Step | Hyp | Ref
| Expression |
1 | | supcnvlimsup.z |
. . 3
⊢ 𝑍 =
(ℤ≥‘𝑀) |
2 | | supcnvlimsup.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℤ) |
3 | | supcnvlimsup.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
4 | 3 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐹:𝑍⟶ℝ) |
5 | | id 22 |
. . . . . . . . . 10
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ 𝑍) |
6 | 1, 5 | uzssd2 42917 |
. . . . . . . . 9
⊢ (𝑛 ∈ 𝑍 → (ℤ≥‘𝑛) ⊆ 𝑍) |
7 | 6 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (ℤ≥‘𝑛) ⊆ 𝑍) |
8 | 4, 7 | feqresmpt 6832 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹 ↾ (ℤ≥‘𝑛)) = (𝑚 ∈ (ℤ≥‘𝑛) ↦ (𝐹‘𝑚))) |
9 | 8 | rneqd 5842 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ran (𝐹 ↾ (ℤ≥‘𝑛)) = ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ (𝐹‘𝑚))) |
10 | 9 | supeq1d 9194 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < )
= sup(ran (𝑚 ∈
(ℤ≥‘𝑛) ↦ (𝐹‘𝑚)), ℝ*, <
)) |
11 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑚𝐹 |
12 | | supcnvlimsup.r |
. . . . . . . . . 10
⊢ (𝜑 → (lim sup‘𝐹) ∈
ℝ) |
13 | 12 | renepnfd 11015 |
. . . . . . . . 9
⊢ (𝜑 → (lim sup‘𝐹) ≠
+∞) |
14 | 11, 1, 3, 13 | limsupubuz 43214 |
. . . . . . . 8
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑚 ∈ 𝑍 (𝐹‘𝑚) ≤ 𝑥) |
15 | 14 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ∃𝑥 ∈ ℝ ∀𝑚 ∈ 𝑍 (𝐹‘𝑚) ≤ 𝑥) |
16 | | ssralv 3988 |
. . . . . . . . . 10
⊢
((ℤ≥‘𝑛) ⊆ 𝑍 → (∀𝑚 ∈ 𝑍 (𝐹‘𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ≥‘𝑛)(𝐹‘𝑚) ≤ 𝑥)) |
17 | 6, 16 | syl 17 |
. . . . . . . . 9
⊢ (𝑛 ∈ 𝑍 → (∀𝑚 ∈ 𝑍 (𝐹‘𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ≥‘𝑛)(𝐹‘𝑚) ≤ 𝑥)) |
18 | 17 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (∀𝑚 ∈ 𝑍 (𝐹‘𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ≥‘𝑛)(𝐹‘𝑚) ≤ 𝑥)) |
19 | 18 | reximdv 3201 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (∃𝑥 ∈ ℝ ∀𝑚 ∈ 𝑍 (𝐹‘𝑚) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑚 ∈ (ℤ≥‘𝑛)(𝐹‘𝑚) ≤ 𝑥)) |
20 | 15, 19 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ∃𝑥 ∈ ℝ ∀𝑚 ∈ (ℤ≥‘𝑛)(𝐹‘𝑚) ≤ 𝑥) |
21 | | nfv 1917 |
. . . . . . 7
⊢
Ⅎ𝑚(𝜑 ∧ 𝑛 ∈ 𝑍) |
22 | 1 | eluzelz2 42903 |
. . . . . . . . 9
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ) |
23 | | uzid 12586 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
(ℤ≥‘𝑛)) |
24 | | ne0i 4270 |
. . . . . . . . 9
⊢ (𝑛 ∈
(ℤ≥‘𝑛) → (ℤ≥‘𝑛) ≠ ∅) |
25 | 22, 23, 24 | 3syl 18 |
. . . . . . . 8
⊢ (𝑛 ∈ 𝑍 → (ℤ≥‘𝑛) ≠ ∅) |
26 | 25 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (ℤ≥‘𝑛) ≠ ∅) |
27 | 4 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝐹:𝑍⟶ℝ) |
28 | 7 | sselda 3922 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ 𝑍) |
29 | 27, 28 | ffvelrnd 6956 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑚) ∈ ℝ) |
30 | 21, 26, 29 | supxrre3rnmpt 42929 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ (𝐹‘𝑚)), ℝ*, < ) ∈
ℝ ↔ ∃𝑥
∈ ℝ ∀𝑚
∈ (ℤ≥‘𝑛)(𝐹‘𝑚) ≤ 𝑥)) |
31 | 20, 30 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ (𝐹‘𝑚)), ℝ*, < ) ∈
ℝ) |
32 | 10, 31 | eqeltrd 2839 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < )
∈ ℝ) |
33 | 32 | fmpttd 6983 |
. . 3
⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
)):𝑍⟶ℝ) |
34 | | eqid 2738 |
. . . . . . . . . 10
⊢
(ℤ≥‘𝑖) = (ℤ≥‘𝑖) |
35 | 1 | eluzelz2 42903 |
. . . . . . . . . 10
⊢ (𝑖 ∈ 𝑍 → 𝑖 ∈ ℤ) |
36 | 35 | peano2zd 12418 |
. . . . . . . . . 10
⊢ (𝑖 ∈ 𝑍 → (𝑖 + 1) ∈ ℤ) |
37 | 35 | zred 12415 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ 𝑍 → 𝑖 ∈ ℝ) |
38 | | lep1 11805 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ ℝ → 𝑖 ≤ (𝑖 + 1)) |
39 | 37, 38 | syl 17 |
. . . . . . . . . 10
⊢ (𝑖 ∈ 𝑍 → 𝑖 ≤ (𝑖 + 1)) |
40 | 34, 35, 36, 39 | eluzd 42909 |
. . . . . . . . 9
⊢ (𝑖 ∈ 𝑍 → (𝑖 + 1) ∈
(ℤ≥‘𝑖)) |
41 | | uzss 12594 |
. . . . . . . . 9
⊢ ((𝑖 + 1) ∈
(ℤ≥‘𝑖) → (ℤ≥‘(𝑖 + 1)) ⊆
(ℤ≥‘𝑖)) |
42 | 40, 41 | syl 17 |
. . . . . . . 8
⊢ (𝑖 ∈ 𝑍 → (ℤ≥‘(𝑖 + 1)) ⊆
(ℤ≥‘𝑖)) |
43 | | ssres2 5914 |
. . . . . . . 8
⊢
((ℤ≥‘(𝑖 + 1)) ⊆
(ℤ≥‘𝑖) → (𝐹 ↾
(ℤ≥‘(𝑖 + 1))) ⊆ (𝐹 ↾ (ℤ≥‘𝑖))) |
44 | 42, 43 | syl 17 |
. . . . . . 7
⊢ (𝑖 ∈ 𝑍 → (𝐹 ↾
(ℤ≥‘(𝑖 + 1))) ⊆ (𝐹 ↾ (ℤ≥‘𝑖))) |
45 | | rnss 5843 |
. . . . . . 7
⊢ ((𝐹 ↾
(ℤ≥‘(𝑖 + 1))) ⊆ (𝐹 ↾ (ℤ≥‘𝑖)) → ran (𝐹 ↾
(ℤ≥‘(𝑖 + 1))) ⊆ ran (𝐹 ↾ (ℤ≥‘𝑖))) |
46 | 44, 45 | syl 17 |
. . . . . 6
⊢ (𝑖 ∈ 𝑍 → ran (𝐹 ↾
(ℤ≥‘(𝑖 + 1))) ⊆ ran (𝐹 ↾ (ℤ≥‘𝑖))) |
47 | 46 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ran (𝐹 ↾
(ℤ≥‘(𝑖 + 1))) ⊆ ran (𝐹 ↾ (ℤ≥‘𝑖))) |
48 | | rnresss 5922 |
. . . . . . . 8
⊢ ran
(𝐹 ↾
(ℤ≥‘𝑖)) ⊆ ran 𝐹 |
49 | 48 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ran (𝐹 ↾ (ℤ≥‘𝑖)) ⊆ ran 𝐹) |
50 | 3 | frnd 6602 |
. . . . . . . 8
⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
51 | 50 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ran 𝐹 ⊆ ℝ) |
52 | 49, 51 | sstrd 3932 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ran (𝐹 ↾ (ℤ≥‘𝑖)) ⊆
ℝ) |
53 | | ressxr 11008 |
. . . . . . 7
⊢ ℝ
⊆ ℝ* |
54 | 53 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ℝ ⊆
ℝ*) |
55 | 52, 54 | sstrd 3932 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ran (𝐹 ↾ (ℤ≥‘𝑖)) ⊆
ℝ*) |
56 | | supxrss 13055 |
. . . . 5
⊢ ((ran
(𝐹 ↾
(ℤ≥‘(𝑖 + 1))) ⊆ ran (𝐹 ↾ (ℤ≥‘𝑖)) ∧ ran (𝐹 ↾ (ℤ≥‘𝑖)) ⊆ ℝ*)
→ sup(ran (𝐹 ↾
(ℤ≥‘(𝑖 + 1))), ℝ*, < ) ≤
sup(ran (𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, <
)) |
57 | 47, 55, 56 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → sup(ran (𝐹 ↾
(ℤ≥‘(𝑖 + 1))), ℝ*, < ) ≤
sup(ran (𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, <
)) |
58 | | eqidd 2739 |
. . . . . . 7
⊢ (𝑖 ∈ 𝑍 → (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < ))
= (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑛)), ℝ*, <
))) |
59 | | fveq2 6768 |
. . . . . . . . . . 11
⊢ (𝑛 = (𝑖 + 1) →
(ℤ≥‘𝑛) = (ℤ≥‘(𝑖 + 1))) |
60 | 59 | reseq2d 5886 |
. . . . . . . . . 10
⊢ (𝑛 = (𝑖 + 1) → (𝐹 ↾ (ℤ≥‘𝑛)) = (𝐹 ↾
(ℤ≥‘(𝑖 + 1)))) |
61 | 60 | rneqd 5842 |
. . . . . . . . 9
⊢ (𝑛 = (𝑖 + 1) → ran (𝐹 ↾ (ℤ≥‘𝑛)) = ran (𝐹 ↾
(ℤ≥‘(𝑖 + 1)))) |
62 | 61 | supeq1d 9194 |
. . . . . . . 8
⊢ (𝑛 = (𝑖 + 1) → sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < )
= sup(ran (𝐹 ↾
(ℤ≥‘(𝑖 + 1))), ℝ*, <
)) |
63 | 62 | adantl 482 |
. . . . . . 7
⊢ ((𝑖 ∈ 𝑍 ∧ 𝑛 = (𝑖 + 1)) → sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < )
= sup(ran (𝐹 ↾
(ℤ≥‘(𝑖 + 1))), ℝ*, <
)) |
64 | 1 | peano2uzs 12631 |
. . . . . . 7
⊢ (𝑖 ∈ 𝑍 → (𝑖 + 1) ∈ 𝑍) |
65 | | xrltso 12864 |
. . . . . . . . 9
⊢ < Or
ℝ* |
66 | 65 | supex 9211 |
. . . . . . . 8
⊢ sup(ran
(𝐹 ↾
(ℤ≥‘(𝑖 + 1))), ℝ*, < ) ∈
V |
67 | 66 | a1i 11 |
. . . . . . 7
⊢ (𝑖 ∈ 𝑍 → sup(ran (𝐹 ↾
(ℤ≥‘(𝑖 + 1))), ℝ*, < ) ∈
V) |
68 | 58, 63, 64, 67 | fvmptd 6876 |
. . . . . 6
⊢ (𝑖 ∈ 𝑍 → ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))‘(𝑖 + 1)) = sup(ran
(𝐹 ↾
(ℤ≥‘(𝑖 + 1))), ℝ*, <
)) |
69 | 68 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))‘(𝑖 + 1)) = sup(ran
(𝐹 ↾
(ℤ≥‘(𝑖 + 1))), ℝ*, <
)) |
70 | | fveq2 6768 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑖 → (ℤ≥‘𝑛) =
(ℤ≥‘𝑖)) |
71 | 70 | reseq2d 5886 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑖 → (𝐹 ↾ (ℤ≥‘𝑛)) = (𝐹 ↾ (ℤ≥‘𝑖))) |
72 | 71 | rneqd 5842 |
. . . . . . . . 9
⊢ (𝑛 = 𝑖 → ran (𝐹 ↾ (ℤ≥‘𝑛)) = ran (𝐹 ↾ (ℤ≥‘𝑖))) |
73 | 72 | supeq1d 9194 |
. . . . . . . 8
⊢ (𝑛 = 𝑖 → sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < )
= sup(ran (𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, <
)) |
74 | 73 | adantl 482 |
. . . . . . 7
⊢ ((𝑖 ∈ 𝑍 ∧ 𝑛 = 𝑖) → sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < )
= sup(ran (𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, <
)) |
75 | | id 22 |
. . . . . . 7
⊢ (𝑖 ∈ 𝑍 → 𝑖 ∈ 𝑍) |
76 | 65 | supex 9211 |
. . . . . . . 8
⊢ sup(ran
(𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, < ) ∈
V |
77 | 76 | a1i 11 |
. . . . . . 7
⊢ (𝑖 ∈ 𝑍 → sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, < )
∈ V) |
78 | 58, 74, 75, 77 | fvmptd 6876 |
. . . . . 6
⊢ (𝑖 ∈ 𝑍 → ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))‘𝑖) = sup(ran
(𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, <
)) |
79 | 78 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))‘𝑖) = sup(ran
(𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, <
)) |
80 | 69, 79 | breq12d 5088 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))‘(𝑖 + 1)) ≤
((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑛)), ℝ*, < ))‘𝑖) ↔ sup(ran (𝐹 ↾
(ℤ≥‘(𝑖 + 1))), ℝ*, < ) ≤
sup(ran (𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, <
))) |
81 | 57, 80 | mpbird 256 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))‘(𝑖 + 1)) ≤
((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑛)), ℝ*, < ))‘𝑖)) |
82 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑗𝐹 |
83 | 3 | frexr 42884 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
84 | 82, 2, 1, 83 | limsupre3uz 43237 |
. . . . . . 7
⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔
(∃𝑥 ∈ ℝ
∀𝑖 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑖)𝑥 ≤ (𝐹‘𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)(𝐹‘𝑗) ≤ 𝑥))) |
85 | 12, 84 | mpbid 231 |
. . . . . 6
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑖)𝑥 ≤ (𝐹‘𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)(𝐹‘𝑗) ≤ 𝑥)) |
86 | 85 | simpld 495 |
. . . . 5
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑖)𝑥 ≤ (𝐹‘𝑗)) |
87 | | simp-4r 781 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑖)) ∧ 𝑥 ≤ (𝐹‘𝑗)) → 𝑥 ∈ ℝ) |
88 | 87 | rexrd 11014 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑖)) ∧ 𝑥 ≤ (𝐹‘𝑗)) → 𝑥 ∈ ℝ*) |
89 | 83 | 3ad2ant1 1132 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → 𝐹:𝑍⟶ℝ*) |
90 | 1 | uztrn2 12590 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → 𝑗 ∈ 𝑍) |
91 | 90 | 3adant1 1129 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → 𝑗 ∈ 𝑍) |
92 | 89, 91 | ffvelrnd 6956 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → (𝐹‘𝑗) ∈
ℝ*) |
93 | 92 | ad5ant134 1366 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑖)) ∧ 𝑥 ≤ (𝐹‘𝑗)) → (𝐹‘𝑗) ∈
ℝ*) |
94 | 55 | supxrcld 42617 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, < )
∈ ℝ*) |
95 | 94 | ad5ant13 754 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑖)) ∧ 𝑥 ≤ (𝐹‘𝑗)) → sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, < )
∈ ℝ*) |
96 | | simpr 485 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑖)) ∧ 𝑥 ≤ (𝐹‘𝑗)) → 𝑥 ≤ (𝐹‘𝑗)) |
97 | 55 | 3adant3 1131 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → ran (𝐹 ↾ (ℤ≥‘𝑖)) ⊆
ℝ*) |
98 | | fvres 6787 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈
(ℤ≥‘𝑖) → ((𝐹 ↾ (ℤ≥‘𝑖))‘𝑗) = (𝐹‘𝑗)) |
99 | 98 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈
(ℤ≥‘𝑖) → (𝐹‘𝑗) = ((𝐹 ↾ (ℤ≥‘𝑖))‘𝑗)) |
100 | 99 | 3ad2ant3 1134 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → (𝐹‘𝑗) = ((𝐹 ↾ (ℤ≥‘𝑖))‘𝑗)) |
101 | 3 | ffnd 6595 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐹 Fn 𝑍) |
102 | 101 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → 𝐹 Fn 𝑍) |
103 | 1, 75 | uzssd2 42917 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ 𝑍 → (ℤ≥‘𝑖) ⊆ 𝑍) |
104 | 103 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (ℤ≥‘𝑖) ⊆ 𝑍) |
105 | | fnssres 6549 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 Fn 𝑍 ∧ (ℤ≥‘𝑖) ⊆ 𝑍) → (𝐹 ↾ (ℤ≥‘𝑖)) Fn
(ℤ≥‘𝑖)) |
106 | 102, 104,
105 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐹 ↾ (ℤ≥‘𝑖)) Fn
(ℤ≥‘𝑖)) |
107 | 106 | 3adant3 1131 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → (𝐹 ↾ (ℤ≥‘𝑖)) Fn
(ℤ≥‘𝑖)) |
108 | | simp3 1137 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → 𝑗 ∈ (ℤ≥‘𝑖)) |
109 | | fnfvelrn 6952 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ↾
(ℤ≥‘𝑖)) Fn (ℤ≥‘𝑖) ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → ((𝐹 ↾ (ℤ≥‘𝑖))‘𝑗) ∈ ran (𝐹 ↾ (ℤ≥‘𝑖))) |
110 | 107, 108,
109 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → ((𝐹 ↾ (ℤ≥‘𝑖))‘𝑗) ∈ ran (𝐹 ↾ (ℤ≥‘𝑖))) |
111 | 100, 110 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → (𝐹‘𝑗) ∈ ran (𝐹 ↾ (ℤ≥‘𝑖))) |
112 | | eqid 2738 |
. . . . . . . . . . 11
⊢ sup(ran
(𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, < ) = sup(ran
(𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, <
) |
113 | 97, 111, 112 | supxrubd 42623 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → (𝐹‘𝑗) ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, <
)) |
114 | 113 | ad5ant134 1366 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑖)) ∧ 𝑥 ≤ (𝐹‘𝑗)) → (𝐹‘𝑗) ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, <
)) |
115 | 88, 93, 95, 96, 114 | xrletrd 12885 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑖)) ∧ 𝑥 ≤ (𝐹‘𝑗)) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, <
)) |
116 | 115 | rexlimdva2 3215 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) → (∃𝑗 ∈ (ℤ≥‘𝑖)𝑥 ≤ (𝐹‘𝑗) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, <
))) |
117 | 116 | ralimdva 3108 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑖 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑖)𝑥 ≤ (𝐹‘𝑗) → ∀𝑖 ∈ 𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, <
))) |
118 | 117 | reximdva 3202 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑖)𝑥 ≤ (𝐹‘𝑗) → ∃𝑥 ∈ ℝ ∀𝑖 ∈ 𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, <
))) |
119 | 86, 118 | mpd 15 |
. . . 4
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖 ∈ 𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, <
)) |
120 | | simpl 483 |
. . . . . . 7
⊢ ((𝑦 = 𝑥 ∧ 𝑖 ∈ 𝑍) → 𝑦 = 𝑥) |
121 | 78 | adantl 482 |
. . . . . . 7
⊢ ((𝑦 = 𝑥 ∧ 𝑖 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))‘𝑖) = sup(ran
(𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, <
)) |
122 | 120, 121 | breq12d 5088 |
. . . . . 6
⊢ ((𝑦 = 𝑥 ∧ 𝑖 ∈ 𝑍) → (𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))‘𝑖) ↔ 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, <
))) |
123 | 122 | ralbidva 3117 |
. . . . 5
⊢ (𝑦 = 𝑥 → (∀𝑖 ∈ 𝑍 𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))‘𝑖) ↔
∀𝑖 ∈ 𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, <
))) |
124 | 123 | cbvrexvw 3383 |
. . . 4
⊢
(∃𝑦 ∈
ℝ ∀𝑖 ∈
𝑍 𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))‘𝑖) ↔
∃𝑥 ∈ ℝ
∀𝑖 ∈ 𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, <
)) |
125 | 119, 124 | sylibr 233 |
. . 3
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑖 ∈ 𝑍 𝑦 ≤ ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))‘𝑖)) |
126 | 1, 2, 33, 81, 125 | climinf 43107 |
. 2
⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < ))
⇝ inf(ran (𝑛 ∈
𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑛)), ℝ*, < )), ℝ,
< )) |
127 | | fveq2 6768 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → (ℤ≥‘𝑛) =
(ℤ≥‘𝑘)) |
128 | 127 | reseq2d 5886 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → (𝐹 ↾ (ℤ≥‘𝑛)) = (𝐹 ↾ (ℤ≥‘𝑘))) |
129 | 128 | rneqd 5842 |
. . . . . 6
⊢ (𝑛 = 𝑘 → ran (𝐹 ↾ (ℤ≥‘𝑛)) = ran (𝐹 ↾ (ℤ≥‘𝑘))) |
130 | 129 | supeq1d 9194 |
. . . . 5
⊢ (𝑛 = 𝑘 → sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < )
= sup(ran (𝐹 ↾
(ℤ≥‘𝑘)), ℝ*, <
)) |
131 | 130 | cbvmptv 5188 |
. . . 4
⊢ (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < ))
= (𝑘 ∈ 𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑘)), ℝ*, <
)) |
132 | 131 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < ))
= (𝑘 ∈ 𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑘)), ℝ*, <
))) |
133 | 2, 1, 3, 12 | limsupvaluz2 43239 |
. . . 4
⊢ (𝜑 → (lim sup‘𝐹) = inf(ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
)), ℝ, < )) |
134 | 133 | eqcomd 2744 |
. . 3
⊢ (𝜑 → inf(ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
)), ℝ, < ) = (lim sup‘𝐹)) |
135 | 132, 134 | breq12d 5088 |
. 2
⊢ (𝜑 → ((𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < ))
⇝ inf(ran (𝑛 ∈
𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑛)), ℝ*, < )), ℝ,
< ) ↔ (𝑘 ∈
𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑘)), ℝ*, < )) ⇝ (lim
sup‘𝐹))) |
136 | 126, 135 | mpbid 231 |
1
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑘)), ℝ*, < ))
⇝ (lim sup‘𝐹)) |