Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suplesup Structured version   Visualization version   GIF version

Theorem suplesup 42878
Description: If any element of 𝐴 can be approximated from below by members of 𝐵, then the supremum of 𝐴 is less than or equal to the supremum of 𝐵. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
suplesup.a (𝜑𝐴 ⊆ ℝ)
suplesup.b (𝜑𝐵 ⊆ ℝ*)
suplesup.c (𝜑 → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧𝐵 (𝑥𝑦) < 𝑧)
Assertion
Ref Expression
suplesup (𝜑 → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)

Proof of Theorem suplesup
Dummy variables 𝑟 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplesup.a . . . . . 6 (𝜑𝐴 ⊆ ℝ)
2 ressxr 11019 . . . . . 6 ℝ ⊆ ℝ*
31, 2sstrdi 3933 . . . . 5 (𝜑𝐴 ⊆ ℝ*)
4 supxrcl 13049 . . . . 5 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
53, 4syl 17 . . . 4 (𝜑 → sup(𝐴, ℝ*, < ) ∈ ℝ*)
65adantr 481 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
7 eqidd 2739 . . . 4 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → +∞ = +∞)
8 simpr 485 . . . 4 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) = +∞)
9 peano2re 11148 . . . . . . . . . 10 (𝑤 ∈ ℝ → (𝑤 + 1) ∈ ℝ)
109adantl 482 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → (𝑤 + 1) ∈ ℝ)
113adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝐴 ⊆ ℝ*)
12 supxrunb2 13054 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ* → (∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟 < 𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
1311, 12syl 17 . . . . . . . . . . 11 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → (∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟 < 𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
148, 13mpbird 256 . . . . . . . . . 10 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → ∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟 < 𝑥)
1514adantr 481 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → ∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟 < 𝑥)
16 breq1 5077 . . . . . . . . . . 11 (𝑟 = (𝑤 + 1) → (𝑟 < 𝑥 ↔ (𝑤 + 1) < 𝑥))
1716rexbidv 3226 . . . . . . . . . 10 (𝑟 = (𝑤 + 1) → (∃𝑥𝐴 𝑟 < 𝑥 ↔ ∃𝑥𝐴 (𝑤 + 1) < 𝑥))
1817rspcva 3559 . . . . . . . . 9 (((𝑤 + 1) ∈ ℝ ∧ ∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟 < 𝑥) → ∃𝑥𝐴 (𝑤 + 1) < 𝑥)
1910, 15, 18syl2anc 584 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → ∃𝑥𝐴 (𝑤 + 1) < 𝑥)
20 1rp 12734 . . . . . . . . . . . . . . . 16 1 ∈ ℝ+
2120a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 1 ∈ ℝ+)
22 suplesup.c . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧𝐵 (𝑥𝑦) < 𝑧)
2322r19.21bi 3134 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → ∀𝑦 ∈ ℝ+𝑧𝐵 (𝑥𝑦) < 𝑧)
24 oveq2 7283 . . . . . . . . . . . . . . . . . 18 (𝑦 = 1 → (𝑥𝑦) = (𝑥 − 1))
2524breq1d 5084 . . . . . . . . . . . . . . . . 17 (𝑦 = 1 → ((𝑥𝑦) < 𝑧 ↔ (𝑥 − 1) < 𝑧))
2625rexbidv 3226 . . . . . . . . . . . . . . . 16 (𝑦 = 1 → (∃𝑧𝐵 (𝑥𝑦) < 𝑧 ↔ ∃𝑧𝐵 (𝑥 − 1) < 𝑧))
2726rspcva 3559 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+𝑧𝐵 (𝑥𝑦) < 𝑧) → ∃𝑧𝐵 (𝑥 − 1) < 𝑧)
2821, 23, 27syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → ∃𝑧𝐵 (𝑥 − 1) < 𝑧)
2928adantlr 712 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → ∃𝑧𝐵 (𝑥 − 1) < 𝑧)
30293adant3 1131 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → ∃𝑧𝐵 (𝑥 − 1) < 𝑧)
31 nfv 1917 . . . . . . . . . . . . 13 𝑧((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥)
32 simp11r 1284 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → 𝑤 ∈ ℝ)
332, 32sselid 3919 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → 𝑤 ∈ ℝ*)
341sselda 3921 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
35 1red 10976 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → 1 ∈ ℝ)
3634, 35resubcld 11403 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → (𝑥 − 1) ∈ ℝ)
3736adantlr 712 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → (𝑥 − 1) ∈ ℝ)
38373adant3 1131 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → (𝑥 − 1) ∈ ℝ)
39383ad2ant1 1132 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → (𝑥 − 1) ∈ ℝ)
402, 39sselid 3919 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → (𝑥 − 1) ∈ ℝ*)
41 suplesup.b . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ⊆ ℝ*)
4241sselda 3921 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝐵) → 𝑧 ∈ ℝ*)
4342adantlr 712 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ) ∧ 𝑧𝐵) → 𝑧 ∈ ℝ*)
44433ad2antl1 1184 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵) → 𝑧 ∈ ℝ*)
45443adant3 1131 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → 𝑧 ∈ ℝ*)
46 simp3 1137 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → (𝑤 + 1) < 𝑥)
47 simp1r 1197 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → 𝑤 ∈ ℝ)
48 1red 10976 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → 1 ∈ ℝ)
4934adantlr 712 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
50493adant3 1131 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → 𝑥 ∈ ℝ)
5147, 48, 50ltaddsubd 11575 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → ((𝑤 + 1) < 𝑥𝑤 < (𝑥 − 1)))
5246, 51mpbid 231 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → 𝑤 < (𝑥 − 1))
53523ad2ant1 1132 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → 𝑤 < (𝑥 − 1))
54 simp3 1137 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → (𝑥 − 1) < 𝑧)
5533, 40, 45, 53, 54xrlttrd 12893 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → 𝑤 < 𝑧)
56553exp 1118 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → (𝑧𝐵 → ((𝑥 − 1) < 𝑧𝑤 < 𝑧)))
5731, 56reximdai 3244 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → (∃𝑧𝐵 (𝑥 − 1) < 𝑧 → ∃𝑧𝐵 𝑤 < 𝑧))
5830, 57mpd 15 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → ∃𝑧𝐵 𝑤 < 𝑧)
59583exp 1118 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℝ) → (𝑥𝐴 → ((𝑤 + 1) < 𝑥 → ∃𝑧𝐵 𝑤 < 𝑧)))
6059adantlr 712 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → (𝑥𝐴 → ((𝑤 + 1) < 𝑥 → ∃𝑧𝐵 𝑤 < 𝑧)))
6160rexlimdv 3212 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → (∃𝑥𝐴 (𝑤 + 1) < 𝑥 → ∃𝑧𝐵 𝑤 < 𝑧))
6219, 61mpd 15 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → ∃𝑧𝐵 𝑤 < 𝑧)
632a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ⊆ ℝ*)
6463sselda 3921 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ℝ) → 𝑤 ∈ ℝ*)
6564ad2antrr 723 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑧𝐵) ∧ 𝑤 < 𝑧) → 𝑤 ∈ ℝ*)
6643adantr 481 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑧𝐵) ∧ 𝑤 < 𝑧) → 𝑧 ∈ ℝ*)
67 simpr 485 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑧𝐵) ∧ 𝑤 < 𝑧) → 𝑤 < 𝑧)
6865, 66, 67xrltled 12884 . . . . . . . . . 10 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑧𝐵) ∧ 𝑤 < 𝑧) → 𝑤𝑧)
6968ex 413 . . . . . . . . 9 (((𝜑𝑤 ∈ ℝ) ∧ 𝑧𝐵) → (𝑤 < 𝑧𝑤𝑧))
7069adantllr 716 . . . . . . . 8 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) ∧ 𝑧𝐵) → (𝑤 < 𝑧𝑤𝑧))
7170reximdva 3203 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → (∃𝑧𝐵 𝑤 < 𝑧 → ∃𝑧𝐵 𝑤𝑧))
7262, 71mpd 15 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → ∃𝑧𝐵 𝑤𝑧)
7372ralrimiva 3103 . . . . 5 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → ∀𝑤 ∈ ℝ ∃𝑧𝐵 𝑤𝑧)
74 supxrunb1 13053 . . . . . . 7 (𝐵 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑧𝐵 𝑤𝑧 ↔ sup(𝐵, ℝ*, < ) = +∞))
7541, 74syl 17 . . . . . 6 (𝜑 → (∀𝑤 ∈ ℝ ∃𝑧𝐵 𝑤𝑧 ↔ sup(𝐵, ℝ*, < ) = +∞))
7675adantr 481 . . . . 5 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → (∀𝑤 ∈ ℝ ∃𝑧𝐵 𝑤𝑧 ↔ sup(𝐵, ℝ*, < ) = +∞))
7773, 76mpbid 231 . . . 4 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐵, ℝ*, < ) = +∞)
787, 8, 773eqtr4d 2788 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) = sup(𝐵, ℝ*, < ))
796, 78xreqled 42869 . 2 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
80 supeq1 9204 . . . . . . 7 (𝐴 = ∅ → sup(𝐴, ℝ*, < ) = sup(∅, ℝ*, < ))
81 xrsup0 13057 . . . . . . . 8 sup(∅, ℝ*, < ) = -∞
8281a1i 11 . . . . . . 7 (𝐴 = ∅ → sup(∅, ℝ*, < ) = -∞)
8380, 82eqtrd 2778 . . . . . 6 (𝐴 = ∅ → sup(𝐴, ℝ*, < ) = -∞)
8483adantl 482 . . . . 5 ((𝜑𝐴 = ∅) → sup(𝐴, ℝ*, < ) = -∞)
85 supxrcl 13049 . . . . . . . 8 (𝐵 ⊆ ℝ* → sup(𝐵, ℝ*, < ) ∈ ℝ*)
8641, 85syl 17 . . . . . . 7 (𝜑 → sup(𝐵, ℝ*, < ) ∈ ℝ*)
87 mnfle 12870 . . . . . . 7 (sup(𝐵, ℝ*, < ) ∈ ℝ* → -∞ ≤ sup(𝐵, ℝ*, < ))
8886, 87syl 17 . . . . . 6 (𝜑 → -∞ ≤ sup(𝐵, ℝ*, < ))
8988adantr 481 . . . . 5 ((𝜑𝐴 = ∅) → -∞ ≤ sup(𝐵, ℝ*, < ))
9084, 89eqbrtrd 5096 . . . 4 ((𝜑𝐴 = ∅) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
9190adantlr 712 . . 3 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝐴 = ∅) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
92 simpll 764 . . . 4 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → 𝜑)
931adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ⊆ ℝ)
94 neqne 2951 . . . . . . . . 9 𝐴 = ∅ → 𝐴 ≠ ∅)
9594adantl 482 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ ∅)
96 supxrgtmnf 13063 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → -∞ < sup(𝐴, ℝ*, < ))
9793, 95, 96syl2anc 584 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = ∅) → -∞ < sup(𝐴, ℝ*, < ))
9897adantlr 712 . . . . . 6 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → -∞ < sup(𝐴, ℝ*, < ))
99 simpr 485 . . . . . . . . 9 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ¬ sup(𝐴, ℝ*, < ) = +∞)
100 simpl 483 . . . . . . . . . 10 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → 𝜑)
101 nltpnft 12898 . . . . . . . . . 10 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
102100, 5, 1013syl 18 . . . . . . . . 9 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
10399, 102mtbid 324 . . . . . . . 8 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ¬ ¬ sup(𝐴, ℝ*, < ) < +∞)
104 notnotr 130 . . . . . . . 8 (¬ ¬ sup(𝐴, ℝ*, < ) < +∞ → sup(𝐴, ℝ*, < ) < +∞)
105103, 104syl 17 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) < +∞)
106105adantr 481 . . . . . 6 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ*, < ) < +∞)
10798, 106jca 512 . . . . 5 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞))
10892, 5syl 17 . . . . . 6 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
109 xrrebnd 12902 . . . . . 6 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞)))
110108, 109syl 17 . . . . 5 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞)))
111107, 110mpbird 256 . . . 4 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ*, < ) ∈ ℝ)
112 nfv 1917 . . . . 5 𝑤(𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ)
11341adantr 481 . . . . 5 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → 𝐵 ⊆ ℝ*)
114 simpr 485 . . . . 5 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → sup(𝐴, ℝ*, < ) ∈ ℝ)
115114adantr 481 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → sup(𝐴, ℝ*, < ) ∈ ℝ)
116 simpr 485 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
117116rphalfcld 12784 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (𝑤 / 2) ∈ ℝ+)
118115, 117ltsubrpd 12804 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < sup(𝐴, ℝ*, < ))
1193ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → 𝐴 ⊆ ℝ*)
120 rpre 12738 . . . . . . . . . . . 12 (𝑤 ∈ ℝ+𝑤 ∈ ℝ)
121 2re 12047 . . . . . . . . . . . . 13 2 ∈ ℝ
122121a1i 11 . . . . . . . . . . . 12 (𝑤 ∈ ℝ+ → 2 ∈ ℝ)
123 2ne0 12077 . . . . . . . . . . . . 13 2 ≠ 0
124123a1i 11 . . . . . . . . . . . 12 (𝑤 ∈ ℝ+ → 2 ≠ 0)
125120, 122, 124redivcld 11803 . . . . . . . . . . 11 (𝑤 ∈ ℝ+ → (𝑤 / 2) ∈ ℝ)
126125adantl 482 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (𝑤 / 2) ∈ ℝ)
127115, 126resubcld 11403 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) ∈ ℝ)
1282, 127sselid 3919 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) ∈ ℝ*)
129 supxrlub 13059 . . . . . . . 8 ((𝐴 ⊆ ℝ* ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) ∈ ℝ*) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < sup(𝐴, ℝ*, < ) ↔ ∃𝑥𝐴 (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥))
130119, 128, 129syl2anc 584 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < sup(𝐴, ℝ*, < ) ↔ ∃𝑥𝐴 (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥))
131118, 130mpbid 231 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → ∃𝑥𝐴 (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥)
132 rphalfcl 12757 . . . . . . . . . . 11 (𝑤 ∈ ℝ+ → (𝑤 / 2) ∈ ℝ+)
1331323ad2ant2 1133 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℝ+𝑥𝐴) → (𝑤 / 2) ∈ ℝ+)
134233adant2 1130 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℝ+𝑥𝐴) → ∀𝑦 ∈ ℝ+𝑧𝐵 (𝑥𝑦) < 𝑧)
135 oveq2 7283 . . . . . . . . . . . . 13 (𝑦 = (𝑤 / 2) → (𝑥𝑦) = (𝑥 − (𝑤 / 2)))
136135breq1d 5084 . . . . . . . . . . . 12 (𝑦 = (𝑤 / 2) → ((𝑥𝑦) < 𝑧 ↔ (𝑥 − (𝑤 / 2)) < 𝑧))
137136rexbidv 3226 . . . . . . . . . . 11 (𝑦 = (𝑤 / 2) → (∃𝑧𝐵 (𝑥𝑦) < 𝑧 ↔ ∃𝑧𝐵 (𝑥 − (𝑤 / 2)) < 𝑧))
138137rspcva 3559 . . . . . . . . . 10 (((𝑤 / 2) ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+𝑧𝐵 (𝑥𝑦) < 𝑧) → ∃𝑧𝐵 (𝑥 − (𝑤 / 2)) < 𝑧)
139133, 134, 138syl2anc 584 . . . . . . . . 9 ((𝜑𝑤 ∈ ℝ+𝑥𝐴) → ∃𝑧𝐵 (𝑥 − (𝑤 / 2)) < 𝑧)
140139ad5ant134 1366 . . . . . . . 8 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) → ∃𝑧𝐵 (𝑥 − (𝑤 / 2)) < 𝑧)
141 recn 10961 . . . . . . . . . . . . . . . . 17 (sup(𝐴, ℝ*, < ) ∈ ℝ → sup(𝐴, ℝ*, < ) ∈ ℂ)
142141adantr 481 . . . . . . . . . . . . . . . 16 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → sup(𝐴, ℝ*, < ) ∈ ℂ)
143120recnd 11003 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℝ+𝑤 ∈ ℂ)
144143adantl 482 . . . . . . . . . . . . . . . . 17 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℂ)
145144halfcld 12218 . . . . . . . . . . . . . . . 16 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → (𝑤 / 2) ∈ ℂ)
146142, 145, 145subsub4d 11363 . . . . . . . . . . . . . . 15 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) = (sup(𝐴, ℝ*, < ) − ((𝑤 / 2) + (𝑤 / 2))))
1471432halvesd 12219 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℝ+ → ((𝑤 / 2) + (𝑤 / 2)) = 𝑤)
148147oveq2d 7291 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℝ+ → (sup(𝐴, ℝ*, < ) − ((𝑤 / 2) + (𝑤 / 2))) = (sup(𝐴, ℝ*, < ) − 𝑤))
149148adantl 482 . . . . . . . . . . . . . . 15 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → (sup(𝐴, ℝ*, < ) − ((𝑤 / 2) + (𝑤 / 2))) = (sup(𝐴, ℝ*, < ) − 𝑤))
150146, 149eqtr2d 2779 . . . . . . . . . . . . . 14 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → (sup(𝐴, ℝ*, < ) − 𝑤) = ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)))
151150adantll 711 . . . . . . . . . . . . 13 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (sup(𝐴, ℝ*, < ) − 𝑤) = ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)))
152151adantr 481 . . . . . . . . . . . 12 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → (sup(𝐴, ℝ*, < ) − 𝑤) = ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)))
153152ad3antrrr 727 . . . . . . . . . . 11 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (sup(𝐴, ℝ*, < ) − 𝑤) = ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)))
154127, 126resubcld 11403 . . . . . . . . . . . . . . 15 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) ∈ ℝ)
155154adantr 481 . . . . . . . . . . . . . 14 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) ∈ ℝ)
156155ad3antrrr 727 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) ∈ ℝ)
1572, 156sselid 3919 . . . . . . . . . . . 12 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) ∈ ℝ*)
158120, 49sylanl2 678 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
159125ad2antlr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → (𝑤 / 2) ∈ ℝ)
160158, 159resubcld 11403 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → (𝑥 − (𝑤 / 2)) ∈ ℝ)
161160adantllr 716 . . . . . . . . . . . . . 14 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → (𝑥 − (𝑤 / 2)) ∈ ℝ)
162161ad3antrrr 727 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (𝑥 − (𝑤 / 2)) ∈ ℝ)
1632, 162sselid 3919 . . . . . . . . . . . 12 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (𝑥 − (𝑤 / 2)) ∈ ℝ*)
164 simp-6l 784 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → 𝜑)
165 simplr 766 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → 𝑧𝐵)
166164, 165, 42syl2anc 584 . . . . . . . . . . . 12 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → 𝑧 ∈ ℝ*)
167 simp-6r 785 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → sup(𝐴, ℝ*, < ) ∈ ℝ)
168120ad5antlr 732 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → 𝑤 ∈ ℝ)
169168rehalfcld 12220 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (𝑤 / 2) ∈ ℝ)
170167, 169resubcld 11403 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) ∈ ℝ)
171 simp-4r 781 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → 𝑥𝐴)
172164, 171, 34syl2anc 584 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → 𝑥 ∈ ℝ)
173 simpllr 773 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥)
174170, 172, 169, 173ltsub1dd 11587 . . . . . . . . . . . 12 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) < (𝑥 − (𝑤 / 2)))
175 simpr 485 . . . . . . . . . . . 12 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (𝑥 − (𝑤 / 2)) < 𝑧)
176157, 163, 166, 174, 175xrlttrd 12893 . . . . . . . . . . 11 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) < 𝑧)
177153, 176eqbrtrd 5096 . . . . . . . . . 10 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧)
178177ex 413 . . . . . . . . 9 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) → ((𝑥 − (𝑤 / 2)) < 𝑧 → (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧))
179178reximdva 3203 . . . . . . . 8 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) → (∃𝑧𝐵 (𝑥 − (𝑤 / 2)) < 𝑧 → ∃𝑧𝐵 (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧))
180140, 179mpd 15 . . . . . . 7 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) → ∃𝑧𝐵 (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧)
181180rexlimdva2 3216 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (∃𝑥𝐴 (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥 → ∃𝑧𝐵 (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧))
182131, 181mpd 15 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → ∃𝑧𝐵 (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧)
183112, 113, 114, 182supxrgere 42872 . . . 4 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
18492, 111, 183syl2anc 584 . . 3 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
18591, 184pm2.61dan 810 . 2 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
18679, 185pm2.61dan 810 1 (𝜑 → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  wss 3887  c0 4256   class class class wbr 5074  (class class class)co 7275  supcsup 9199  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874  +∞cpnf 11006  -∞cmnf 11007  *cxr 11008   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  2c2 12028  +crp 12730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-2 12036  df-rp 12731
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator