Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supcnvlimsup Structured version   Visualization version   GIF version

Theorem supcnvlimsup 45769
Description: If a function on a set of upper integers has a real superior limit, the supremum of the rightmost parts of the function, converges to that superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
supcnvlimsup.m (𝜑𝑀 ∈ ℤ)
supcnvlimsup.z 𝑍 = (ℤ𝑀)
supcnvlimsup.f (𝜑𝐹:𝑍⟶ℝ)
supcnvlimsup.r (𝜑 → (lim sup‘𝐹) ∈ ℝ)
Assertion
Ref Expression
supcnvlimsup (𝜑 → (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )) ⇝ (lim sup‘𝐹))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝑀(𝑘)

Proof of Theorem supcnvlimsup
Dummy variables 𝑖 𝑗 𝑥 𝑛 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supcnvlimsup.z . . 3 𝑍 = (ℤ𝑀)
2 supcnvlimsup.m . . 3 (𝜑𝑀 ∈ ℤ)
3 supcnvlimsup.f . . . . . . . . 9 (𝜑𝐹:𝑍⟶ℝ)
43adantr 480 . . . . . . . 8 ((𝜑𝑛𝑍) → 𝐹:𝑍⟶ℝ)
5 id 22 . . . . . . . . . 10 (𝑛𝑍𝑛𝑍)
61, 5uzssd2 45444 . . . . . . . . 9 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
76adantl 481 . . . . . . . 8 ((𝜑𝑛𝑍) → (ℤ𝑛) ⊆ 𝑍)
84, 7feqresmpt 6948 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐹 ↾ (ℤ𝑛)) = (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)))
98rneqd 5918 . . . . . 6 ((𝜑𝑛𝑍) → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)))
109supeq1d 9458 . . . . 5 ((𝜑𝑛𝑍) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)), ℝ*, < ))
11 nfcv 2898 . . . . . . . . 9 𝑚𝐹
12 supcnvlimsup.r . . . . . . . . . 10 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
1312renepnfd 11286 . . . . . . . . 9 (𝜑 → (lim sup‘𝐹) ≠ +∞)
1411, 1, 3, 13limsupubuz 45742 . . . . . . . 8 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥)
1514adantr 480 . . . . . . 7 ((𝜑𝑛𝑍) → ∃𝑥 ∈ ℝ ∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥)
16 ssralv 4027 . . . . . . . . . 10 ((ℤ𝑛) ⊆ 𝑍 → (∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
176, 16syl 17 . . . . . . . . 9 (𝑛𝑍 → (∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
1817adantl 481 . . . . . . . 8 ((𝜑𝑛𝑍) → (∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
1918reximdv 3155 . . . . . . 7 ((𝜑𝑛𝑍) → (∃𝑥 ∈ ℝ ∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
2015, 19mpd 15 . . . . . 6 ((𝜑𝑛𝑍) → ∃𝑥 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥)
21 nfv 1914 . . . . . . 7 𝑚(𝜑𝑛𝑍)
221eluzelz2 45430 . . . . . . . . 9 (𝑛𝑍𝑛 ∈ ℤ)
23 uzid 12867 . . . . . . . . 9 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
24 ne0i 4316 . . . . . . . . 9 (𝑛 ∈ (ℤ𝑛) → (ℤ𝑛) ≠ ∅)
2522, 23, 243syl 18 . . . . . . . 8 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
2625adantl 481 . . . . . . 7 ((𝜑𝑛𝑍) → (ℤ𝑛) ≠ ∅)
274adantr 480 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐹:𝑍⟶ℝ)
287sselda 3958 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
2927, 28ffvelcdmd 7075 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚) ∈ ℝ)
3021, 26, 29supxrre3rnmpt 45456 . . . . . 6 ((𝜑𝑛𝑍) → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)), ℝ*, < ) ∈ ℝ ↔ ∃𝑥 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
3120, 30mpbird 257 . . . . 5 ((𝜑𝑛𝑍) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)), ℝ*, < ) ∈ ℝ)
3210, 31eqeltrd 2834 . . . 4 ((𝜑𝑛𝑍) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) ∈ ℝ)
3332fmpttd 7105 . . 3 (𝜑 → (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )):𝑍⟶ℝ)
34 eqid 2735 . . . . . . . 8 (ℤ𝑖) = (ℤ𝑖)
351eluzelz2 45430 . . . . . . . 8 (𝑖𝑍𝑖 ∈ ℤ)
3635peano2zd 12700 . . . . . . . 8 (𝑖𝑍 → (𝑖 + 1) ∈ ℤ)
3735zred 12697 . . . . . . . . 9 (𝑖𝑍𝑖 ∈ ℝ)
38 lep1 12082 . . . . . . . . 9 (𝑖 ∈ ℝ → 𝑖 ≤ (𝑖 + 1))
3937, 38syl 17 . . . . . . . 8 (𝑖𝑍𝑖 ≤ (𝑖 + 1))
4034, 35, 36, 39eluzd 45436 . . . . . . 7 (𝑖𝑍 → (𝑖 + 1) ∈ (ℤ𝑖))
41 uzss 12875 . . . . . . 7 ((𝑖 + 1) ∈ (ℤ𝑖) → (ℤ‘(𝑖 + 1)) ⊆ (ℤ𝑖))
42 ssres2 5991 . . . . . . 7 ((ℤ‘(𝑖 + 1)) ⊆ (ℤ𝑖) → (𝐹 ↾ (ℤ‘(𝑖 + 1))) ⊆ (𝐹 ↾ (ℤ𝑖)))
43 rnss 5919 . . . . . . 7 ((𝐹 ↾ (ℤ‘(𝑖 + 1))) ⊆ (𝐹 ↾ (ℤ𝑖)) → ran (𝐹 ↾ (ℤ‘(𝑖 + 1))) ⊆ ran (𝐹 ↾ (ℤ𝑖)))
4440, 41, 42, 434syl 19 . . . . . 6 (𝑖𝑍 → ran (𝐹 ↾ (ℤ‘(𝑖 + 1))) ⊆ ran (𝐹 ↾ (ℤ𝑖)))
4544adantl 481 . . . . 5 ((𝜑𝑖𝑍) → ran (𝐹 ↾ (ℤ‘(𝑖 + 1))) ⊆ ran (𝐹 ↾ (ℤ𝑖)))
46 rnresss 6004 . . . . . . . 8 ran (𝐹 ↾ (ℤ𝑖)) ⊆ ran 𝐹
4746a1i 11 . . . . . . 7 ((𝜑𝑖𝑍) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ran 𝐹)
483frnd 6714 . . . . . . . 8 (𝜑 → ran 𝐹 ⊆ ℝ)
4948adantr 480 . . . . . . 7 ((𝜑𝑖𝑍) → ran 𝐹 ⊆ ℝ)
5047, 49sstrd 3969 . . . . . 6 ((𝜑𝑖𝑍) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ℝ)
51 ressxr 11279 . . . . . . 7 ℝ ⊆ ℝ*
5251a1i 11 . . . . . 6 ((𝜑𝑖𝑍) → ℝ ⊆ ℝ*)
5350, 52sstrd 3969 . . . . 5 ((𝜑𝑖𝑍) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ℝ*)
54 supxrss 13348 . . . . 5 ((ran (𝐹 ↾ (ℤ‘(𝑖 + 1))) ⊆ ran (𝐹 ↾ (ℤ𝑖)) ∧ ran (𝐹 ↾ (ℤ𝑖)) ⊆ ℝ*) → sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ) ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
5545, 53, 54syl2anc 584 . . . 4 ((𝜑𝑖𝑍) → sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ) ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
56 eqidd 2736 . . . . . . 7 (𝑖𝑍 → (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
57 fveq2 6876 . . . . . . . . . . 11 (𝑛 = (𝑖 + 1) → (ℤ𝑛) = (ℤ‘(𝑖 + 1)))
5857reseq2d 5966 . . . . . . . . . 10 (𝑛 = (𝑖 + 1) → (𝐹 ↾ (ℤ𝑛)) = (𝐹 ↾ (ℤ‘(𝑖 + 1))))
5958rneqd 5918 . . . . . . . . 9 (𝑛 = (𝑖 + 1) → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝐹 ↾ (ℤ‘(𝑖 + 1))))
6059supeq1d 9458 . . . . . . . 8 (𝑛 = (𝑖 + 1) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ))
6160adantl 481 . . . . . . 7 ((𝑖𝑍𝑛 = (𝑖 + 1)) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ))
621peano2uzs 12918 . . . . . . 7 (𝑖𝑍 → (𝑖 + 1) ∈ 𝑍)
63 xrltso 13157 . . . . . . . . 9 < Or ℝ*
6463supex 9476 . . . . . . . 8 sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ) ∈ V
6564a1i 11 . . . . . . 7 (𝑖𝑍 → sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ) ∈ V)
6656, 61, 62, 65fvmptd 6993 . . . . . 6 (𝑖𝑍 → ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘(𝑖 + 1)) = sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ))
6766adantl 481 . . . . 5 ((𝜑𝑖𝑍) → ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘(𝑖 + 1)) = sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ))
68 fveq2 6876 . . . . . . . . . . 11 (𝑛 = 𝑖 → (ℤ𝑛) = (ℤ𝑖))
6968reseq2d 5966 . . . . . . . . . 10 (𝑛 = 𝑖 → (𝐹 ↾ (ℤ𝑛)) = (𝐹 ↾ (ℤ𝑖)))
7069rneqd 5918 . . . . . . . . 9 (𝑛 = 𝑖 → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝐹 ↾ (ℤ𝑖)))
7170supeq1d 9458 . . . . . . . 8 (𝑛 = 𝑖 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
7271adantl 481 . . . . . . 7 ((𝑖𝑍𝑛 = 𝑖) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
73 id 22 . . . . . . 7 (𝑖𝑍𝑖𝑍)
7463supex 9476 . . . . . . . 8 sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ∈ V
7574a1i 11 . . . . . . 7 (𝑖𝑍 → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ∈ V)
7656, 72, 73, 75fvmptd 6993 . . . . . 6 (𝑖𝑍 → ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
7776adantl 481 . . . . 5 ((𝜑𝑖𝑍) → ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
7867, 77breq12d 5132 . . . 4 ((𝜑𝑖𝑍) → (((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘(𝑖 + 1)) ≤ ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖) ↔ sup(ran (𝐹 ↾ (ℤ‘(𝑖 + 1))), ℝ*, < ) ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
7955, 78mpbird 257 . . 3 ((𝜑𝑖𝑍) → ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘(𝑖 + 1)) ≤ ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖))
80 nfcv 2898 . . . . . . . 8 𝑗𝐹
813frexr 45412 . . . . . . . 8 (𝜑𝐹:𝑍⟶ℝ*)
8280, 2, 1, 81limsupre3uz 45765 . . . . . . 7 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)(𝐹𝑗) ≤ 𝑥)))
8312, 82mpbid 232 . . . . . 6 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)(𝐹𝑗) ≤ 𝑥))
8483simpld 494 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗))
85 simp-4r 783 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ∈ ℝ)
8685rexrd 11285 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ∈ ℝ*)
87813ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝐹:𝑍⟶ℝ*)
881uztrn2 12871 . . . . . . . . . . . 12 ((𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝑗𝑍)
89883adant1 1130 . . . . . . . . . . 11 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝑗𝑍)
9087, 89ffvelcdmd 7075 . . . . . . . . . 10 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) ∈ ℝ*)
9190ad5ant134 1369 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
9253supxrcld 45131 . . . . . . . . . 10 ((𝜑𝑖𝑍) → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ∈ ℝ*)
9392ad5ant13 756 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ∈ ℝ*)
94 simpr 484 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ≤ (𝐹𝑗))
95533adant3 1132 . . . . . . . . . . 11 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ℝ*)
96 fvres 6895 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑖) → ((𝐹 ↾ (ℤ𝑖))‘𝑗) = (𝐹𝑗))
9796eqcomd 2741 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑖) → (𝐹𝑗) = ((𝐹 ↾ (ℤ𝑖))‘𝑗))
98973ad2ant3 1135 . . . . . . . . . . . 12 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) = ((𝐹 ↾ (ℤ𝑖))‘𝑗))
993ffnd 6707 . . . . . . . . . . . . . . . 16 (𝜑𝐹 Fn 𝑍)
10099adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → 𝐹 Fn 𝑍)
1011, 73uzssd2 45444 . . . . . . . . . . . . . . . 16 (𝑖𝑍 → (ℤ𝑖) ⊆ 𝑍)
102101adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → (ℤ𝑖) ⊆ 𝑍)
103 fnssres 6661 . . . . . . . . . . . . . . 15 ((𝐹 Fn 𝑍 ∧ (ℤ𝑖) ⊆ 𝑍) → (𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖))
104100, 102, 103syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍) → (𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖))
1051043adant3 1132 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖))
106 simp3 1138 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝑗 ∈ (ℤ𝑖))
107 fnfvelrn 7070 . . . . . . . . . . . . 13 (((𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖) ∧ 𝑗 ∈ (ℤ𝑖)) → ((𝐹 ↾ (ℤ𝑖))‘𝑗) ∈ ran (𝐹 ↾ (ℤ𝑖)))
108105, 106, 107syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → ((𝐹 ↾ (ℤ𝑖))‘𝑗) ∈ ran (𝐹 ↾ (ℤ𝑖)))
10998, 108eqeltrd 2834 . . . . . . . . . . 11 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) ∈ ran (𝐹 ↾ (ℤ𝑖)))
110 eqid 2735 . . . . . . . . . . 11 sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )
11195, 109, 110supxrubd 45137 . . . . . . . . . 10 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
112111ad5ant134 1369 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
11386, 91, 93, 94, 112xrletrd 13178 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
114113rexlimdva2 3143 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) → (∃𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
115114ralimdva 3152 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) → ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
116115reximdva 3153 . . . . 5 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) → ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
11784, 116mpd 15 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
118 simpl 482 . . . . . . 7 ((𝑦 = 𝑥𝑖𝑍) → 𝑦 = 𝑥)
11976adantl 481 . . . . . . 7 ((𝑦 = 𝑥𝑖𝑍) → ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
120118, 119breq12d 5132 . . . . . 6 ((𝑦 = 𝑥𝑖𝑍) → (𝑦 ≤ ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖) ↔ 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
121120ralbidva 3161 . . . . 5 (𝑦 = 𝑥 → (∀𝑖𝑍 𝑦 ≤ ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖) ↔ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
122121cbvrexvw 3221 . . . 4 (∃𝑦 ∈ ℝ ∀𝑖𝑍 𝑦 ≤ ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖) ↔ ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
123117, 122sylibr 234 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑖𝑍 𝑦 ≤ ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))‘𝑖))
1241, 2, 33, 79, 123climinf 45635 . 2 (𝜑 → (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) ⇝ inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ))
125 fveq2 6876 . . . . . . . 8 (𝑛 = 𝑘 → (ℤ𝑛) = (ℤ𝑘))
126125reseq2d 5966 . . . . . . 7 (𝑛 = 𝑘 → (𝐹 ↾ (ℤ𝑛)) = (𝐹 ↾ (ℤ𝑘)))
127126rneqd 5918 . . . . . 6 (𝑛 = 𝑘 → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝐹 ↾ (ℤ𝑘)))
128127supeq1d 9458 . . . . 5 (𝑛 = 𝑘 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
129128cbvmptv 5225 . . . 4 (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
130129a1i 11 . . 3 (𝜑 → (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )))
1312, 1, 3, 12limsupvaluz2 45767 . . . 4 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ))
132131eqcomd 2741 . . 3 (𝜑 → inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ) = (lim sup‘𝐹))
133130, 132breq12d 5132 . 2 (𝜑 → ((𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) ⇝ inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ) ↔ (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )) ⇝ (lim sup‘𝐹)))
134124, 133mpbid 232 1 (𝜑 → (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )) ⇝ (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  Vcvv 3459  wss 3926  c0 4308   class class class wbr 5119  cmpt 5201  ran crn 5655  cres 5656   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  supcsup 9452  infcinf 9453  cr 11128  1c1 11130   + caddc 11132  *cxr 11268   < clt 11269  cle 11270  cz 12588  cuz 12852  lim supclsp 15486  cli 15500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-ico 13368  df-fz 13525  df-fl 13809  df-ceil 13810  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504
This theorem is referenced by:  supcnvlimsupmpt  45770
  Copyright terms: Public domain W3C validator