Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supcnvlimsup Structured version   Visualization version   GIF version

Theorem supcnvlimsup 44442
Description: If a function on a set of upper integers has a real superior limit, the supremum of the rightmost parts of the function, converges to that superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
supcnvlimsup.m (πœ‘ β†’ 𝑀 ∈ β„€)
supcnvlimsup.z 𝑍 = (β„€β‰₯β€˜π‘€)
supcnvlimsup.f (πœ‘ β†’ 𝐹:π‘βŸΆβ„)
supcnvlimsup.r (πœ‘ β†’ (lim supβ€˜πΉ) ∈ ℝ)
Assertion
Ref Expression
supcnvlimsup (πœ‘ β†’ (π‘˜ ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘˜)), ℝ*, < )) ⇝ (lim supβ€˜πΉ))
Distinct variable groups:   π‘˜,𝐹   π‘˜,𝑍
Allowed substitution hints:   πœ‘(π‘˜)   𝑀(π‘˜)

Proof of Theorem supcnvlimsup
Dummy variables 𝑖 𝑗 π‘₯ 𝑛 π‘š 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supcnvlimsup.z . . 3 𝑍 = (β„€β‰₯β€˜π‘€)
2 supcnvlimsup.m . . 3 (πœ‘ β†’ 𝑀 ∈ β„€)
3 supcnvlimsup.f . . . . . . . . 9 (πœ‘ β†’ 𝐹:π‘βŸΆβ„)
43adantr 481 . . . . . . . 8 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ 𝐹:π‘βŸΆβ„)
5 id 22 . . . . . . . . . 10 (𝑛 ∈ 𝑍 β†’ 𝑛 ∈ 𝑍)
61, 5uzssd2 44113 . . . . . . . . 9 (𝑛 ∈ 𝑍 β†’ (β„€β‰₯β€˜π‘›) βŠ† 𝑍)
76adantl 482 . . . . . . . 8 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ (β„€β‰₯β€˜π‘›) βŠ† 𝑍)
84, 7feqresmpt 6958 . . . . . . 7 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)) = (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ (πΉβ€˜π‘š)))
98rneqd 5935 . . . . . 6 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)) = ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ (πΉβ€˜π‘š)))
109supeq1d 9437 . . . . 5 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ) = sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ (πΉβ€˜π‘š)), ℝ*, < ))
11 nfcv 2903 . . . . . . . . 9 β„²π‘šπΉ
12 supcnvlimsup.r . . . . . . . . . 10 (πœ‘ β†’ (lim supβ€˜πΉ) ∈ ℝ)
1312renepnfd 11261 . . . . . . . . 9 (πœ‘ β†’ (lim supβ€˜πΉ) β‰  +∞)
1411, 1, 3, 13limsupubuz 44415 . . . . . . . 8 (πœ‘ β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘š ∈ 𝑍 (πΉβ€˜π‘š) ≀ π‘₯)
1514adantr 481 . . . . . . 7 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘š ∈ 𝑍 (πΉβ€˜π‘š) ≀ π‘₯)
16 ssralv 4049 . . . . . . . . . 10 ((β„€β‰₯β€˜π‘›) βŠ† 𝑍 β†’ (βˆ€π‘š ∈ 𝑍 (πΉβ€˜π‘š) ≀ π‘₯ β†’ βˆ€π‘š ∈ (β„€β‰₯β€˜π‘›)(πΉβ€˜π‘š) ≀ π‘₯))
176, 16syl 17 . . . . . . . . 9 (𝑛 ∈ 𝑍 β†’ (βˆ€π‘š ∈ 𝑍 (πΉβ€˜π‘š) ≀ π‘₯ β†’ βˆ€π‘š ∈ (β„€β‰₯β€˜π‘›)(πΉβ€˜π‘š) ≀ π‘₯))
1817adantl 482 . . . . . . . 8 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ (βˆ€π‘š ∈ 𝑍 (πΉβ€˜π‘š) ≀ π‘₯ β†’ βˆ€π‘š ∈ (β„€β‰₯β€˜π‘›)(πΉβ€˜π‘š) ≀ π‘₯))
1918reximdv 3170 . . . . . . 7 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ (βˆƒπ‘₯ ∈ ℝ βˆ€π‘š ∈ 𝑍 (πΉβ€˜π‘š) ≀ π‘₯ β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘š ∈ (β„€β‰₯β€˜π‘›)(πΉβ€˜π‘š) ≀ π‘₯))
2015, 19mpd 15 . . . . . 6 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘š ∈ (β„€β‰₯β€˜π‘›)(πΉβ€˜π‘š) ≀ π‘₯)
21 nfv 1917 . . . . . . 7 β„²π‘š(πœ‘ ∧ 𝑛 ∈ 𝑍)
221eluzelz2 44099 . . . . . . . . 9 (𝑛 ∈ 𝑍 β†’ 𝑛 ∈ β„€)
23 uzid 12833 . . . . . . . . 9 (𝑛 ∈ β„€ β†’ 𝑛 ∈ (β„€β‰₯β€˜π‘›))
24 ne0i 4333 . . . . . . . . 9 (𝑛 ∈ (β„€β‰₯β€˜π‘›) β†’ (β„€β‰₯β€˜π‘›) β‰  βˆ…)
2522, 23, 243syl 18 . . . . . . . 8 (𝑛 ∈ 𝑍 β†’ (β„€β‰₯β€˜π‘›) β‰  βˆ…)
2625adantl 482 . . . . . . 7 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ (β„€β‰₯β€˜π‘›) β‰  βˆ…)
274adantr 481 . . . . . . . 8 (((πœ‘ ∧ 𝑛 ∈ 𝑍) ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ 𝐹:π‘βŸΆβ„)
287sselda 3981 . . . . . . . 8 (((πœ‘ ∧ 𝑛 ∈ 𝑍) ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ π‘š ∈ 𝑍)
2927, 28ffvelcdmd 7084 . . . . . . 7 (((πœ‘ ∧ 𝑛 ∈ 𝑍) ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ (πΉβ€˜π‘š) ∈ ℝ)
3021, 26, 29supxrre3rnmpt 44125 . . . . . 6 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ (sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ (πΉβ€˜π‘š)), ℝ*, < ) ∈ ℝ ↔ βˆƒπ‘₯ ∈ ℝ βˆ€π‘š ∈ (β„€β‰₯β€˜π‘›)(πΉβ€˜π‘š) ≀ π‘₯))
3120, 30mpbird 256 . . . . 5 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ (πΉβ€˜π‘š)), ℝ*, < ) ∈ ℝ)
3210, 31eqeltrd 2833 . . . 4 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ) ∈ ℝ)
3332fmpttd 7111 . . 3 (πœ‘ β†’ (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < )):π‘βŸΆβ„)
34 eqid 2732 . . . . . . . . . 10 (β„€β‰₯β€˜π‘–) = (β„€β‰₯β€˜π‘–)
351eluzelz2 44099 . . . . . . . . . 10 (𝑖 ∈ 𝑍 β†’ 𝑖 ∈ β„€)
3635peano2zd 12665 . . . . . . . . . 10 (𝑖 ∈ 𝑍 β†’ (𝑖 + 1) ∈ β„€)
3735zred 12662 . . . . . . . . . . 11 (𝑖 ∈ 𝑍 β†’ 𝑖 ∈ ℝ)
38 lep1 12051 . . . . . . . . . . 11 (𝑖 ∈ ℝ β†’ 𝑖 ≀ (𝑖 + 1))
3937, 38syl 17 . . . . . . . . . 10 (𝑖 ∈ 𝑍 β†’ 𝑖 ≀ (𝑖 + 1))
4034, 35, 36, 39eluzd 44105 . . . . . . . . 9 (𝑖 ∈ 𝑍 β†’ (𝑖 + 1) ∈ (β„€β‰₯β€˜π‘–))
41 uzss 12841 . . . . . . . . 9 ((𝑖 + 1) ∈ (β„€β‰₯β€˜π‘–) β†’ (β„€β‰₯β€˜(𝑖 + 1)) βŠ† (β„€β‰₯β€˜π‘–))
4240, 41syl 17 . . . . . . . 8 (𝑖 ∈ 𝑍 β†’ (β„€β‰₯β€˜(𝑖 + 1)) βŠ† (β„€β‰₯β€˜π‘–))
43 ssres2 6007 . . . . . . . 8 ((β„€β‰₯β€˜(𝑖 + 1)) βŠ† (β„€β‰₯β€˜π‘–) β†’ (𝐹 β†Ύ (β„€β‰₯β€˜(𝑖 + 1))) βŠ† (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)))
4442, 43syl 17 . . . . . . 7 (𝑖 ∈ 𝑍 β†’ (𝐹 β†Ύ (β„€β‰₯β€˜(𝑖 + 1))) βŠ† (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)))
45 rnss 5936 . . . . . . 7 ((𝐹 β†Ύ (β„€β‰₯β€˜(𝑖 + 1))) βŠ† (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)) β†’ ran (𝐹 β†Ύ (β„€β‰₯β€˜(𝑖 + 1))) βŠ† ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)))
4644, 45syl 17 . . . . . 6 (𝑖 ∈ 𝑍 β†’ ran (𝐹 β†Ύ (β„€β‰₯β€˜(𝑖 + 1))) βŠ† ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)))
4746adantl 482 . . . . 5 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ ran (𝐹 β†Ύ (β„€β‰₯β€˜(𝑖 + 1))) βŠ† ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)))
48 rnresss 6015 . . . . . . . 8 ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)) βŠ† ran 𝐹
4948a1i 11 . . . . . . 7 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)) βŠ† ran 𝐹)
503frnd 6722 . . . . . . . 8 (πœ‘ β†’ ran 𝐹 βŠ† ℝ)
5150adantr 481 . . . . . . 7 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ ran 𝐹 βŠ† ℝ)
5249, 51sstrd 3991 . . . . . 6 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)) βŠ† ℝ)
53 ressxr 11254 . . . . . . 7 ℝ βŠ† ℝ*
5453a1i 11 . . . . . 6 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ ℝ βŠ† ℝ*)
5552, 54sstrd 3991 . . . . 5 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)) βŠ† ℝ*)
56 supxrss 13307 . . . . 5 ((ran (𝐹 β†Ύ (β„€β‰₯β€˜(𝑖 + 1))) βŠ† ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)) ∧ ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)) βŠ† ℝ*) β†’ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜(𝑖 + 1))), ℝ*, < ) ≀ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ))
5747, 55, 56syl2anc 584 . . . 4 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜(𝑖 + 1))), ℝ*, < ) ≀ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ))
58 eqidd 2733 . . . . . . 7 (𝑖 ∈ 𝑍 β†’ (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < )) = (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < )))
59 fveq2 6888 . . . . . . . . . . 11 (𝑛 = (𝑖 + 1) β†’ (β„€β‰₯β€˜π‘›) = (β„€β‰₯β€˜(𝑖 + 1)))
6059reseq2d 5979 . . . . . . . . . 10 (𝑛 = (𝑖 + 1) β†’ (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)) = (𝐹 β†Ύ (β„€β‰₯β€˜(𝑖 + 1))))
6160rneqd 5935 . . . . . . . . 9 (𝑛 = (𝑖 + 1) β†’ ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)) = ran (𝐹 β†Ύ (β„€β‰₯β€˜(𝑖 + 1))))
6261supeq1d 9437 . . . . . . . 8 (𝑛 = (𝑖 + 1) β†’ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ) = sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜(𝑖 + 1))), ℝ*, < ))
6362adantl 482 . . . . . . 7 ((𝑖 ∈ 𝑍 ∧ 𝑛 = (𝑖 + 1)) β†’ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ) = sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜(𝑖 + 1))), ℝ*, < ))
641peano2uzs 12882 . . . . . . 7 (𝑖 ∈ 𝑍 β†’ (𝑖 + 1) ∈ 𝑍)
65 xrltso 13116 . . . . . . . . 9 < Or ℝ*
6665supex 9454 . . . . . . . 8 sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜(𝑖 + 1))), ℝ*, < ) ∈ V
6766a1i 11 . . . . . . 7 (𝑖 ∈ 𝑍 β†’ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜(𝑖 + 1))), ℝ*, < ) ∈ V)
6858, 63, 64, 67fvmptd 7002 . . . . . 6 (𝑖 ∈ 𝑍 β†’ ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ))β€˜(𝑖 + 1)) = sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜(𝑖 + 1))), ℝ*, < ))
6968adantl 482 . . . . 5 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ))β€˜(𝑖 + 1)) = sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜(𝑖 + 1))), ℝ*, < ))
70 fveq2 6888 . . . . . . . . . . 11 (𝑛 = 𝑖 β†’ (β„€β‰₯β€˜π‘›) = (β„€β‰₯β€˜π‘–))
7170reseq2d 5979 . . . . . . . . . 10 (𝑛 = 𝑖 β†’ (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)) = (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)))
7271rneqd 5935 . . . . . . . . 9 (𝑛 = 𝑖 β†’ ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)) = ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)))
7372supeq1d 9437 . . . . . . . 8 (𝑛 = 𝑖 β†’ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ) = sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ))
7473adantl 482 . . . . . . 7 ((𝑖 ∈ 𝑍 ∧ 𝑛 = 𝑖) β†’ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ) = sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ))
75 id 22 . . . . . . 7 (𝑖 ∈ 𝑍 β†’ 𝑖 ∈ 𝑍)
7665supex 9454 . . . . . . . 8 sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ) ∈ V
7776a1i 11 . . . . . . 7 (𝑖 ∈ 𝑍 β†’ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ) ∈ V)
7858, 74, 75, 77fvmptd 7002 . . . . . 6 (𝑖 ∈ 𝑍 β†’ ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ))β€˜π‘–) = sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ))
7978adantl 482 . . . . 5 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ))β€˜π‘–) = sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ))
8069, 79breq12d 5160 . . . 4 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ (((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ))β€˜(𝑖 + 1)) ≀ ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ))β€˜π‘–) ↔ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜(𝑖 + 1))), ℝ*, < ) ≀ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < )))
8157, 80mpbird 256 . . 3 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ))β€˜(𝑖 + 1)) ≀ ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ))β€˜π‘–))
82 nfcv 2903 . . . . . . . 8 Ⅎ𝑗𝐹
833frexr 44081 . . . . . . . 8 (πœ‘ β†’ 𝐹:π‘βŸΆβ„*)
8482, 2, 1, 83limsupre3uz 44438 . . . . . . 7 (πœ‘ β†’ ((lim supβ€˜πΉ) ∈ ℝ ↔ (βˆƒπ‘₯ ∈ ℝ βˆ€π‘– ∈ 𝑍 βˆƒπ‘— ∈ (β„€β‰₯β€˜π‘–)π‘₯ ≀ (πΉβ€˜π‘—) ∧ βˆƒπ‘₯ ∈ ℝ βˆƒπ‘– ∈ 𝑍 βˆ€π‘— ∈ (β„€β‰₯β€˜π‘–)(πΉβ€˜π‘—) ≀ π‘₯)))
8512, 84mpbid 231 . . . . . 6 (πœ‘ β†’ (βˆƒπ‘₯ ∈ ℝ βˆ€π‘– ∈ 𝑍 βˆƒπ‘— ∈ (β„€β‰₯β€˜π‘–)π‘₯ ≀ (πΉβ€˜π‘—) ∧ βˆƒπ‘₯ ∈ ℝ βˆƒπ‘– ∈ 𝑍 βˆ€π‘— ∈ (β„€β‰₯β€˜π‘–)(πΉβ€˜π‘—) ≀ π‘₯))
8685simpld 495 . . . . 5 (πœ‘ β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘– ∈ 𝑍 βˆƒπ‘— ∈ (β„€β‰₯β€˜π‘–)π‘₯ ≀ (πΉβ€˜π‘—))
87 simp-4r 782 . . . . . . . . . 10 (((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) ∧ π‘₯ ≀ (πΉβ€˜π‘—)) β†’ π‘₯ ∈ ℝ)
8887rexrd 11260 . . . . . . . . 9 (((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) ∧ π‘₯ ≀ (πΉβ€˜π‘—)) β†’ π‘₯ ∈ ℝ*)
89833ad2ant1 1133 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) β†’ 𝐹:π‘βŸΆβ„*)
901uztrn2 12837 . . . . . . . . . . . 12 ((𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) β†’ 𝑗 ∈ 𝑍)
91903adant1 1130 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) β†’ 𝑗 ∈ 𝑍)
9289, 91ffvelcdmd 7084 . . . . . . . . . 10 ((πœ‘ ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) β†’ (πΉβ€˜π‘—) ∈ ℝ*)
9392ad5ant134 1367 . . . . . . . . 9 (((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) ∧ π‘₯ ≀ (πΉβ€˜π‘—)) β†’ (πΉβ€˜π‘—) ∈ ℝ*)
9455supxrcld 43781 . . . . . . . . . 10 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ) ∈ ℝ*)
9594ad5ant13 755 . . . . . . . . 9 (((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) ∧ π‘₯ ≀ (πΉβ€˜π‘—)) β†’ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ) ∈ ℝ*)
96 simpr 485 . . . . . . . . 9 (((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) ∧ π‘₯ ≀ (πΉβ€˜π‘—)) β†’ π‘₯ ≀ (πΉβ€˜π‘—))
97553adant3 1132 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) β†’ ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)) βŠ† ℝ*)
98 fvres 6907 . . . . . . . . . . . . . 14 (𝑗 ∈ (β„€β‰₯β€˜π‘–) β†’ ((𝐹 β†Ύ (β„€β‰₯β€˜π‘–))β€˜π‘—) = (πΉβ€˜π‘—))
9998eqcomd 2738 . . . . . . . . . . . . 13 (𝑗 ∈ (β„€β‰₯β€˜π‘–) β†’ (πΉβ€˜π‘—) = ((𝐹 β†Ύ (β„€β‰₯β€˜π‘–))β€˜π‘—))
100993ad2ant3 1135 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) β†’ (πΉβ€˜π‘—) = ((𝐹 β†Ύ (β„€β‰₯β€˜π‘–))β€˜π‘—))
1013ffnd 6715 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 𝐹 Fn 𝑍)
102101adantr 481 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ 𝐹 Fn 𝑍)
1031, 75uzssd2 44113 . . . . . . . . . . . . . . . 16 (𝑖 ∈ 𝑍 β†’ (β„€β‰₯β€˜π‘–) βŠ† 𝑍)
104103adantl 482 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ (β„€β‰₯β€˜π‘–) βŠ† 𝑍)
105 fnssres 6670 . . . . . . . . . . . . . . 15 ((𝐹 Fn 𝑍 ∧ (β„€β‰₯β€˜π‘–) βŠ† 𝑍) β†’ (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)) Fn (β„€β‰₯β€˜π‘–))
106102, 104, 105syl2anc 584 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)) Fn (β„€β‰₯β€˜π‘–))
1071063adant3 1132 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) β†’ (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)) Fn (β„€β‰₯β€˜π‘–))
108 simp3 1138 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) β†’ 𝑗 ∈ (β„€β‰₯β€˜π‘–))
109 fnfvelrn 7079 . . . . . . . . . . . . 13 (((𝐹 β†Ύ (β„€β‰₯β€˜π‘–)) Fn (β„€β‰₯β€˜π‘–) ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) β†’ ((𝐹 β†Ύ (β„€β‰₯β€˜π‘–))β€˜π‘—) ∈ ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)))
110107, 108, 109syl2anc 584 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) β†’ ((𝐹 β†Ύ (β„€β‰₯β€˜π‘–))β€˜π‘—) ∈ ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)))
111100, 110eqeltrd 2833 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) β†’ (πΉβ€˜π‘—) ∈ ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)))
112 eqid 2732 . . . . . . . . . . 11 sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ) = sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < )
11397, 111, 112supxrubd 43787 . . . . . . . . . 10 ((πœ‘ ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) β†’ (πΉβ€˜π‘—) ≀ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ))
114113ad5ant134 1367 . . . . . . . . 9 (((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) ∧ π‘₯ ≀ (πΉβ€˜π‘—)) β†’ (πΉβ€˜π‘—) ≀ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ))
11588, 93, 95, 96, 114xrletrd 13137 . . . . . . . 8 (((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) ∧ π‘₯ ≀ (πΉβ€˜π‘—)) β†’ π‘₯ ≀ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ))
116115rexlimdva2 3157 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ 𝑖 ∈ 𝑍) β†’ (βˆƒπ‘— ∈ (β„€β‰₯β€˜π‘–)π‘₯ ≀ (πΉβ€˜π‘—) β†’ π‘₯ ≀ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < )))
117116ralimdva 3167 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ (βˆ€π‘– ∈ 𝑍 βˆƒπ‘— ∈ (β„€β‰₯β€˜π‘–)π‘₯ ≀ (πΉβ€˜π‘—) β†’ βˆ€π‘– ∈ 𝑍 π‘₯ ≀ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < )))
118117reximdva 3168 . . . . 5 (πœ‘ β†’ (βˆƒπ‘₯ ∈ ℝ βˆ€π‘– ∈ 𝑍 βˆƒπ‘— ∈ (β„€β‰₯β€˜π‘–)π‘₯ ≀ (πΉβ€˜π‘—) β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘– ∈ 𝑍 π‘₯ ≀ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < )))
11986, 118mpd 15 . . . 4 (πœ‘ β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘– ∈ 𝑍 π‘₯ ≀ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ))
120 simpl 483 . . . . . . 7 ((𝑦 = π‘₯ ∧ 𝑖 ∈ 𝑍) β†’ 𝑦 = π‘₯)
12178adantl 482 . . . . . . 7 ((𝑦 = π‘₯ ∧ 𝑖 ∈ 𝑍) β†’ ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ))β€˜π‘–) = sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ))
122120, 121breq12d 5160 . . . . . 6 ((𝑦 = π‘₯ ∧ 𝑖 ∈ 𝑍) β†’ (𝑦 ≀ ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ))β€˜π‘–) ↔ π‘₯ ≀ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < )))
123122ralbidva 3175 . . . . 5 (𝑦 = π‘₯ β†’ (βˆ€π‘– ∈ 𝑍 𝑦 ≀ ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ))β€˜π‘–) ↔ βˆ€π‘– ∈ 𝑍 π‘₯ ≀ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < )))
124123cbvrexvw 3235 . . . 4 (βˆƒπ‘¦ ∈ ℝ βˆ€π‘– ∈ 𝑍 𝑦 ≀ ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ))β€˜π‘–) ↔ βˆƒπ‘₯ ∈ ℝ βˆ€π‘– ∈ 𝑍 π‘₯ ≀ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ))
125119, 124sylibr 233 . . 3 (πœ‘ β†’ βˆƒπ‘¦ ∈ ℝ βˆ€π‘– ∈ 𝑍 𝑦 ≀ ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ))β€˜π‘–))
1261, 2, 33, 81, 125climinf 44308 . 2 (πœ‘ β†’ (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < )) ⇝ inf(ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < )), ℝ, < ))
127 fveq2 6888 . . . . . . . 8 (𝑛 = π‘˜ β†’ (β„€β‰₯β€˜π‘›) = (β„€β‰₯β€˜π‘˜))
128127reseq2d 5979 . . . . . . 7 (𝑛 = π‘˜ β†’ (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)) = (𝐹 β†Ύ (β„€β‰₯β€˜π‘˜)))
129128rneqd 5935 . . . . . 6 (𝑛 = π‘˜ β†’ ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)) = ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘˜)))
130129supeq1d 9437 . . . . 5 (𝑛 = π‘˜ β†’ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ) = sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘˜)), ℝ*, < ))
131130cbvmptv 5260 . . . 4 (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < )) = (π‘˜ ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘˜)), ℝ*, < ))
132131a1i 11 . . 3 (πœ‘ β†’ (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < )) = (π‘˜ ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘˜)), ℝ*, < )))
1332, 1, 3, 12limsupvaluz2 44440 . . . 4 (πœ‘ β†’ (lim supβ€˜πΉ) = inf(ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < )), ℝ, < ))
134133eqcomd 2738 . . 3 (πœ‘ β†’ inf(ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < )), ℝ, < ) = (lim supβ€˜πΉ))
135132, 134breq12d 5160 . 2 (πœ‘ β†’ ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < )) ⇝ inf(ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < )), ℝ, < ) ↔ (π‘˜ ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘˜)), ℝ*, < )) ⇝ (lim supβ€˜πΉ)))
136126, 135mpbid 231 1 (πœ‘ β†’ (π‘˜ ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘˜)), ℝ*, < )) ⇝ (lim supβ€˜πΉ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  Vcvv 3474   βŠ† wss 3947  βˆ…c0 4321   class class class wbr 5147   ↦ cmpt 5230  ran crn 5676   β†Ύ cres 5677   Fn wfn 6535  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  supcsup 9431  infcinf 9432  β„cr 11105  1c1 11107   + caddc 11109  β„*cxr 11243   < clt 11244   ≀ cle 11245  β„€cz 12554  β„€β‰₯cuz 12818  lim supclsp 15410   ⇝ cli 15424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-ico 13326  df-fz 13481  df-fl 13753  df-ceil 13754  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15411  df-clim 15428
This theorem is referenced by:  supcnvlimsupmpt  44443
  Copyright terms: Public domain W3C validator