Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supcnvlimsup Structured version   Visualization version   GIF version

Theorem supcnvlimsup 43281
Description: If a function on a set of upper integers has a real superior limit, the supremum of the rightmost parts of the function, converges to that superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
supcnvlimsup.m (𝜑𝑀 ∈ ℤ)
supcnvlimsup.z 𝑍 = (ℤ𝑀)
supcnvlimsup.f (𝜑𝐹:𝑍⟶ℝ)
supcnvlimsup.r (𝜑 → (lim sup‘𝐹) ∈ ℝ)
Assertion
Ref Expression
supcnvlimsup (𝜑 → (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )) ⇝ (lim sup‘𝐹))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝑀(𝑘)

Proof of Theorem supcnvlimsup
Dummy variables 𝑖 𝑗 𝑥 𝑛 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supcnvlimsup.z . . 3 𝑍 = (ℤ𝑀)
2 supcnvlimsup.m . . 3 (𝜑𝑀 ∈ ℤ)
3 supcnvlimsup.f . . . . . . . . 9 (𝜑𝐹:𝑍⟶ℝ)
43adantr 481 . . . . . . . 8 ((𝜑𝑛𝑍) → 𝐹:𝑍⟶ℝ)
5 id 22 . . . . . . . . . 10 (𝑛𝑍𝑛𝑍)
61, 5uzssd2 42957 . . . . . . . . 9 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
76adantl 482 . . . . . . . 8 ((𝜑𝑛𝑍) → (ℤ𝑛) ⊆ 𝑍)
84, 7feqresmpt 6838 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐹 ↾ (ℤ𝑛)) = (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)))
98rneqd 5847 . . . . . 6 ((𝜑𝑛𝑍) → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)))
109supeq1d 9205 . . . . 5 ((𝜑𝑛𝑍) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)), ℝ*, < ))
11 nfcv 2907 . . . . . . . . 9 𝑚𝐹
12 supcnvlimsup.r . . . . . . . . . 10 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
1312renepnfd 11026 . . . . . . . . 9 (𝜑 → (lim sup‘𝐹) ≠ +∞)
1411, 1, 3, 13limsupubuz 43254 . . . . . . . 8 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥)
1514adantr 481 . . . . . . 7 ((𝜑𝑛𝑍) → ∃𝑥 ∈ ℝ ∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥)
16 ssralv 3987 . . . . . . . . . 10 ((ℤ𝑛) ⊆ 𝑍 → (∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
176, 16syl 17 . . . . . . . . 9 (𝑛𝑍 → (∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
1817adantl 482 . . . . . . . 8 ((𝜑𝑛𝑍) → (∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
1918reximdv 3202 . . . . . . 7 ((𝜑𝑛𝑍) → (∃𝑥 ∈ ℝ ∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
2015, 19mpd 15 . . . . . 6 ((𝜑𝑛𝑍) → ∃𝑥 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥)
21 nfv 1917 . . . . . . 7 𝑚(𝜑𝑛𝑍)
221eluzelz2 42943 . . . . . . . . 9 (𝑛𝑍𝑛 ∈ ℤ)
23 uzid 12597 . . . . . . . . 9 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
24 ne0i 4268 . . . . . . . . 9 (𝑛 ∈ (ℤ𝑛) → (ℤ𝑛) ≠ ∅)
2522, 23, 243syl 18 . . . . . . . 8 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
2625adantl 482 . . . . . . 7 ((𝜑𝑛𝑍) → (ℤ𝑛) ≠ ∅)
274adantr 481 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐹:𝑍⟶ℝ)
287sselda 3921 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
2927, 28ffvelrnd 6962 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚) ∈ ℝ)
3021, 26, 29supxrre3rnmpt 42969 . . . . . 6 ((𝜑𝑛𝑍) → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)), ℝ*, < ) ∈ ℝ ↔ ∃𝑥 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
3120, 30mpbird 256 . . . . 5 ((𝜑𝑛𝑍) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)), ℝ*, < ) ∈ ℝ)
3210, 31eqeltrd 2839 . . . 4 ((𝜑𝑛𝑍) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) ∈ ℝ)
3332fmpttd 6989 . . 3 (𝜑 → (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )):𝑍⟶ℝ)
34 eqid 2738 . . . . . . . . . 10 (ℤ𝑖) = (ℤ𝑖)
351eluzelz2 42943 . . . . . . . . . 10 (𝑖𝑍𝑖 ∈ ℤ)
3635peano2zd 12429 . . . . . . . . . 10 (𝑖𝑍 → (𝑖 + 1) ∈ ℤ)
3735zred 12426 . . . . . . . . . . 11 (𝑖𝑍𝑖 ∈ ℝ)
38 lep1 11816 . . . . . . . . . . 11 (𝑖 ∈ ℝ → 𝑖 ≤ (𝑖 + 1))
3937, 38syl 17 . . . . . . . . . 10 (𝑖𝑍𝑖 ≤ (𝑖 + 1))
4034, 35, 36, 39eluzd 42949 . . . . . . . . 9 (𝑖𝑍 → (𝑖 + 1) ∈ (ℤ𝑖))
41 uzss 12605 . . . . . . . . 9 ((𝑖 + 1) ∈ (ℤ𝑖) → (ℤ‘(𝑖 + 1)) ⊆ (ℤ𝑖))
4240, 41syl 17 . . . . . . . 8 (𝑖𝑍 → (ℤ‘(𝑖 + 1)) ⊆ (ℤ𝑖))
43 ssres2 5919 . . . . . . . 8 ((ℤ‘(𝑖 + 1)) ⊆ (ℤ𝑖) → (𝐹 ↾ (ℤ‘(𝑖 + 1))) ⊆ (𝐹 ↾ (ℤ𝑖)))
4442, 43syl 17 . . . . . . 7 (𝑖𝑍 → (𝐹 ↾ (ℤ‘(𝑖 + 1))) ⊆ (𝐹 ↾ (ℤ𝑖)))
45 rnss 5848 . . . . . . 7 ((𝐹 ↾ (ℤ‘(𝑖 + 1))) ⊆ (𝐹 ↾ (ℤ𝑖)) → ran (𝐹 ↾ (ℤ‘(𝑖 + 1))) ⊆ ran (𝐹 ↾ (ℤ𝑖)))
4644, 45syl 17 . . . . . 6 (𝑖𝑍 → ran (𝐹 ↾ (ℤ‘(𝑖 + 1))) ⊆ ran (𝐹 ↾ (ℤ𝑖)))
4746adantl 482 . . . . 5 ((𝜑𝑖𝑍) → ran (𝐹 ↾ (ℤ‘(𝑖 + 1))) ⊆ ran (𝐹 ↾ (ℤ𝑖)))
48 rnresss 5927 . . . . . . . 8 ran (𝐹 ↾ (ℤ𝑖)) ⊆ ran 𝐹
4948a1i 11 . . . . . . 7 ((𝜑𝑖𝑍) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ran 𝐹)
503frnd 6608 . . . . . . . 8 (𝜑 → ran 𝐹 ⊆ ℝ)
5150adantr 481 . . . . . . 7 ((𝜑𝑖𝑍) → ran 𝐹 ⊆ ℝ)
5249, 51sstrd 3931 . . . . . 6 ((𝜑𝑖𝑍) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ℝ)
53 ressxr 11019 . . . . . . 7 ℝ ⊆ ℝ*
5453a1i 11 . . . . . 6 ((𝜑𝑖𝑍) → ℝ ⊆ ℝ*)
5552, 54sstrd 3931 . . . . 5 ((𝜑𝑖𝑍) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ℝ*)
56 supxrss 13066 . . . . 5 ((ran (𝐹 ↾ (ℤ‘(𝑖 + 1))) ⊆ ran (𝐹 ↾ (ℤ𝑖)) ∧ ran (𝐹 ↾ (ℤ𝑖)) ⊆ ℝ*) → sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ) ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
5747, 55, 56syl2anc 584 . . . 4 ((𝜑𝑖𝑍) → sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ) ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
58 eqidd 2739 . . . . . . 7 (𝑖𝑍 → (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
59 fveq2 6774 . . . . . . . . . . 11 (𝑛 = (𝑖 + 1) → (ℤ𝑛) = (ℤ‘(𝑖 + 1)))
6059reseq2d 5891 . . . . . . . . . 10 (𝑛 = (𝑖 + 1) → (𝐹 ↾ (ℤ𝑛)) = (𝐹 ↾ (ℤ‘(𝑖 + 1))))
6160rneqd 5847 . . . . . . . . 9 (𝑛 = (𝑖 + 1) → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝐹 ↾ (ℤ‘(𝑖 + 1))))
6261supeq1d 9205 . . . . . . . 8 (𝑛 = (𝑖 + 1) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ))
6362adantl 482 . . . . . . 7 ((𝑖𝑍𝑛 = (𝑖 + 1)) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ))
641peano2uzs 12642 . . . . . . 7 (𝑖𝑍 → (𝑖 + 1) ∈ 𝑍)
65 xrltso 12875 . . . . . . . . 9 < Or ℝ*
6665supex 9222 . . . . . . . 8 sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ) ∈ V
6766a1i 11 . . . . . . 7 (𝑖𝑍 → sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ) ∈ V)
6858, 63, 64, 67fvmptd 6882 . . . . . 6 (𝑖𝑍 → ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘(𝑖 + 1)) = sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ))
6968adantl 482 . . . . 5 ((𝜑𝑖𝑍) → ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘(𝑖 + 1)) = sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ))
70 fveq2 6774 . . . . . . . . . . 11 (𝑛 = 𝑖 → (ℤ𝑛) = (ℤ𝑖))
7170reseq2d 5891 . . . . . . . . . 10 (𝑛 = 𝑖 → (𝐹 ↾ (ℤ𝑛)) = (𝐹 ↾ (ℤ𝑖)))
7271rneqd 5847 . . . . . . . . 9 (𝑛 = 𝑖 → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝐹 ↾ (ℤ𝑖)))
7372supeq1d 9205 . . . . . . . 8 (𝑛 = 𝑖 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
7473adantl 482 . . . . . . 7 ((𝑖𝑍𝑛 = 𝑖) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
75 id 22 . . . . . . 7 (𝑖𝑍𝑖𝑍)
7665supex 9222 . . . . . . . 8 sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ∈ V
7776a1i 11 . . . . . . 7 (𝑖𝑍 → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ∈ V)
7858, 74, 75, 77fvmptd 6882 . . . . . 6 (𝑖𝑍 → ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
7978adantl 482 . . . . 5 ((𝜑𝑖𝑍) → ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
8069, 79breq12d 5087 . . . 4 ((𝜑𝑖𝑍) → (((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘(𝑖 + 1)) ≤ ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖) ↔ sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ) ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
8157, 80mpbird 256 . . 3 ((𝜑𝑖𝑍) → ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘(𝑖 + 1)) ≤ ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖))
82 nfcv 2907 . . . . . . . 8 𝑗𝐹
833frexr 42924 . . . . . . . 8 (𝜑𝐹:𝑍⟶ℝ*)
8482, 2, 1, 83limsupre3uz 43277 . . . . . . 7 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)(𝐹𝑗) ≤ 𝑥)))
8512, 84mpbid 231 . . . . . 6 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)(𝐹𝑗) ≤ 𝑥))
8685simpld 495 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗))
87 simp-4r 781 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ∈ ℝ)
8887rexrd 11025 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ∈ ℝ*)
89833ad2ant1 1132 . . . . . . . . . . 11 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝐹:𝑍⟶ℝ*)
901uztrn2 12601 . . . . . . . . . . . 12 ((𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝑗𝑍)
91903adant1 1129 . . . . . . . . . . 11 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝑗𝑍)
9289, 91ffvelrnd 6962 . . . . . . . . . 10 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) ∈ ℝ*)
9392ad5ant134 1366 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
9455supxrcld 42657 . . . . . . . . . 10 ((𝜑𝑖𝑍) → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ∈ ℝ*)
9594ad5ant13 754 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ∈ ℝ*)
96 simpr 485 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ≤ (𝐹𝑗))
97553adant3 1131 . . . . . . . . . . 11 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ℝ*)
98 fvres 6793 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑖) → ((𝐹 ↾ (ℤ𝑖))‘𝑗) = (𝐹𝑗))
9998eqcomd 2744 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑖) → (𝐹𝑗) = ((𝐹 ↾ (ℤ𝑖))‘𝑗))
100993ad2ant3 1134 . . . . . . . . . . . 12 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) = ((𝐹 ↾ (ℤ𝑖))‘𝑗))
1013ffnd 6601 . . . . . . . . . . . . . . . 16 (𝜑𝐹 Fn 𝑍)
102101adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → 𝐹 Fn 𝑍)
1031, 75uzssd2 42957 . . . . . . . . . . . . . . . 16 (𝑖𝑍 → (ℤ𝑖) ⊆ 𝑍)
104103adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → (ℤ𝑖) ⊆ 𝑍)
105 fnssres 6555 . . . . . . . . . . . . . . 15 ((𝐹 Fn 𝑍 ∧ (ℤ𝑖) ⊆ 𝑍) → (𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖))
106102, 104, 105syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍) → (𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖))
1071063adant3 1131 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖))
108 simp3 1137 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝑗 ∈ (ℤ𝑖))
109 fnfvelrn 6958 . . . . . . . . . . . . 13 (((𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖) ∧ 𝑗 ∈ (ℤ𝑖)) → ((𝐹 ↾ (ℤ𝑖))‘𝑗) ∈ ran (𝐹 ↾ (ℤ𝑖)))
110107, 108, 109syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → ((𝐹 ↾ (ℤ𝑖))‘𝑗) ∈ ran (𝐹 ↾ (ℤ𝑖)))
111100, 110eqeltrd 2839 . . . . . . . . . . 11 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) ∈ ran (𝐹 ↾ (ℤ𝑖)))
112 eqid 2738 . . . . . . . . . . 11 sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )
11397, 111, 112supxrubd 42663 . . . . . . . . . 10 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
114113ad5ant134 1366 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
11588, 93, 95, 96, 114xrletrd 12896 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
116115rexlimdva2 3216 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) → (∃𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
117116ralimdva 3108 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) → ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
118117reximdva 3203 . . . . 5 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) → ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
11986, 118mpd 15 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
120 simpl 483 . . . . . . 7 ((𝑦 = 𝑥𝑖𝑍) → 𝑦 = 𝑥)
12178adantl 482 . . . . . . 7 ((𝑦 = 𝑥𝑖𝑍) → ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
122120, 121breq12d 5087 . . . . . 6 ((𝑦 = 𝑥𝑖𝑍) → (𝑦 ≤ ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖) ↔ 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
123122ralbidva 3111 . . . . 5 (𝑦 = 𝑥 → (∀𝑖𝑍 𝑦 ≤ ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖) ↔ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
124123cbvrexvw 3384 . . . 4 (∃𝑦 ∈ ℝ ∀𝑖𝑍 𝑦 ≤ ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖) ↔ ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
125119, 124sylibr 233 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑖𝑍 𝑦 ≤ ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖))
1261, 2, 33, 81, 125climinf 43147 . 2 (𝜑 → (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) ⇝ inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ))
127 fveq2 6774 . . . . . . . 8 (𝑛 = 𝑘 → (ℤ𝑛) = (ℤ𝑘))
128127reseq2d 5891 . . . . . . 7 (𝑛 = 𝑘 → (𝐹 ↾ (ℤ𝑛)) = (𝐹 ↾ (ℤ𝑘)))
129128rneqd 5847 . . . . . 6 (𝑛 = 𝑘 → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝐹 ↾ (ℤ𝑘)))
130129supeq1d 9205 . . . . 5 (𝑛 = 𝑘 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
131130cbvmptv 5187 . . . 4 (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
132131a1i 11 . . 3 (𝜑 → (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )))
1332, 1, 3, 12limsupvaluz2 43279 . . . 4 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ))
134133eqcomd 2744 . . 3 (𝜑 → inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ) = (lim sup‘𝐹))
135132, 134breq12d 5087 . 2 (𝜑 → ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) ⇝ inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ) ↔ (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )) ⇝ (lim sup‘𝐹)))
136126, 135mpbid 231 1 (𝜑 → (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )) ⇝ (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  wss 3887  c0 4256   class class class wbr 5074  cmpt 5157  ran crn 5590  cres 5591   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  supcsup 9199  infcinf 9200  cr 10870  1c1 10872   + caddc 10874  *cxr 11008   < clt 11009  cle 11010  cz 12319  cuz 12582  lim supclsp 15179  cli 15193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-fz 13240  df-fl 13512  df-ceil 13513  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197
This theorem is referenced by:  supcnvlimsupmpt  43282
  Copyright terms: Public domain W3C validator