Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supcnvlimsup Structured version   Visualization version   GIF version

Theorem supcnvlimsup 45745
Description: If a function on a set of upper integers has a real superior limit, the supremum of the rightmost parts of the function, converges to that superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
supcnvlimsup.m (𝜑𝑀 ∈ ℤ)
supcnvlimsup.z 𝑍 = (ℤ𝑀)
supcnvlimsup.f (𝜑𝐹:𝑍⟶ℝ)
supcnvlimsup.r (𝜑 → (lim sup‘𝐹) ∈ ℝ)
Assertion
Ref Expression
supcnvlimsup (𝜑 → (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )) ⇝ (lim sup‘𝐹))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝑀(𝑘)

Proof of Theorem supcnvlimsup
Dummy variables 𝑖 𝑗 𝑥 𝑛 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supcnvlimsup.z . . 3 𝑍 = (ℤ𝑀)
2 supcnvlimsup.m . . 3 (𝜑𝑀 ∈ ℤ)
3 supcnvlimsup.f . . . . . . . . 9 (𝜑𝐹:𝑍⟶ℝ)
43adantr 480 . . . . . . . 8 ((𝜑𝑛𝑍) → 𝐹:𝑍⟶ℝ)
5 id 22 . . . . . . . . . 10 (𝑛𝑍𝑛𝑍)
61, 5uzssd2 45420 . . . . . . . . 9 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
76adantl 481 . . . . . . . 8 ((𝜑𝑛𝑍) → (ℤ𝑛) ⊆ 𝑍)
84, 7feqresmpt 6933 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐹 ↾ (ℤ𝑛)) = (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)))
98rneqd 5905 . . . . . 6 ((𝜑𝑛𝑍) → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)))
109supeq1d 9404 . . . . 5 ((𝜑𝑛𝑍) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)), ℝ*, < ))
11 nfcv 2892 . . . . . . . . 9 𝑚𝐹
12 supcnvlimsup.r . . . . . . . . . 10 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
1312renepnfd 11232 . . . . . . . . 9 (𝜑 → (lim sup‘𝐹) ≠ +∞)
1411, 1, 3, 13limsupubuz 45718 . . . . . . . 8 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥)
1514adantr 480 . . . . . . 7 ((𝜑𝑛𝑍) → ∃𝑥 ∈ ℝ ∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥)
16 ssralv 4018 . . . . . . . . . 10 ((ℤ𝑛) ⊆ 𝑍 → (∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
176, 16syl 17 . . . . . . . . 9 (𝑛𝑍 → (∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
1817adantl 481 . . . . . . . 8 ((𝜑𝑛𝑍) → (∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
1918reximdv 3149 . . . . . . 7 ((𝜑𝑛𝑍) → (∃𝑥 ∈ ℝ ∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
2015, 19mpd 15 . . . . . 6 ((𝜑𝑛𝑍) → ∃𝑥 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥)
21 nfv 1914 . . . . . . 7 𝑚(𝜑𝑛𝑍)
221eluzelz2 45406 . . . . . . . . 9 (𝑛𝑍𝑛 ∈ ℤ)
23 uzid 12815 . . . . . . . . 9 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
24 ne0i 4307 . . . . . . . . 9 (𝑛 ∈ (ℤ𝑛) → (ℤ𝑛) ≠ ∅)
2522, 23, 243syl 18 . . . . . . . 8 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
2625adantl 481 . . . . . . 7 ((𝜑𝑛𝑍) → (ℤ𝑛) ≠ ∅)
274adantr 480 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐹:𝑍⟶ℝ)
287sselda 3949 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
2927, 28ffvelcdmd 7060 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚) ∈ ℝ)
3021, 26, 29supxrre3rnmpt 45432 . . . . . 6 ((𝜑𝑛𝑍) → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)), ℝ*, < ) ∈ ℝ ↔ ∃𝑥 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
3120, 30mpbird 257 . . . . 5 ((𝜑𝑛𝑍) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)), ℝ*, < ) ∈ ℝ)
3210, 31eqeltrd 2829 . . . 4 ((𝜑𝑛𝑍) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) ∈ ℝ)
3332fmpttd 7090 . . 3 (𝜑 → (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )):𝑍⟶ℝ)
34 eqid 2730 . . . . . . . 8 (ℤ𝑖) = (ℤ𝑖)
351eluzelz2 45406 . . . . . . . 8 (𝑖𝑍𝑖 ∈ ℤ)
3635peano2zd 12648 . . . . . . . 8 (𝑖𝑍 → (𝑖 + 1) ∈ ℤ)
3735zred 12645 . . . . . . . . 9 (𝑖𝑍𝑖 ∈ ℝ)
38 lep1 12030 . . . . . . . . 9 (𝑖 ∈ ℝ → 𝑖 ≤ (𝑖 + 1))
3937, 38syl 17 . . . . . . . 8 (𝑖𝑍𝑖 ≤ (𝑖 + 1))
4034, 35, 36, 39eluzd 45412 . . . . . . 7 (𝑖𝑍 → (𝑖 + 1) ∈ (ℤ𝑖))
41 uzss 12823 . . . . . . 7 ((𝑖 + 1) ∈ (ℤ𝑖) → (ℤ‘(𝑖 + 1)) ⊆ (ℤ𝑖))
42 ssres2 5978 . . . . . . 7 ((ℤ‘(𝑖 + 1)) ⊆ (ℤ𝑖) → (𝐹 ↾ (ℤ‘(𝑖 + 1))) ⊆ (𝐹 ↾ (ℤ𝑖)))
43 rnss 5906 . . . . . . 7 ((𝐹 ↾ (ℤ‘(𝑖 + 1))) ⊆ (𝐹 ↾ (ℤ𝑖)) → ran (𝐹 ↾ (ℤ‘(𝑖 + 1))) ⊆ ran (𝐹 ↾ (ℤ𝑖)))
4440, 41, 42, 434syl 19 . . . . . 6 (𝑖𝑍 → ran (𝐹 ↾ (ℤ‘(𝑖 + 1))) ⊆ ran (𝐹 ↾ (ℤ𝑖)))
4544adantl 481 . . . . 5 ((𝜑𝑖𝑍) → ran (𝐹 ↾ (ℤ‘(𝑖 + 1))) ⊆ ran (𝐹 ↾ (ℤ𝑖)))
46 rnresss 5991 . . . . . . . 8 ran (𝐹 ↾ (ℤ𝑖)) ⊆ ran 𝐹
4746a1i 11 . . . . . . 7 ((𝜑𝑖𝑍) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ran 𝐹)
483frnd 6699 . . . . . . . 8 (𝜑 → ran 𝐹 ⊆ ℝ)
4948adantr 480 . . . . . . 7 ((𝜑𝑖𝑍) → ran 𝐹 ⊆ ℝ)
5047, 49sstrd 3960 . . . . . 6 ((𝜑𝑖𝑍) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ℝ)
51 ressxr 11225 . . . . . . 7 ℝ ⊆ ℝ*
5251a1i 11 . . . . . 6 ((𝜑𝑖𝑍) → ℝ ⊆ ℝ*)
5350, 52sstrd 3960 . . . . 5 ((𝜑𝑖𝑍) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ℝ*)
54 supxrss 13299 . . . . 5 ((ran (𝐹 ↾ (ℤ‘(𝑖 + 1))) ⊆ ran (𝐹 ↾ (ℤ𝑖)) ∧ ran (𝐹 ↾ (ℤ𝑖)) ⊆ ℝ*) → sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ) ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
5545, 53, 54syl2anc 584 . . . 4 ((𝜑𝑖𝑍) → sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ) ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
56 eqidd 2731 . . . . . . 7 (𝑖𝑍 → (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
57 fveq2 6861 . . . . . . . . . . 11 (𝑛 = (𝑖 + 1) → (ℤ𝑛) = (ℤ‘(𝑖 + 1)))
5857reseq2d 5953 . . . . . . . . . 10 (𝑛 = (𝑖 + 1) → (𝐹 ↾ (ℤ𝑛)) = (𝐹 ↾ (ℤ‘(𝑖 + 1))))
5958rneqd 5905 . . . . . . . . 9 (𝑛 = (𝑖 + 1) → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝐹 ↾ (ℤ‘(𝑖 + 1))))
6059supeq1d 9404 . . . . . . . 8 (𝑛 = (𝑖 + 1) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ))
6160adantl 481 . . . . . . 7 ((𝑖𝑍𝑛 = (𝑖 + 1)) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ))
621peano2uzs 12868 . . . . . . 7 (𝑖𝑍 → (𝑖 + 1) ∈ 𝑍)
63 xrltso 13108 . . . . . . . . 9 < Or ℝ*
6463supex 9422 . . . . . . . 8 sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ) ∈ V
6564a1i 11 . . . . . . 7 (𝑖𝑍 → sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ) ∈ V)
6656, 61, 62, 65fvmptd 6978 . . . . . 6 (𝑖𝑍 → ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘(𝑖 + 1)) = sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ))
6766adantl 481 . . . . 5 ((𝜑𝑖𝑍) → ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘(𝑖 + 1)) = sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ))
68 fveq2 6861 . . . . . . . . . . 11 (𝑛 = 𝑖 → (ℤ𝑛) = (ℤ𝑖))
6968reseq2d 5953 . . . . . . . . . 10 (𝑛 = 𝑖 → (𝐹 ↾ (ℤ𝑛)) = (𝐹 ↾ (ℤ𝑖)))
7069rneqd 5905 . . . . . . . . 9 (𝑛 = 𝑖 → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝐹 ↾ (ℤ𝑖)))
7170supeq1d 9404 . . . . . . . 8 (𝑛 = 𝑖 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
7271adantl 481 . . . . . . 7 ((𝑖𝑍𝑛 = 𝑖) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
73 id 22 . . . . . . 7 (𝑖𝑍𝑖𝑍)
7463supex 9422 . . . . . . . 8 sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ∈ V
7574a1i 11 . . . . . . 7 (𝑖𝑍 → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ∈ V)
7656, 72, 73, 75fvmptd 6978 . . . . . 6 (𝑖𝑍 → ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
7776adantl 481 . . . . 5 ((𝜑𝑖𝑍) → ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
7867, 77breq12d 5123 . . . 4 ((𝜑𝑖𝑍) → (((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘(𝑖 + 1)) ≤ ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖) ↔ sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ) ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
7955, 78mpbird 257 . . 3 ((𝜑𝑖𝑍) → ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘(𝑖 + 1)) ≤ ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖))
80 nfcv 2892 . . . . . . . 8 𝑗𝐹
813frexr 45388 . . . . . . . 8 (𝜑𝐹:𝑍⟶ℝ*)
8280, 2, 1, 81limsupre3uz 45741 . . . . . . 7 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)(𝐹𝑗) ≤ 𝑥)))
8312, 82mpbid 232 . . . . . 6 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)(𝐹𝑗) ≤ 𝑥))
8483simpld 494 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗))
85 simp-4r 783 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ∈ ℝ)
8685rexrd 11231 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ∈ ℝ*)
87813ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝐹:𝑍⟶ℝ*)
881uztrn2 12819 . . . . . . . . . . . 12 ((𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝑗𝑍)
89883adant1 1130 . . . . . . . . . . 11 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝑗𝑍)
9087, 89ffvelcdmd 7060 . . . . . . . . . 10 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) ∈ ℝ*)
9190ad5ant134 1369 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
9253supxrcld 45108 . . . . . . . . . 10 ((𝜑𝑖𝑍) → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ∈ ℝ*)
9392ad5ant13 756 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ∈ ℝ*)
94 simpr 484 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ≤ (𝐹𝑗))
95533adant3 1132 . . . . . . . . . . 11 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ℝ*)
96 fvres 6880 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑖) → ((𝐹 ↾ (ℤ𝑖))‘𝑗) = (𝐹𝑗))
9796eqcomd 2736 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑖) → (𝐹𝑗) = ((𝐹 ↾ (ℤ𝑖))‘𝑗))
98973ad2ant3 1135 . . . . . . . . . . . 12 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) = ((𝐹 ↾ (ℤ𝑖))‘𝑗))
993ffnd 6692 . . . . . . . . . . . . . . . 16 (𝜑𝐹 Fn 𝑍)
10099adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → 𝐹 Fn 𝑍)
1011, 73uzssd2 45420 . . . . . . . . . . . . . . . 16 (𝑖𝑍 → (ℤ𝑖) ⊆ 𝑍)
102101adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → (ℤ𝑖) ⊆ 𝑍)
103 fnssres 6644 . . . . . . . . . . . . . . 15 ((𝐹 Fn 𝑍 ∧ (ℤ𝑖) ⊆ 𝑍) → (𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖))
104100, 102, 103syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍) → (𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖))
1051043adant3 1132 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖))
106 simp3 1138 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝑗 ∈ (ℤ𝑖))
107 fnfvelrn 7055 . . . . . . . . . . . . 13 (((𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖) ∧ 𝑗 ∈ (ℤ𝑖)) → ((𝐹 ↾ (ℤ𝑖))‘𝑗) ∈ ran (𝐹 ↾ (ℤ𝑖)))
108105, 106, 107syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → ((𝐹 ↾ (ℤ𝑖))‘𝑗) ∈ ran (𝐹 ↾ (ℤ𝑖)))
10998, 108eqeltrd 2829 . . . . . . . . . . 11 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) ∈ ran (𝐹 ↾ (ℤ𝑖)))
110 eqid 2730 . . . . . . . . . . 11 sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )
11195, 109, 110supxrubd 45114 . . . . . . . . . 10 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
112111ad5ant134 1369 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
11386, 91, 93, 94, 112xrletrd 13129 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
114113rexlimdva2 3137 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) → (∃𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
115114ralimdva 3146 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) → ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
116115reximdva 3147 . . . . 5 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) → ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
11784, 116mpd 15 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
118 simpl 482 . . . . . . 7 ((𝑦 = 𝑥𝑖𝑍) → 𝑦 = 𝑥)
11976adantl 481 . . . . . . 7 ((𝑦 = 𝑥𝑖𝑍) → ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
120118, 119breq12d 5123 . . . . . 6 ((𝑦 = 𝑥𝑖𝑍) → (𝑦 ≤ ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖) ↔ 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
121120ralbidva 3155 . . . . 5 (𝑦 = 𝑥 → (∀𝑖𝑍 𝑦 ≤ ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖) ↔ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
122121cbvrexvw 3217 . . . 4 (∃𝑦 ∈ ℝ ∀𝑖𝑍 𝑦 ≤ ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖) ↔ ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
123117, 122sylibr 234 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑖𝑍 𝑦 ≤ ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖))
1241, 2, 33, 79, 123climinf 45611 . 2 (𝜑 → (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) ⇝ inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ))
125 fveq2 6861 . . . . . . . 8 (𝑛 = 𝑘 → (ℤ𝑛) = (ℤ𝑘))
126125reseq2d 5953 . . . . . . 7 (𝑛 = 𝑘 → (𝐹 ↾ (ℤ𝑛)) = (𝐹 ↾ (ℤ𝑘)))
127126rneqd 5905 . . . . . 6 (𝑛 = 𝑘 → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝐹 ↾ (ℤ𝑘)))
128127supeq1d 9404 . . . . 5 (𝑛 = 𝑘 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
129128cbvmptv 5214 . . . 4 (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
130129a1i 11 . . 3 (𝜑 → (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )))
1312, 1, 3, 12limsupvaluz2 45743 . . . 4 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ))
132131eqcomd 2736 . . 3 (𝜑 → inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ) = (lim sup‘𝐹))
133130, 132breq12d 5123 . 2 (𝜑 → ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) ⇝ inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ) ↔ (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )) ⇝ (lim sup‘𝐹)))
134124, 133mpbid 232 1 (𝜑 → (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )) ⇝ (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  wss 3917  c0 4299   class class class wbr 5110  cmpt 5191  ran crn 5642  cres 5643   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  supcsup 9398  infcinf 9399  cr 11074  1c1 11076   + caddc 11078  *cxr 11214   < clt 11215  cle 11216  cz 12536  cuz 12800  lim supclsp 15443  cli 15457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-fz 13476  df-fl 13761  df-ceil 13762  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461
This theorem is referenced by:  supcnvlimsupmpt  45746
  Copyright terms: Public domain W3C validator