Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suplesup Structured version   Visualization version   GIF version

Theorem suplesup 44035
Description: If any element of 𝐴 can be approximated from below by members of 𝐵, then the supremum of 𝐴 is less than or equal to the supremum of 𝐵. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
suplesup.a (𝜑𝐴 ⊆ ℝ)
suplesup.b (𝜑𝐵 ⊆ ℝ*)
suplesup.c (𝜑 → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧𝐵 (𝑥𝑦) < 𝑧)
Assertion
Ref Expression
suplesup (𝜑 → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)

Proof of Theorem suplesup
Dummy variables 𝑟 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplesup.a . . . . . 6 (𝜑𝐴 ⊆ ℝ)
2 ressxr 11254 . . . . . 6 ℝ ⊆ ℝ*
31, 2sstrdi 3993 . . . . 5 (𝜑𝐴 ⊆ ℝ*)
4 supxrcl 13290 . . . . 5 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
53, 4syl 17 . . . 4 (𝜑 → sup(𝐴, ℝ*, < ) ∈ ℝ*)
65adantr 481 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
7 eqidd 2733 . . . 4 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → +∞ = +∞)
8 simpr 485 . . . 4 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) = +∞)
9 peano2re 11383 . . . . . . . . . 10 (𝑤 ∈ ℝ → (𝑤 + 1) ∈ ℝ)
109adantl 482 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → (𝑤 + 1) ∈ ℝ)
113adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝐴 ⊆ ℝ*)
12 supxrunb2 13295 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ* → (∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟 < 𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
1311, 12syl 17 . . . . . . . . . . 11 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → (∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟 < 𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
148, 13mpbird 256 . . . . . . . . . 10 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → ∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟 < 𝑥)
1514adantr 481 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → ∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟 < 𝑥)
16 breq1 5150 . . . . . . . . . . 11 (𝑟 = (𝑤 + 1) → (𝑟 < 𝑥 ↔ (𝑤 + 1) < 𝑥))
1716rexbidv 3178 . . . . . . . . . 10 (𝑟 = (𝑤 + 1) → (∃𝑥𝐴 𝑟 < 𝑥 ↔ ∃𝑥𝐴 (𝑤 + 1) < 𝑥))
1817rspcva 3610 . . . . . . . . 9 (((𝑤 + 1) ∈ ℝ ∧ ∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟 < 𝑥) → ∃𝑥𝐴 (𝑤 + 1) < 𝑥)
1910, 15, 18syl2anc 584 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → ∃𝑥𝐴 (𝑤 + 1) < 𝑥)
20 1rp 12974 . . . . . . . . . . . . . . . 16 1 ∈ ℝ+
2120a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 1 ∈ ℝ+)
22 suplesup.c . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧𝐵 (𝑥𝑦) < 𝑧)
2322r19.21bi 3248 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → ∀𝑦 ∈ ℝ+𝑧𝐵 (𝑥𝑦) < 𝑧)
24 oveq2 7413 . . . . . . . . . . . . . . . . . 18 (𝑦 = 1 → (𝑥𝑦) = (𝑥 − 1))
2524breq1d 5157 . . . . . . . . . . . . . . . . 17 (𝑦 = 1 → ((𝑥𝑦) < 𝑧 ↔ (𝑥 − 1) < 𝑧))
2625rexbidv 3178 . . . . . . . . . . . . . . . 16 (𝑦 = 1 → (∃𝑧𝐵 (𝑥𝑦) < 𝑧 ↔ ∃𝑧𝐵 (𝑥 − 1) < 𝑧))
2726rspcva 3610 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+𝑧𝐵 (𝑥𝑦) < 𝑧) → ∃𝑧𝐵 (𝑥 − 1) < 𝑧)
2821, 23, 27syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → ∃𝑧𝐵 (𝑥 − 1) < 𝑧)
2928adantlr 713 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → ∃𝑧𝐵 (𝑥 − 1) < 𝑧)
30293adant3 1132 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → ∃𝑧𝐵 (𝑥 − 1) < 𝑧)
31 nfv 1917 . . . . . . . . . . . . 13 𝑧((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥)
32 simp11r 1285 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → 𝑤 ∈ ℝ)
332, 32sselid 3979 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → 𝑤 ∈ ℝ*)
341sselda 3981 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
35 1red 11211 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → 1 ∈ ℝ)
3634, 35resubcld 11638 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → (𝑥 − 1) ∈ ℝ)
3736adantlr 713 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → (𝑥 − 1) ∈ ℝ)
38373adant3 1132 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → (𝑥 − 1) ∈ ℝ)
39383ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → (𝑥 − 1) ∈ ℝ)
402, 39sselid 3979 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → (𝑥 − 1) ∈ ℝ*)
41 suplesup.b . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ⊆ ℝ*)
4241sselda 3981 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝐵) → 𝑧 ∈ ℝ*)
4342adantlr 713 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ) ∧ 𝑧𝐵) → 𝑧 ∈ ℝ*)
44433ad2antl1 1185 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵) → 𝑧 ∈ ℝ*)
45443adant3 1132 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → 𝑧 ∈ ℝ*)
46 simp3 1138 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → (𝑤 + 1) < 𝑥)
47 simp1r 1198 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → 𝑤 ∈ ℝ)
48 1red 11211 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → 1 ∈ ℝ)
4934adantlr 713 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
50493adant3 1132 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → 𝑥 ∈ ℝ)
5147, 48, 50ltaddsubd 11810 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → ((𝑤 + 1) < 𝑥𝑤 < (𝑥 − 1)))
5246, 51mpbid 231 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → 𝑤 < (𝑥 − 1))
53523ad2ant1 1133 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → 𝑤 < (𝑥 − 1))
54 simp3 1138 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → (𝑥 − 1) < 𝑧)
5533, 40, 45, 53, 54xrlttrd 13134 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → 𝑤 < 𝑧)
56553exp 1119 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → (𝑧𝐵 → ((𝑥 − 1) < 𝑧𝑤 < 𝑧)))
5731, 56reximdai 3258 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → (∃𝑧𝐵 (𝑥 − 1) < 𝑧 → ∃𝑧𝐵 𝑤 < 𝑧))
5830, 57mpd 15 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → ∃𝑧𝐵 𝑤 < 𝑧)
59583exp 1119 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℝ) → (𝑥𝐴 → ((𝑤 + 1) < 𝑥 → ∃𝑧𝐵 𝑤 < 𝑧)))
6059adantlr 713 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → (𝑥𝐴 → ((𝑤 + 1) < 𝑥 → ∃𝑧𝐵 𝑤 < 𝑧)))
6160rexlimdv 3153 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → (∃𝑥𝐴 (𝑤 + 1) < 𝑥 → ∃𝑧𝐵 𝑤 < 𝑧))
6219, 61mpd 15 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → ∃𝑧𝐵 𝑤 < 𝑧)
632a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ⊆ ℝ*)
6463sselda 3981 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ℝ) → 𝑤 ∈ ℝ*)
6564ad2antrr 724 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑧𝐵) ∧ 𝑤 < 𝑧) → 𝑤 ∈ ℝ*)
6643adantr 481 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑧𝐵) ∧ 𝑤 < 𝑧) → 𝑧 ∈ ℝ*)
67 simpr 485 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑧𝐵) ∧ 𝑤 < 𝑧) → 𝑤 < 𝑧)
6865, 66, 67xrltled 13125 . . . . . . . . . 10 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑧𝐵) ∧ 𝑤 < 𝑧) → 𝑤𝑧)
6968ex 413 . . . . . . . . 9 (((𝜑𝑤 ∈ ℝ) ∧ 𝑧𝐵) → (𝑤 < 𝑧𝑤𝑧))
7069adantllr 717 . . . . . . . 8 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) ∧ 𝑧𝐵) → (𝑤 < 𝑧𝑤𝑧))
7170reximdva 3168 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → (∃𝑧𝐵 𝑤 < 𝑧 → ∃𝑧𝐵 𝑤𝑧))
7262, 71mpd 15 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → ∃𝑧𝐵 𝑤𝑧)
7372ralrimiva 3146 . . . . 5 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → ∀𝑤 ∈ ℝ ∃𝑧𝐵 𝑤𝑧)
74 supxrunb1 13294 . . . . . . 7 (𝐵 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑧𝐵 𝑤𝑧 ↔ sup(𝐵, ℝ*, < ) = +∞))
7541, 74syl 17 . . . . . 6 (𝜑 → (∀𝑤 ∈ ℝ ∃𝑧𝐵 𝑤𝑧 ↔ sup(𝐵, ℝ*, < ) = +∞))
7675adantr 481 . . . . 5 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → (∀𝑤 ∈ ℝ ∃𝑧𝐵 𝑤𝑧 ↔ sup(𝐵, ℝ*, < ) = +∞))
7773, 76mpbid 231 . . . 4 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐵, ℝ*, < ) = +∞)
787, 8, 773eqtr4d 2782 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) = sup(𝐵, ℝ*, < ))
796, 78xreqled 44026 . 2 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
80 supeq1 9436 . . . . . . 7 (𝐴 = ∅ → sup(𝐴, ℝ*, < ) = sup(∅, ℝ*, < ))
81 xrsup0 13298 . . . . . . . 8 sup(∅, ℝ*, < ) = -∞
8281a1i 11 . . . . . . 7 (𝐴 = ∅ → sup(∅, ℝ*, < ) = -∞)
8380, 82eqtrd 2772 . . . . . 6 (𝐴 = ∅ → sup(𝐴, ℝ*, < ) = -∞)
8483adantl 482 . . . . 5 ((𝜑𝐴 = ∅) → sup(𝐴, ℝ*, < ) = -∞)
85 supxrcl 13290 . . . . . . . 8 (𝐵 ⊆ ℝ* → sup(𝐵, ℝ*, < ) ∈ ℝ*)
8641, 85syl 17 . . . . . . 7 (𝜑 → sup(𝐵, ℝ*, < ) ∈ ℝ*)
87 mnfle 13110 . . . . . . 7 (sup(𝐵, ℝ*, < ) ∈ ℝ* → -∞ ≤ sup(𝐵, ℝ*, < ))
8886, 87syl 17 . . . . . 6 (𝜑 → -∞ ≤ sup(𝐵, ℝ*, < ))
8988adantr 481 . . . . 5 ((𝜑𝐴 = ∅) → -∞ ≤ sup(𝐵, ℝ*, < ))
9084, 89eqbrtrd 5169 . . . 4 ((𝜑𝐴 = ∅) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
9190adantlr 713 . . 3 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝐴 = ∅) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
92 simpll 765 . . . 4 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → 𝜑)
931adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ⊆ ℝ)
94 neqne 2948 . . . . . . . . 9 𝐴 = ∅ → 𝐴 ≠ ∅)
9594adantl 482 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ ∅)
96 supxrgtmnf 13304 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → -∞ < sup(𝐴, ℝ*, < ))
9793, 95, 96syl2anc 584 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = ∅) → -∞ < sup(𝐴, ℝ*, < ))
9897adantlr 713 . . . . . 6 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → -∞ < sup(𝐴, ℝ*, < ))
99 simpr 485 . . . . . . . . 9 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ¬ sup(𝐴, ℝ*, < ) = +∞)
100 simpl 483 . . . . . . . . . 10 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → 𝜑)
101 nltpnft 13139 . . . . . . . . . 10 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
102100, 5, 1013syl 18 . . . . . . . . 9 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
10399, 102mtbid 323 . . . . . . . 8 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ¬ ¬ sup(𝐴, ℝ*, < ) < +∞)
104 notnotr 130 . . . . . . . 8 (¬ ¬ sup(𝐴, ℝ*, < ) < +∞ → sup(𝐴, ℝ*, < ) < +∞)
105103, 104syl 17 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) < +∞)
106105adantr 481 . . . . . 6 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ*, < ) < +∞)
10798, 106jca 512 . . . . 5 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞))
10892, 5syl 17 . . . . . 6 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
109 xrrebnd 13143 . . . . . 6 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞)))
110108, 109syl 17 . . . . 5 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞)))
111107, 110mpbird 256 . . . 4 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ*, < ) ∈ ℝ)
112 nfv 1917 . . . . 5 𝑤(𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ)
11341adantr 481 . . . . 5 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → 𝐵 ⊆ ℝ*)
114 simpr 485 . . . . 5 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → sup(𝐴, ℝ*, < ) ∈ ℝ)
115114adantr 481 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → sup(𝐴, ℝ*, < ) ∈ ℝ)
116 simpr 485 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
117116rphalfcld 13024 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (𝑤 / 2) ∈ ℝ+)
118115, 117ltsubrpd 13044 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < sup(𝐴, ℝ*, < ))
1193ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → 𝐴 ⊆ ℝ*)
120 rpre 12978 . . . . . . . . . . . 12 (𝑤 ∈ ℝ+𝑤 ∈ ℝ)
121 2re 12282 . . . . . . . . . . . . 13 2 ∈ ℝ
122121a1i 11 . . . . . . . . . . . 12 (𝑤 ∈ ℝ+ → 2 ∈ ℝ)
123 2ne0 12312 . . . . . . . . . . . . 13 2 ≠ 0
124123a1i 11 . . . . . . . . . . . 12 (𝑤 ∈ ℝ+ → 2 ≠ 0)
125120, 122, 124redivcld 12038 . . . . . . . . . . 11 (𝑤 ∈ ℝ+ → (𝑤 / 2) ∈ ℝ)
126125adantl 482 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (𝑤 / 2) ∈ ℝ)
127115, 126resubcld 11638 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) ∈ ℝ)
1282, 127sselid 3979 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) ∈ ℝ*)
129 supxrlub 13300 . . . . . . . 8 ((𝐴 ⊆ ℝ* ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) ∈ ℝ*) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < sup(𝐴, ℝ*, < ) ↔ ∃𝑥𝐴 (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥))
130119, 128, 129syl2anc 584 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < sup(𝐴, ℝ*, < ) ↔ ∃𝑥𝐴 (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥))
131118, 130mpbid 231 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → ∃𝑥𝐴 (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥)
132 rphalfcl 12997 . . . . . . . . . . 11 (𝑤 ∈ ℝ+ → (𝑤 / 2) ∈ ℝ+)
1331323ad2ant2 1134 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℝ+𝑥𝐴) → (𝑤 / 2) ∈ ℝ+)
134233adant2 1131 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℝ+𝑥𝐴) → ∀𝑦 ∈ ℝ+𝑧𝐵 (𝑥𝑦) < 𝑧)
135 oveq2 7413 . . . . . . . . . . . . 13 (𝑦 = (𝑤 / 2) → (𝑥𝑦) = (𝑥 − (𝑤 / 2)))
136135breq1d 5157 . . . . . . . . . . . 12 (𝑦 = (𝑤 / 2) → ((𝑥𝑦) < 𝑧 ↔ (𝑥 − (𝑤 / 2)) < 𝑧))
137136rexbidv 3178 . . . . . . . . . . 11 (𝑦 = (𝑤 / 2) → (∃𝑧𝐵 (𝑥𝑦) < 𝑧 ↔ ∃𝑧𝐵 (𝑥 − (𝑤 / 2)) < 𝑧))
138137rspcva 3610 . . . . . . . . . 10 (((𝑤 / 2) ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+𝑧𝐵 (𝑥𝑦) < 𝑧) → ∃𝑧𝐵 (𝑥 − (𝑤 / 2)) < 𝑧)
139133, 134, 138syl2anc 584 . . . . . . . . 9 ((𝜑𝑤 ∈ ℝ+𝑥𝐴) → ∃𝑧𝐵 (𝑥 − (𝑤 / 2)) < 𝑧)
140139ad5ant134 1367 . . . . . . . 8 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) → ∃𝑧𝐵 (𝑥 − (𝑤 / 2)) < 𝑧)
141 recn 11196 . . . . . . . . . . . . . . . . 17 (sup(𝐴, ℝ*, < ) ∈ ℝ → sup(𝐴, ℝ*, < ) ∈ ℂ)
142141adantr 481 . . . . . . . . . . . . . . . 16 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → sup(𝐴, ℝ*, < ) ∈ ℂ)
143120recnd 11238 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℝ+𝑤 ∈ ℂ)
144143adantl 482 . . . . . . . . . . . . . . . . 17 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℂ)
145144halfcld 12453 . . . . . . . . . . . . . . . 16 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → (𝑤 / 2) ∈ ℂ)
146142, 145, 145subsub4d 11598 . . . . . . . . . . . . . . 15 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) = (sup(𝐴, ℝ*, < ) − ((𝑤 / 2) + (𝑤 / 2))))
1471432halvesd 12454 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℝ+ → ((𝑤 / 2) + (𝑤 / 2)) = 𝑤)
148147oveq2d 7421 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℝ+ → (sup(𝐴, ℝ*, < ) − ((𝑤 / 2) + (𝑤 / 2))) = (sup(𝐴, ℝ*, < ) − 𝑤))
149148adantl 482 . . . . . . . . . . . . . . 15 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → (sup(𝐴, ℝ*, < ) − ((𝑤 / 2) + (𝑤 / 2))) = (sup(𝐴, ℝ*, < ) − 𝑤))
150146, 149eqtr2d 2773 . . . . . . . . . . . . . 14 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → (sup(𝐴, ℝ*, < ) − 𝑤) = ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)))
151150adantll 712 . . . . . . . . . . . . 13 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (sup(𝐴, ℝ*, < ) − 𝑤) = ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)))
152151adantr 481 . . . . . . . . . . . 12 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → (sup(𝐴, ℝ*, < ) − 𝑤) = ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)))
153152ad3antrrr 728 . . . . . . . . . . 11 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (sup(𝐴, ℝ*, < ) − 𝑤) = ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)))
154127, 126resubcld 11638 . . . . . . . . . . . . . . 15 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) ∈ ℝ)
155154adantr 481 . . . . . . . . . . . . . 14 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) ∈ ℝ)
156155ad3antrrr 728 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) ∈ ℝ)
1572, 156sselid 3979 . . . . . . . . . . . 12 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) ∈ ℝ*)
158120, 49sylanl2 679 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
159125ad2antlr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → (𝑤 / 2) ∈ ℝ)
160158, 159resubcld 11638 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → (𝑥 − (𝑤 / 2)) ∈ ℝ)
161160adantllr 717 . . . . . . . . . . . . . 14 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → (𝑥 − (𝑤 / 2)) ∈ ℝ)
162161ad3antrrr 728 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (𝑥 − (𝑤 / 2)) ∈ ℝ)
1632, 162sselid 3979 . . . . . . . . . . . 12 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (𝑥 − (𝑤 / 2)) ∈ ℝ*)
164 simp-6l 785 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → 𝜑)
165 simplr 767 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → 𝑧𝐵)
166164, 165, 42syl2anc 584 . . . . . . . . . . . 12 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → 𝑧 ∈ ℝ*)
167 simp-6r 786 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → sup(𝐴, ℝ*, < ) ∈ ℝ)
168120ad5antlr 733 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → 𝑤 ∈ ℝ)
169168rehalfcld 12455 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (𝑤 / 2) ∈ ℝ)
170167, 169resubcld 11638 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) ∈ ℝ)
171 simp-4r 782 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → 𝑥𝐴)
172164, 171, 34syl2anc 584 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → 𝑥 ∈ ℝ)
173 simpllr 774 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥)
174170, 172, 169, 173ltsub1dd 11822 . . . . . . . . . . . 12 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) < (𝑥 − (𝑤 / 2)))
175 simpr 485 . . . . . . . . . . . 12 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (𝑥 − (𝑤 / 2)) < 𝑧)
176157, 163, 166, 174, 175xrlttrd 13134 . . . . . . . . . . 11 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) < 𝑧)
177153, 176eqbrtrd 5169 . . . . . . . . . 10 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧)
178177ex 413 . . . . . . . . 9 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) → ((𝑥 − (𝑤 / 2)) < 𝑧 → (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧))
179178reximdva 3168 . . . . . . . 8 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) → (∃𝑧𝐵 (𝑥 − (𝑤 / 2)) < 𝑧 → ∃𝑧𝐵 (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧))
180140, 179mpd 15 . . . . . . 7 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) → ∃𝑧𝐵 (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧)
181180rexlimdva2 3157 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (∃𝑥𝐴 (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥 → ∃𝑧𝐵 (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧))
182131, 181mpd 15 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → ∃𝑧𝐵 (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧)
183112, 113, 114, 182supxrgere 44029 . . . 4 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
18492, 111, 183syl2anc 584 . . 3 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
18591, 184pm2.61dan 811 . 2 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
18679, 185pm2.61dan 811 1 (𝜑 → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070  wss 3947  c0 4321   class class class wbr 5147  (class class class)co 7405  supcsup 9431  cc 11104  cr 11105  0cc0 11106  1c1 11107   + caddc 11109  +∞cpnf 11241  -∞cmnf 11242  *cxr 11243   < clt 11244  cle 11245  cmin 11440   / cdiv 11867  2c2 12263  +crp 12970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-2 12271  df-rp 12971
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator