 480 . . . . . . 7 ((𝜑𝑖𝑍) → ran 𝐹 ⊆ ℝ)
5047, 49sstrd 3946 . . . . . 6 ((𝜑𝑖𝑍) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ℝ)
51 ressxr 11159 . . . . . . 7 ℝ ⊆ ℝ*
5251a1i 11 . . . . . 6 ((𝜑𝑖𝑍) → ℝ ⊆ ℝ*)
5350, 52sstrd 3946 . . . . 5 ((𝜑𝑖𝑍) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ℝ*)
54 supxrss 13234 . . . . 5 ((ran (𝐹 ↾ (ℤ‘(𝑖 + 1))) ⊆ ran (𝐹 ↾ (ℤ𝑖)) ∧ ran (𝐹 ↾ (ℤ𝑖)) ⊆ ℝ*) → sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ) ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
5545, 53, 54syl2anc 584 . . . 4 ((𝜑𝑖𝑍) → sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ) ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
56 eqidd 2730 . . . . . . 7 (𝑖𝑍 → (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
57 fveq2 6822 . . . . . . . . . . 11 (𝑛 = (𝑖 + 1) → (ℤ𝑛) = (ℤ‘(𝑖 + 1)))
5857reseq2d 5930 . . . . . . . . . 10 (𝑛 = (𝑖 + 1) → (𝐹 ↾ (ℤ𝑛)) = (𝐹 ↾ (ℤ‘(𝑖 + 1))))
5958rneqd 5880 . . . . . . . . 9 (𝑛 = (𝑖 + 1) → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝐹 ↾ (ℤ‘(𝑖 + 1))))
6059supeq1d 9336 . . . . . . . 8 (𝑛 = (𝑖 + 1) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ))
6160adantl 481 . . . . . . 7 ((𝑖𝑍𝑛 = (𝑖 + 1)) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ))
621peano2uzs 12803 . . . . . . 7 (𝑖𝑍 → (𝑖 + 1) ∈ 𝑍)
63 xrltso 13043 . . . . . . . . 9 < Or ℝ*
6463supex 9354 . . . . . . . 8 sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ) ∈ V
6564a1i 11 . . . . . . 7 (𝑖𝑍 → sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ) ∈ V)
6656, 61, 62, 65fvmptd 6937 . . . . . 6 (𝑖𝑍 → ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘(𝑖 + 1)) = sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ))
6766adantl 481 . . . . 5 ((𝜑𝑖𝑍) → ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘(𝑖 + 1)) = sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ))
68 fveq2 6822 . . . . . . . . . . 11 (𝑛 = 𝑖 → (ℤ𝑛) = (ℤ𝑖))
6968reseq2d 5930 . . . . . . . . . 10 (𝑛 = 𝑖 → (𝐹 ↾ (ℤ𝑛)) = (𝐹 ↾ (ℤ𝑖)))
7069rneqd 5880 . . . . . . . . 9 (𝑛 = 𝑖 → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝐹 ↾ (ℤ𝑖)))
7170supeq1d 9336 . . . . . . . 8 (𝑛 = 𝑖 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
7271adantl 481 . . . . . . 7 ((𝑖𝑍𝑛 = 𝑖) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
73 id 22 . . . . . . 7 (𝑖𝑍𝑖𝑍)
7463supex 9354 . . . . . . . 8 sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ∈ V
7574a1i 11 . . . . . . 7 (𝑖𝑍 → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ∈ V)
7656, 72, 73, 75fvmptd 6937 . . . . . 6 (𝑖𝑍 → ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
7776adantl 481 . . . . 5 ((𝜑𝑖𝑍) → ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
7867, 77breq12d 5105 . . . 4 ((𝜑𝑖𝑍) → (((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘(𝑖 + 1)) ≤ ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖) ↔ sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ) ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
7955, 78mpbird 257 . . 3 ((𝜑𝑖𝑍) → ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘(𝑖 + 1)) ≤ ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖))
80 nfcv 2891 . . . . . . . 8 𝑗𝐹
813frexr 45374 . . . . . . . 8 (𝜑𝐹:𝑍⟶ℝ*)
8280, 2, 1, 81limsupre3uz 45727 . . . . . . 7 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)(𝐹𝑗) ≤ 𝑥)))
8312, 82mpbid 232 . . . . . 6 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)(𝐹𝑗) ≤ 𝑥))
8483simpld 494 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗))
85 simp-4r 783 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ∈ ℝ)
8685rexrd 11165 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ∈ ℝ*)
87813ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝐹:𝑍⟶ℝ*)
881uztrn2 12754 . . . . . . . . . . . 12 ((𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝑗𝑍)
89883adant1 1130 . . . . . . . . . . 11 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝑗𝑍)
9087, 89ffvelcdmd 7019 . . . . . . . . . 10 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) ∈ ℝ*)
9190ad5ant134 1369 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
9253supxrcld 45095 . . . . . . . . . 10 ((𝜑𝑖𝑍) → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ∈ ℝ*)
9392ad5ant13 756 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ∈ ℝ*)
94 simpr 484 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ≤ (𝐹𝑗))
95533adant3 1132 . . . . . . . . . . 11 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ℝ*)
96 fvres 6841 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑖) → ((𝐹 ↾ (ℤ𝑖))‘𝑗) = (𝐹𝑗))
9796eqcomd 2735 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑖) → (𝐹𝑗) = ((𝐹 ↾ (ℤ𝑖))‘𝑗))
98973ad2ant3 1135 . . . . . . . . . . . 12 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) = ((𝐹 ↾ (ℤ𝑖))‘𝑗))
993ffnd 6653 . . . . . . . . . . . . . . . 16 (𝜑𝐹 Fn 𝑍)
10099adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → 𝐹 Fn 𝑍)
1011, 73uzssd2 45406 . . . . . . . . . . . . . . . 16 (𝑖𝑍 → (ℤ𝑖) ⊆ 𝑍)
102101adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → (ℤ𝑖) ⊆ 𝑍)
103 fnssres 6605 . . . . . . . . . . . . . . 15 ((𝐹 Fn 𝑍 ∧ (ℤ𝑖) ⊆ 𝑍) → (𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖))
104100, 102, 103syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍) → (𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖))
1051043adant3 1132 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖))
106 simp3 1138 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝑗 ∈ (ℤ𝑖))
107 fnfvelrn 7014 . . . . . . . . . . . . 13 (((𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖) ∧ 𝑗 ∈ (ℤ𝑖)) → ((𝐹 ↾ (ℤ𝑖))‘𝑗) ∈ ran (𝐹 ↾ (ℤ𝑖)))
108105, 106, 107syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → ((𝐹 ↾ (ℤ𝑖))‘𝑗) ∈ ran (𝐹 ↾ (ℤ𝑖)))
10998, 108eqeltrd 2828 . . . . . . . . . . 11 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) ∈ ran (𝐹 ↾ (ℤ𝑖)))
110 eqid 2729 . . . . . . . . . . 11 sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )
11195, 109, 110supxrubd 45101 . . . . . . . . . 10 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
112111ad5ant134 1369 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
11386, 91, 93, 94, 112xrletrd 13064 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
114113rexlimdva2 3132 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) → (∃𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
115114ralimdva 3141 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) → ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
116115reximdva 3142 . . . . 5 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) → ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
11784, 116mpd 15 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
118 simpl 482 . . . . . . 7 ((𝑦 = 𝑥𝑖𝑍) → 𝑦 = 𝑥)
11976adantl 481 . . . . . . 7 ((𝑦 = 𝑥𝑖𝑍) → ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
120118, 119breq12d 5105 . . . . . 6 ((𝑦 = 𝑥𝑖𝑍) → (𝑦 ≤ ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖) ↔ 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
121120ralbidva 3150 . . . . 5 (𝑦 = 𝑥 → (∀𝑖𝑍 𝑦 ≤ ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖) ↔ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
122121cbvrexvw 3208 . . . 4 (∃𝑦 ∈ ℝ ∀𝑖𝑍 𝑦 ≤ ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖) ↔ ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
123117, 122sylibr 234 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑖𝑍 𝑦 ≤ ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖))
1241, 2, 33, 79, 123climinf 45597 . 2 (𝜑 → (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) ⇝ inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ))
125 fveq2 6822 . . . . . . . 8 (𝑛 = 𝑘 → (ℤ𝑛) = (ℤ𝑘))
126125reseq2d 5930 . . . . . . 7 (𝑛 = 𝑘 → (𝐹 ↾ (ℤ𝑛)) = (𝐹 ↾ (ℤ𝑘)))
127126rneqd 5880 . . . . . 6 (𝑛 = 𝑘 → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝐹 ↾ (ℤ𝑘)))
128127supeq1d 9336 . . . . 5 (𝑛 = 𝑘 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
129128cbvmptv 5196 . . . 4 (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
130129a1i 11 . . 3 (𝜑 → (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )))
1312, 1, 3, 12limsupvaluz2 45729 . . . 4 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ))
132131eqcomd 2735 . . 3 (𝜑 → inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ) = (lim sup‘𝐹))
133130, 132breq12d 5105 . 2 (𝜑 → ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) ⇝ inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ) ↔ (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )) ⇝ (lim sup‘𝐹)))
134124, 133mpbid 232 1 (𝜑 → (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )) ⇝ (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3436  wss 3903  c0 4284   class class class wbr 5092  cmpt 5173  ran crn 5620  cres 5621   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  supcsup 9330  infcinf 9331  cr 11008  1c1 11010   + caddc 11012  *cxr 11148   < clt 11149  cle 11150  cz 12471  cuz 12735  lim supclsp 15377  cli 15391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-ico 13254  df-fz 13411  df-fl 13696  df-ceil 13697  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395
This theorem is referenced by:  supcnvlimsupmpt  45732
  Copyright terms: Public domain W3C validator