Step | Hyp | Ref
| Expression |
1 | | supcnvlimsup.z |
. . 3
β’ π =
(β€β₯βπ) |
2 | | supcnvlimsup.m |
. . 3
β’ (π β π β β€) |
3 | | supcnvlimsup.f |
. . . . . . . . 9
β’ (π β πΉ:πβΆβ) |
4 | 3 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π β π) β πΉ:πβΆβ) |
5 | | id 22 |
. . . . . . . . . 10
β’ (π β π β π β π) |
6 | 1, 5 | uzssd2 44113 |
. . . . . . . . 9
β’ (π β π β (β€β₯βπ) β π) |
7 | 6 | adantl 482 |
. . . . . . . 8
β’ ((π β§ π β π) β (β€β₯βπ) β π) |
8 | 4, 7 | feqresmpt 6958 |
. . . . . . 7
β’ ((π β§ π β π) β (πΉ βΎ (β€β₯βπ)) = (π β (β€β₯βπ) β¦ (πΉβπ))) |
9 | 8 | rneqd 5935 |
. . . . . 6
β’ ((π β§ π β π) β ran (πΉ βΎ (β€β₯βπ)) = ran (π β (β€β₯βπ) β¦ (πΉβπ))) |
10 | 9 | supeq1d 9437 |
. . . . 5
β’ ((π β§ π β π) β sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
= sup(ran (π β
(β€β₯βπ) β¦ (πΉβπ)), β*, <
)) |
11 | | nfcv 2903 |
. . . . . . . . 9
β’
β²ππΉ |
12 | | supcnvlimsup.r |
. . . . . . . . . 10
β’ (π β (lim supβπΉ) β
β) |
13 | 12 | renepnfd 11261 |
. . . . . . . . 9
β’ (π β (lim supβπΉ) β
+β) |
14 | 11, 1, 3, 13 | limsupubuz 44415 |
. . . . . . . 8
β’ (π β βπ₯ β β βπ β π (πΉβπ) β€ π₯) |
15 | 14 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β π) β βπ₯ β β βπ β π (πΉβπ) β€ π₯) |
16 | | ssralv 4049 |
. . . . . . . . . 10
β’
((β€β₯βπ) β π β (βπ β π (πΉβπ) β€ π₯ β βπ β (β€β₯βπ)(πΉβπ) β€ π₯)) |
17 | 6, 16 | syl 17 |
. . . . . . . . 9
β’ (π β π β (βπ β π (πΉβπ) β€ π₯ β βπ β (β€β₯βπ)(πΉβπ) β€ π₯)) |
18 | 17 | adantl 482 |
. . . . . . . 8
β’ ((π β§ π β π) β (βπ β π (πΉβπ) β€ π₯ β βπ β (β€β₯βπ)(πΉβπ) β€ π₯)) |
19 | 18 | reximdv 3170 |
. . . . . . 7
β’ ((π β§ π β π) β (βπ₯ β β βπ β π (πΉβπ) β€ π₯ β βπ₯ β β βπ β (β€β₯βπ)(πΉβπ) β€ π₯)) |
20 | 15, 19 | mpd 15 |
. . . . . 6
β’ ((π β§ π β π) β βπ₯ β β βπ β (β€β₯βπ)(πΉβπ) β€ π₯) |
21 | | nfv 1917 |
. . . . . . 7
β’
β²π(π β§ π β π) |
22 | 1 | eluzelz2 44099 |
. . . . . . . . 9
β’ (π β π β π β β€) |
23 | | uzid 12833 |
. . . . . . . . 9
β’ (π β β€ β π β
(β€β₯βπ)) |
24 | | ne0i 4333 |
. . . . . . . . 9
β’ (π β
(β€β₯βπ) β (β€β₯βπ) β β
) |
25 | 22, 23, 24 | 3syl 18 |
. . . . . . . 8
β’ (π β π β (β€β₯βπ) β β
) |
26 | 25 | adantl 482 |
. . . . . . 7
β’ ((π β§ π β π) β (β€β₯βπ) β β
) |
27 | 4 | adantr 481 |
. . . . . . . 8
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β πΉ:πβΆβ) |
28 | 7 | sselda 3981 |
. . . . . . . 8
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β π β π) |
29 | 27, 28 | ffvelcdmd 7084 |
. . . . . . 7
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β (πΉβπ) β β) |
30 | 21, 26, 29 | supxrre3rnmpt 44125 |
. . . . . 6
β’ ((π β§ π β π) β (sup(ran (π β (β€β₯βπ) β¦ (πΉβπ)), β*, < ) β
β β βπ₯
β β βπ
β (β€β₯βπ)(πΉβπ) β€ π₯)) |
31 | 20, 30 | mpbird 256 |
. . . . 5
β’ ((π β§ π β π) β sup(ran (π β (β€β₯βπ) β¦ (πΉβπ)), β*, < ) β
β) |
32 | 10, 31 | eqeltrd 2833 |
. . . 4
β’ ((π β§ π β π) β sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
β β) |
33 | 32 | fmpttd 7111 |
. . 3
β’ (π β (π β π β¦ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
)):πβΆβ) |
34 | | eqid 2732 |
. . . . . . . . . 10
β’
(β€β₯βπ) = (β€β₯βπ) |
35 | 1 | eluzelz2 44099 |
. . . . . . . . . 10
β’ (π β π β π β β€) |
36 | 35 | peano2zd 12665 |
. . . . . . . . . 10
β’ (π β π β (π + 1) β β€) |
37 | 35 | zred 12662 |
. . . . . . . . . . 11
β’ (π β π β π β β) |
38 | | lep1 12051 |
. . . . . . . . . . 11
β’ (π β β β π β€ (π + 1)) |
39 | 37, 38 | syl 17 |
. . . . . . . . . 10
β’ (π β π β π β€ (π + 1)) |
40 | 34, 35, 36, 39 | eluzd 44105 |
. . . . . . . . 9
β’ (π β π β (π + 1) β
(β€β₯βπ)) |
41 | | uzss 12841 |
. . . . . . . . 9
β’ ((π + 1) β
(β€β₯βπ) β (β€β₯β(π + 1)) β
(β€β₯βπ)) |
42 | 40, 41 | syl 17 |
. . . . . . . 8
β’ (π β π β (β€β₯β(π + 1)) β
(β€β₯βπ)) |
43 | | ssres2 6007 |
. . . . . . . 8
β’
((β€β₯β(π + 1)) β
(β€β₯βπ) β (πΉ βΎ
(β€β₯β(π + 1))) β (πΉ βΎ (β€β₯βπ))) |
44 | 42, 43 | syl 17 |
. . . . . . 7
β’ (π β π β (πΉ βΎ
(β€β₯β(π + 1))) β (πΉ βΎ (β€β₯βπ))) |
45 | | rnss 5936 |
. . . . . . 7
β’ ((πΉ βΎ
(β€β₯β(π + 1))) β (πΉ βΎ (β€β₯βπ)) β ran (πΉ βΎ
(β€β₯β(π + 1))) β ran (πΉ βΎ (β€β₯βπ))) |
46 | 44, 45 | syl 17 |
. . . . . 6
β’ (π β π β ran (πΉ βΎ
(β€β₯β(π + 1))) β ran (πΉ βΎ (β€β₯βπ))) |
47 | 46 | adantl 482 |
. . . . 5
β’ ((π β§ π β π) β ran (πΉ βΎ
(β€β₯β(π + 1))) β ran (πΉ βΎ (β€β₯βπ))) |
48 | | rnresss 6015 |
. . . . . . . 8
β’ ran
(πΉ βΎ
(β€β₯βπ)) β ran πΉ |
49 | 48 | a1i 11 |
. . . . . . 7
β’ ((π β§ π β π) β ran (πΉ βΎ (β€β₯βπ)) β ran πΉ) |
50 | 3 | frnd 6722 |
. . . . . . . 8
β’ (π β ran πΉ β β) |
51 | 50 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β π) β ran πΉ β β) |
52 | 49, 51 | sstrd 3991 |
. . . . . 6
β’ ((π β§ π β π) β ran (πΉ βΎ (β€β₯βπ)) β
β) |
53 | | ressxr 11254 |
. . . . . . 7
β’ β
β β* |
54 | 53 | a1i 11 |
. . . . . 6
β’ ((π β§ π β π) β β β
β*) |
55 | 52, 54 | sstrd 3991 |
. . . . 5
β’ ((π β§ π β π) β ran (πΉ βΎ (β€β₯βπ)) β
β*) |
56 | | supxrss 13307 |
. . . . 5
β’ ((ran
(πΉ βΎ
(β€β₯β(π + 1))) β ran (πΉ βΎ (β€β₯βπ)) β§ ran (πΉ βΎ (β€β₯βπ)) β β*)
β sup(ran (πΉ βΎ
(β€β₯β(π + 1))), β*, < ) β€
sup(ran (πΉ βΎ
(β€β₯βπ)), β*, <
)) |
57 | 47, 55, 56 | syl2anc 584 |
. . . 4
β’ ((π β§ π β π) β sup(ran (πΉ βΎ
(β€β₯β(π + 1))), β*, < ) β€
sup(ran (πΉ βΎ
(β€β₯βπ)), β*, <
)) |
58 | | eqidd 2733 |
. . . . . . 7
β’ (π β π β (π β π β¦ sup(ran (πΉ βΎ (β€β₯βπ)), β*, < ))
= (π β π β¦ sup(ran (πΉ βΎ
(β€β₯βπ)), β*, <
))) |
59 | | fveq2 6888 |
. . . . . . . . . . 11
β’ (π = (π + 1) β
(β€β₯βπ) = (β€β₯β(π + 1))) |
60 | 59 | reseq2d 5979 |
. . . . . . . . . 10
β’ (π = (π + 1) β (πΉ βΎ (β€β₯βπ)) = (πΉ βΎ
(β€β₯β(π + 1)))) |
61 | 60 | rneqd 5935 |
. . . . . . . . 9
β’ (π = (π + 1) β ran (πΉ βΎ (β€β₯βπ)) = ran (πΉ βΎ
(β€β₯β(π + 1)))) |
62 | 61 | supeq1d 9437 |
. . . . . . . 8
β’ (π = (π + 1) β sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
= sup(ran (πΉ βΎ
(β€β₯β(π + 1))), β*, <
)) |
63 | 62 | adantl 482 |
. . . . . . 7
β’ ((π β π β§ π = (π + 1)) β sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
= sup(ran (πΉ βΎ
(β€β₯β(π + 1))), β*, <
)) |
64 | 1 | peano2uzs 12882 |
. . . . . . 7
β’ (π β π β (π + 1) β π) |
65 | | xrltso 13116 |
. . . . . . . . 9
β’ < Or
β* |
66 | 65 | supex 9454 |
. . . . . . . 8
β’ sup(ran
(πΉ βΎ
(β€β₯β(π + 1))), β*, < ) β
V |
67 | 66 | a1i 11 |
. . . . . . 7
β’ (π β π β sup(ran (πΉ βΎ
(β€β₯β(π + 1))), β*, < ) β
V) |
68 | 58, 63, 64, 67 | fvmptd 7002 |
. . . . . 6
β’ (π β π β ((π β π β¦ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
))β(π + 1)) = sup(ran
(πΉ βΎ
(β€β₯β(π + 1))), β*, <
)) |
69 | 68 | adantl 482 |
. . . . 5
β’ ((π β§ π β π) β ((π β π β¦ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
))β(π + 1)) = sup(ran
(πΉ βΎ
(β€β₯β(π + 1))), β*, <
)) |
70 | | fveq2 6888 |
. . . . . . . . . . 11
β’ (π = π β (β€β₯βπ) =
(β€β₯βπ)) |
71 | 70 | reseq2d 5979 |
. . . . . . . . . 10
β’ (π = π β (πΉ βΎ (β€β₯βπ)) = (πΉ βΎ (β€β₯βπ))) |
72 | 71 | rneqd 5935 |
. . . . . . . . 9
β’ (π = π β ran (πΉ βΎ (β€β₯βπ)) = ran (πΉ βΎ (β€β₯βπ))) |
73 | 72 | supeq1d 9437 |
. . . . . . . 8
β’ (π = π β sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
= sup(ran (πΉ βΎ
(β€β₯βπ)), β*, <
)) |
74 | 73 | adantl 482 |
. . . . . . 7
β’ ((π β π β§ π = π) β sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
= sup(ran (πΉ βΎ
(β€β₯βπ)), β*, <
)) |
75 | | id 22 |
. . . . . . 7
β’ (π β π β π β π) |
76 | 65 | supex 9454 |
. . . . . . . 8
β’ sup(ran
(πΉ βΎ
(β€β₯βπ)), β*, < ) β
V |
77 | 76 | a1i 11 |
. . . . . . 7
β’ (π β π β sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
β V) |
78 | 58, 74, 75, 77 | fvmptd 7002 |
. . . . . 6
β’ (π β π β ((π β π β¦ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
))βπ) = sup(ran
(πΉ βΎ
(β€β₯βπ)), β*, <
)) |
79 | 78 | adantl 482 |
. . . . 5
β’ ((π β§ π β π) β ((π β π β¦ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
))βπ) = sup(ran
(πΉ βΎ
(β€β₯βπ)), β*, <
)) |
80 | 69, 79 | breq12d 5160 |
. . . 4
β’ ((π β§ π β π) β (((π β π β¦ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
))β(π + 1)) β€
((π β π β¦ sup(ran (πΉ βΎ
(β€β₯βπ)), β*, < ))βπ) β sup(ran (πΉ βΎ
(β€β₯β(π + 1))), β*, < ) β€
sup(ran (πΉ βΎ
(β€β₯βπ)), β*, <
))) |
81 | 57, 80 | mpbird 256 |
. . 3
β’ ((π β§ π β π) β ((π β π β¦ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
))β(π + 1)) β€
((π β π β¦ sup(ran (πΉ βΎ
(β€β₯βπ)), β*, < ))βπ)) |
82 | | nfcv 2903 |
. . . . . . . 8
β’
β²ππΉ |
83 | 3 | frexr 44081 |
. . . . . . . 8
β’ (π β πΉ:πβΆβ*) |
84 | 82, 2, 1, 83 | limsupre3uz 44438 |
. . . . . . 7
β’ (π β ((lim supβπΉ) β β β
(βπ₯ β β
βπ β π βπ β (β€β₯βπ)π₯ β€ (πΉβπ) β§ βπ₯ β β βπ β π βπ β (β€β₯βπ)(πΉβπ) β€ π₯))) |
85 | 12, 84 | mpbid 231 |
. . . . . 6
β’ (π β (βπ₯ β β βπ β π βπ β (β€β₯βπ)π₯ β€ (πΉβπ) β§ βπ₯ β β βπ β π βπ β (β€β₯βπ)(πΉβπ) β€ π₯)) |
86 | 85 | simpld 495 |
. . . . 5
β’ (π β βπ₯ β β βπ β π βπ β (β€β₯βπ)π₯ β€ (πΉβπ)) |
87 | | simp-4r 782 |
. . . . . . . . . 10
β’
(((((π β§ π₯ β β) β§ π β π) β§ π β (β€β₯βπ)) β§ π₯ β€ (πΉβπ)) β π₯ β β) |
88 | 87 | rexrd 11260 |
. . . . . . . . 9
β’
(((((π β§ π₯ β β) β§ π β π) β§ π β (β€β₯βπ)) β§ π₯ β€ (πΉβπ)) β π₯ β β*) |
89 | 83 | 3ad2ant1 1133 |
. . . . . . . . . . 11
β’ ((π β§ π β π β§ π β (β€β₯βπ)) β πΉ:πβΆβ*) |
90 | 1 | uztrn2 12837 |
. . . . . . . . . . . 12
β’ ((π β π β§ π β (β€β₯βπ)) β π β π) |
91 | 90 | 3adant1 1130 |
. . . . . . . . . . 11
β’ ((π β§ π β π β§ π β (β€β₯βπ)) β π β π) |
92 | 89, 91 | ffvelcdmd 7084 |
. . . . . . . . . 10
β’ ((π β§ π β π β§ π β (β€β₯βπ)) β (πΉβπ) β
β*) |
93 | 92 | ad5ant134 1367 |
. . . . . . . . 9
β’
(((((π β§ π₯ β β) β§ π β π) β§ π β (β€β₯βπ)) β§ π₯ β€ (πΉβπ)) β (πΉβπ) β
β*) |
94 | 55 | supxrcld 43781 |
. . . . . . . . . 10
β’ ((π β§ π β π) β sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
β β*) |
95 | 94 | ad5ant13 755 |
. . . . . . . . 9
β’
(((((π β§ π₯ β β) β§ π β π) β§ π β (β€β₯βπ)) β§ π₯ β€ (πΉβπ)) β sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
β β*) |
96 | | simpr 485 |
. . . . . . . . 9
β’
(((((π β§ π₯ β β) β§ π β π) β§ π β (β€β₯βπ)) β§ π₯ β€ (πΉβπ)) β π₯ β€ (πΉβπ)) |
97 | 55 | 3adant3 1132 |
. . . . . . . . . . 11
β’ ((π β§ π β π β§ π β (β€β₯βπ)) β ran (πΉ βΎ (β€β₯βπ)) β
β*) |
98 | | fvres 6907 |
. . . . . . . . . . . . . 14
β’ (π β
(β€β₯βπ) β ((πΉ βΎ (β€β₯βπ))βπ) = (πΉβπ)) |
99 | 98 | eqcomd 2738 |
. . . . . . . . . . . . 13
β’ (π β
(β€β₯βπ) β (πΉβπ) = ((πΉ βΎ (β€β₯βπ))βπ)) |
100 | 99 | 3ad2ant3 1135 |
. . . . . . . . . . . 12
β’ ((π β§ π β π β§ π β (β€β₯βπ)) β (πΉβπ) = ((πΉ βΎ (β€β₯βπ))βπ)) |
101 | 3 | ffnd 6715 |
. . . . . . . . . . . . . . . 16
β’ (π β πΉ Fn π) |
102 | 101 | adantr 481 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π) β πΉ Fn π) |
103 | 1, 75 | uzssd2 44113 |
. . . . . . . . . . . . . . . 16
β’ (π β π β (β€β₯βπ) β π) |
104 | 103 | adantl 482 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π) β (β€β₯βπ) β π) |
105 | | fnssres 6670 |
. . . . . . . . . . . . . . 15
β’ ((πΉ Fn π β§ (β€β₯βπ) β π) β (πΉ βΎ (β€β₯βπ)) Fn
(β€β₯βπ)) |
106 | 102, 104,
105 | syl2anc 584 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π) β (πΉ βΎ (β€β₯βπ)) Fn
(β€β₯βπ)) |
107 | 106 | 3adant3 1132 |
. . . . . . . . . . . . 13
β’ ((π β§ π β π β§ π β (β€β₯βπ)) β (πΉ βΎ (β€β₯βπ)) Fn
(β€β₯βπ)) |
108 | | simp3 1138 |
. . . . . . . . . . . . 13
β’ ((π β§ π β π β§ π β (β€β₯βπ)) β π β (β€β₯βπ)) |
109 | | fnfvelrn 7079 |
. . . . . . . . . . . . 13
β’ (((πΉ βΎ
(β€β₯βπ)) Fn (β€β₯βπ) β§ π β (β€β₯βπ)) β ((πΉ βΎ (β€β₯βπ))βπ) β ran (πΉ βΎ (β€β₯βπ))) |
110 | 107, 108,
109 | syl2anc 584 |
. . . . . . . . . . . 12
β’ ((π β§ π β π β§ π β (β€β₯βπ)) β ((πΉ βΎ (β€β₯βπ))βπ) β ran (πΉ βΎ (β€β₯βπ))) |
111 | 100, 110 | eqeltrd 2833 |
. . . . . . . . . . 11
β’ ((π β§ π β π β§ π β (β€β₯βπ)) β (πΉβπ) β ran (πΉ βΎ (β€β₯βπ))) |
112 | | eqid 2732 |
. . . . . . . . . . 11
β’ sup(ran
(πΉ βΎ
(β€β₯βπ)), β*, < ) = sup(ran
(πΉ βΎ
(β€β₯βπ)), β*, <
) |
113 | 97, 111, 112 | supxrubd 43787 |
. . . . . . . . . 10
β’ ((π β§ π β π β§ π β (β€β₯βπ)) β (πΉβπ) β€ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
)) |
114 | 113 | ad5ant134 1367 |
. . . . . . . . 9
β’
(((((π β§ π₯ β β) β§ π β π) β§ π β (β€β₯βπ)) β§ π₯ β€ (πΉβπ)) β (πΉβπ) β€ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
)) |
115 | 88, 93, 95, 96, 114 | xrletrd 13137 |
. . . . . . . 8
β’
(((((π β§ π₯ β β) β§ π β π) β§ π β (β€β₯βπ)) β§ π₯ β€ (πΉβπ)) β π₯ β€ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
)) |
116 | 115 | rexlimdva2 3157 |
. . . . . . 7
β’ (((π β§ π₯ β β) β§ π β π) β (βπ β (β€β₯βπ)π₯ β€ (πΉβπ) β π₯ β€ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
))) |
117 | 116 | ralimdva 3167 |
. . . . . 6
β’ ((π β§ π₯ β β) β (βπ β π βπ β (β€β₯βπ)π₯ β€ (πΉβπ) β βπ β π π₯ β€ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
))) |
118 | 117 | reximdva 3168 |
. . . . 5
β’ (π β (βπ₯ β β βπ β π βπ β (β€β₯βπ)π₯ β€ (πΉβπ) β βπ₯ β β βπ β π π₯ β€ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
))) |
119 | 86, 118 | mpd 15 |
. . . 4
β’ (π β βπ₯ β β βπ β π π₯ β€ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
)) |
120 | | simpl 483 |
. . . . . . 7
β’ ((π¦ = π₯ β§ π β π) β π¦ = π₯) |
121 | 78 | adantl 482 |
. . . . . . 7
β’ ((π¦ = π₯ β§ π β π) β ((π β π β¦ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
))βπ) = sup(ran
(πΉ βΎ
(β€β₯βπ)), β*, <
)) |
122 | 120, 121 | breq12d 5160 |
. . . . . 6
β’ ((π¦ = π₯ β§ π β π) β (π¦ β€ ((π β π β¦ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
))βπ) β π₯ β€ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
))) |
123 | 122 | ralbidva 3175 |
. . . . 5
β’ (π¦ = π₯ β (βπ β π π¦ β€ ((π β π β¦ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
))βπ) β
βπ β π π₯ β€ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
))) |
124 | 123 | cbvrexvw 3235 |
. . . 4
β’
(βπ¦ β
β βπ β
π π¦ β€ ((π β π β¦ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
))βπ) β
βπ₯ β β
βπ β π π₯ β€ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
)) |
125 | 119, 124 | sylibr 233 |
. . 3
β’ (π β βπ¦ β β βπ β π π¦ β€ ((π β π β¦ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
))βπ)) |
126 | 1, 2, 33, 81, 125 | climinf 44308 |
. 2
β’ (π β (π β π β¦ sup(ran (πΉ βΎ (β€β₯βπ)), β*, < ))
β inf(ran (π β
π β¦ sup(ran (πΉ βΎ
(β€β₯βπ)), β*, < )), β,
< )) |
127 | | fveq2 6888 |
. . . . . . . 8
β’ (π = π β (β€β₯βπ) =
(β€β₯βπ)) |
128 | 127 | reseq2d 5979 |
. . . . . . 7
β’ (π = π β (πΉ βΎ (β€β₯βπ)) = (πΉ βΎ (β€β₯βπ))) |
129 | 128 | rneqd 5935 |
. . . . . 6
β’ (π = π β ran (πΉ βΎ (β€β₯βπ)) = ran (πΉ βΎ (β€β₯βπ))) |
130 | 129 | supeq1d 9437 |
. . . . 5
β’ (π = π β sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
= sup(ran (πΉ βΎ
(β€β₯βπ)), β*, <
)) |
131 | 130 | cbvmptv 5260 |
. . . 4
β’ (π β π β¦ sup(ran (πΉ βΎ (β€β₯βπ)), β*, < ))
= (π β π β¦ sup(ran (πΉ βΎ
(β€β₯βπ)), β*, <
)) |
132 | 131 | a1i 11 |
. . 3
β’ (π β (π β π β¦ sup(ran (πΉ βΎ (β€β₯βπ)), β*, < ))
= (π β π β¦ sup(ran (πΉ βΎ
(β€β₯βπ)), β*, <
))) |
133 | 2, 1, 3, 12 | limsupvaluz2 44440 |
. . . 4
β’ (π β (lim supβπΉ) = inf(ran (π β π β¦ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
)), β, < )) |
134 | 133 | eqcomd 2738 |
. . 3
β’ (π β inf(ran (π β π β¦ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
)), β, < ) = (lim supβπΉ)) |
135 | 132, 134 | breq12d 5160 |
. 2
β’ (π β ((π β π β¦ sup(ran (πΉ βΎ (β€β₯βπ)), β*, < ))
β inf(ran (π β
π β¦ sup(ran (πΉ βΎ
(β€β₯βπ)), β*, < )), β,
< ) β (π β
π β¦ sup(ran (πΉ βΎ
(β€β₯βπ)), β*, < )) β (lim
supβπΉ))) |
136 | 126, 135 | mpbid 231 |
1
β’ (π β (π β π β¦ sup(ran (πΉ βΎ (β€β₯βπ)), β*, < ))
β (lim supβπΉ)) |