Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suplesup Structured version   Visualization version   GIF version

Theorem suplesup 44349
Description: If any element of 𝐴 can be approximated from below by members of 𝐵, then the supremum of 𝐴 is less than or equal to the supremum of 𝐵. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
suplesup.a (𝜑𝐴 ⊆ ℝ)
suplesup.b (𝜑𝐵 ⊆ ℝ*)
suplesup.c (𝜑 → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧𝐵 (𝑥𝑦) < 𝑧)
Assertion
Ref Expression
suplesup (𝜑 → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)

Proof of Theorem suplesup
Dummy variables 𝑟 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplesup.a . . . . . 6 (𝜑𝐴 ⊆ ℝ)
2 ressxr 11263 . . . . . 6 ℝ ⊆ ℝ*
31, 2sstrdi 3995 . . . . 5 (𝜑𝐴 ⊆ ℝ*)
4 supxrcl 13299 . . . . 5 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
53, 4syl 17 . . . 4 (𝜑 → sup(𝐴, ℝ*, < ) ∈ ℝ*)
65adantr 480 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
7 eqidd 2732 . . . 4 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → +∞ = +∞)
8 simpr 484 . . . 4 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) = +∞)
9 peano2re 11392 . . . . . . . . . 10 (𝑤 ∈ ℝ → (𝑤 + 1) ∈ ℝ)
109adantl 481 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → (𝑤 + 1) ∈ ℝ)
113adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝐴 ⊆ ℝ*)
12 supxrunb2 13304 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ* → (∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟 < 𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
1311, 12syl 17 . . . . . . . . . . 11 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → (∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟 < 𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
148, 13mpbird 256 . . . . . . . . . 10 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → ∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟 < 𝑥)
1514adantr 480 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → ∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟 < 𝑥)
16 breq1 5152 . . . . . . . . . . 11 (𝑟 = (𝑤 + 1) → (𝑟 < 𝑥 ↔ (𝑤 + 1) < 𝑥))
1716rexbidv 3177 . . . . . . . . . 10 (𝑟 = (𝑤 + 1) → (∃𝑥𝐴 𝑟 < 𝑥 ↔ ∃𝑥𝐴 (𝑤 + 1) < 𝑥))
1817rspcva 3611 . . . . . . . . 9 (((𝑤 + 1) ∈ ℝ ∧ ∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟 < 𝑥) → ∃𝑥𝐴 (𝑤 + 1) < 𝑥)
1910, 15, 18syl2anc 583 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → ∃𝑥𝐴 (𝑤 + 1) < 𝑥)
20 1rp 12983 . . . . . . . . . . . . . . . 16 1 ∈ ℝ+
2120a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 1 ∈ ℝ+)
22 suplesup.c . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧𝐵 (𝑥𝑦) < 𝑧)
2322r19.21bi 3247 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → ∀𝑦 ∈ ℝ+𝑧𝐵 (𝑥𝑦) < 𝑧)
24 oveq2 7420 . . . . . . . . . . . . . . . . . 18 (𝑦 = 1 → (𝑥𝑦) = (𝑥 − 1))
2524breq1d 5159 . . . . . . . . . . . . . . . . 17 (𝑦 = 1 → ((𝑥𝑦) < 𝑧 ↔ (𝑥 − 1) < 𝑧))
2625rexbidv 3177 . . . . . . . . . . . . . . . 16 (𝑦 = 1 → (∃𝑧𝐵 (𝑥𝑦) < 𝑧 ↔ ∃𝑧𝐵 (𝑥 − 1) < 𝑧))
2726rspcva 3611 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+𝑧𝐵 (𝑥𝑦) < 𝑧) → ∃𝑧𝐵 (𝑥 − 1) < 𝑧)
2821, 23, 27syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → ∃𝑧𝐵 (𝑥 − 1) < 𝑧)
2928adantlr 712 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → ∃𝑧𝐵 (𝑥 − 1) < 𝑧)
30293adant3 1131 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → ∃𝑧𝐵 (𝑥 − 1) < 𝑧)
31 nfv 1916 . . . . . . . . . . . . 13 𝑧((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥)
32 simp11r 1284 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → 𝑤 ∈ ℝ)
332, 32sselid 3981 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → 𝑤 ∈ ℝ*)
341sselda 3983 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
35 1red 11220 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → 1 ∈ ℝ)
3634, 35resubcld 11647 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → (𝑥 − 1) ∈ ℝ)
3736adantlr 712 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → (𝑥 − 1) ∈ ℝ)
38373adant3 1131 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → (𝑥 − 1) ∈ ℝ)
39383ad2ant1 1132 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → (𝑥 − 1) ∈ ℝ)
402, 39sselid 3981 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → (𝑥 − 1) ∈ ℝ*)
41 suplesup.b . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ⊆ ℝ*)
4241sselda 3983 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝐵) → 𝑧 ∈ ℝ*)
4342adantlr 712 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ) ∧ 𝑧𝐵) → 𝑧 ∈ ℝ*)
44433ad2antl1 1184 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵) → 𝑧 ∈ ℝ*)
45443adant3 1131 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → 𝑧 ∈ ℝ*)
46 simp3 1137 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → (𝑤 + 1) < 𝑥)
47 simp1r 1197 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → 𝑤 ∈ ℝ)
48 1red 11220 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → 1 ∈ ℝ)
4934adantlr 712 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
50493adant3 1131 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → 𝑥 ∈ ℝ)
5147, 48, 50ltaddsubd 11819 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → ((𝑤 + 1) < 𝑥𝑤 < (𝑥 − 1)))
5246, 51mpbid 231 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → 𝑤 < (𝑥 − 1))
53523ad2ant1 1132 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → 𝑤 < (𝑥 − 1))
54 simp3 1137 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → (𝑥 − 1) < 𝑧)
5533, 40, 45, 53, 54xrlttrd 13143 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → 𝑤 < 𝑧)
56553exp 1118 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → (𝑧𝐵 → ((𝑥 − 1) < 𝑧𝑤 < 𝑧)))
5731, 56reximdai 3257 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → (∃𝑧𝐵 (𝑥 − 1) < 𝑧 → ∃𝑧𝐵 𝑤 < 𝑧))
5830, 57mpd 15 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → ∃𝑧𝐵 𝑤 < 𝑧)
59583exp 1118 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℝ) → (𝑥𝐴 → ((𝑤 + 1) < 𝑥 → ∃𝑧𝐵 𝑤 < 𝑧)))
6059adantlr 712 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → (𝑥𝐴 → ((𝑤 + 1) < 𝑥 → ∃𝑧𝐵 𝑤 < 𝑧)))
6160rexlimdv 3152 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → (∃𝑥𝐴 (𝑤 + 1) < 𝑥 → ∃𝑧𝐵 𝑤 < 𝑧))
6219, 61mpd 15 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → ∃𝑧𝐵 𝑤 < 𝑧)
632a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ⊆ ℝ*)
6463sselda 3983 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ℝ) → 𝑤 ∈ ℝ*)
6564ad2antrr 723 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑧𝐵) ∧ 𝑤 < 𝑧) → 𝑤 ∈ ℝ*)
6643adantr 480 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑧𝐵) ∧ 𝑤 < 𝑧) → 𝑧 ∈ ℝ*)
67 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑧𝐵) ∧ 𝑤 < 𝑧) → 𝑤 < 𝑧)
6865, 66, 67xrltled 13134 . . . . . . . . . 10 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑧𝐵) ∧ 𝑤 < 𝑧) → 𝑤𝑧)
6968ex 412 . . . . . . . . 9 (((𝜑𝑤 ∈ ℝ) ∧ 𝑧𝐵) → (𝑤 < 𝑧𝑤𝑧))
7069adantllr 716 . . . . . . . 8 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) ∧ 𝑧𝐵) → (𝑤 < 𝑧𝑤𝑧))
7170reximdva 3167 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → (∃𝑧𝐵 𝑤 < 𝑧 → ∃𝑧𝐵 𝑤𝑧))
7262, 71mpd 15 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → ∃𝑧𝐵 𝑤𝑧)
7372ralrimiva 3145 . . . . 5 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → ∀𝑤 ∈ ℝ ∃𝑧𝐵 𝑤𝑧)
74 supxrunb1 13303 . . . . . . 7 (𝐵 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑧𝐵 𝑤𝑧 ↔ sup(𝐵, ℝ*, < ) = +∞))
7541, 74syl 17 . . . . . 6 (𝜑 → (∀𝑤 ∈ ℝ ∃𝑧𝐵 𝑤𝑧 ↔ sup(𝐵, ℝ*, < ) = +∞))
7675adantr 480 . . . . 5 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → (∀𝑤 ∈ ℝ ∃𝑧𝐵 𝑤𝑧 ↔ sup(𝐵, ℝ*, < ) = +∞))
7773, 76mpbid 231 . . . 4 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐵, ℝ*, < ) = +∞)
787, 8, 773eqtr4d 2781 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) = sup(𝐵, ℝ*, < ))
796, 78xreqled 44340 . 2 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
80 supeq1 9443 . . . . . . 7 (𝐴 = ∅ → sup(𝐴, ℝ*, < ) = sup(∅, ℝ*, < ))
81 xrsup0 13307 . . . . . . . 8 sup(∅, ℝ*, < ) = -∞
8281a1i 11 . . . . . . 7 (𝐴 = ∅ → sup(∅, ℝ*, < ) = -∞)
8380, 82eqtrd 2771 . . . . . 6 (𝐴 = ∅ → sup(𝐴, ℝ*, < ) = -∞)
8483adantl 481 . . . . 5 ((𝜑𝐴 = ∅) → sup(𝐴, ℝ*, < ) = -∞)
85 supxrcl 13299 . . . . . . . 8 (𝐵 ⊆ ℝ* → sup(𝐵, ℝ*, < ) ∈ ℝ*)
8641, 85syl 17 . . . . . . 7 (𝜑 → sup(𝐵, ℝ*, < ) ∈ ℝ*)
87 mnfle 13119 . . . . . . 7 (sup(𝐵, ℝ*, < ) ∈ ℝ* → -∞ ≤ sup(𝐵, ℝ*, < ))
8886, 87syl 17 . . . . . 6 (𝜑 → -∞ ≤ sup(𝐵, ℝ*, < ))
8988adantr 480 . . . . 5 ((𝜑𝐴 = ∅) → -∞ ≤ sup(𝐵, ℝ*, < ))
9084, 89eqbrtrd 5171 . . . 4 ((𝜑𝐴 = ∅) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
9190adantlr 712 . . 3 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝐴 = ∅) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
92 simpll 764 . . . 4 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → 𝜑)
931adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ⊆ ℝ)
94 neqne 2947 . . . . . . . . 9 𝐴 = ∅ → 𝐴 ≠ ∅)
9594adantl 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ ∅)
96 supxrgtmnf 13313 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → -∞ < sup(𝐴, ℝ*, < ))
9793, 95, 96syl2anc 583 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = ∅) → -∞ < sup(𝐴, ℝ*, < ))
9897adantlr 712 . . . . . 6 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → -∞ < sup(𝐴, ℝ*, < ))
99 simpr 484 . . . . . . . . 9 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ¬ sup(𝐴, ℝ*, < ) = +∞)
100 simpl 482 . . . . . . . . . 10 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → 𝜑)
101 nltpnft 13148 . . . . . . . . . 10 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
102100, 5, 1013syl 18 . . . . . . . . 9 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
10399, 102mtbid 323 . . . . . . . 8 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ¬ ¬ sup(𝐴, ℝ*, < ) < +∞)
104 notnotr 130 . . . . . . . 8 (¬ ¬ sup(𝐴, ℝ*, < ) < +∞ → sup(𝐴, ℝ*, < ) < +∞)
105103, 104syl 17 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) < +∞)
106105adantr 480 . . . . . 6 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ*, < ) < +∞)
10798, 106jca 511 . . . . 5 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞))
10892, 5syl 17 . . . . . 6 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
109 xrrebnd 13152 . . . . . 6 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞)))
110108, 109syl 17 . . . . 5 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞)))
111107, 110mpbird 256 . . . 4 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ*, < ) ∈ ℝ)
112 nfv 1916 . . . . 5 𝑤(𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ)
11341adantr 480 . . . . 5 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → 𝐵 ⊆ ℝ*)
114 simpr 484 . . . . 5 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → sup(𝐴, ℝ*, < ) ∈ ℝ)
115114adantr 480 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → sup(𝐴, ℝ*, < ) ∈ ℝ)
116 simpr 484 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
117116rphalfcld 13033 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (𝑤 / 2) ∈ ℝ+)
118115, 117ltsubrpd 13053 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < sup(𝐴, ℝ*, < ))
1193ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → 𝐴 ⊆ ℝ*)
120 rpre 12987 . . . . . . . . . . . 12 (𝑤 ∈ ℝ+𝑤 ∈ ℝ)
121 2re 12291 . . . . . . . . . . . . 13 2 ∈ ℝ
122121a1i 11 . . . . . . . . . . . 12 (𝑤 ∈ ℝ+ → 2 ∈ ℝ)
123 2ne0 12321 . . . . . . . . . . . . 13 2 ≠ 0
124123a1i 11 . . . . . . . . . . . 12 (𝑤 ∈ ℝ+ → 2 ≠ 0)
125120, 122, 124redivcld 12047 . . . . . . . . . . 11 (𝑤 ∈ ℝ+ → (𝑤 / 2) ∈ ℝ)
126125adantl 481 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (𝑤 / 2) ∈ ℝ)
127115, 126resubcld 11647 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) ∈ ℝ)
1282, 127sselid 3981 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) ∈ ℝ*)
129 supxrlub 13309 . . . . . . . 8 ((𝐴 ⊆ ℝ* ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) ∈ ℝ*) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < sup(𝐴, ℝ*, < ) ↔ ∃𝑥𝐴 (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥))
130119, 128, 129syl2anc 583 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < sup(𝐴, ℝ*, < ) ↔ ∃𝑥𝐴 (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥))
131118, 130mpbid 231 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → ∃𝑥𝐴 (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥)
132 rphalfcl 13006 . . . . . . . . . . 11 (𝑤 ∈ ℝ+ → (𝑤 / 2) ∈ ℝ+)
1331323ad2ant2 1133 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℝ+𝑥𝐴) → (𝑤 / 2) ∈ ℝ+)
134233adant2 1130 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℝ+𝑥𝐴) → ∀𝑦 ∈ ℝ+𝑧𝐵 (𝑥𝑦) < 𝑧)
135 oveq2 7420 . . . . . . . . . . . . 13 (𝑦 = (𝑤 / 2) → (𝑥𝑦) = (𝑥 − (𝑤 / 2)))
136135breq1d 5159 . . . . . . . . . . . 12 (𝑦 = (𝑤 / 2) → ((𝑥𝑦) < 𝑧 ↔ (𝑥 − (𝑤 / 2)) < 𝑧))
137136rexbidv 3177 . . . . . . . . . . 11 (𝑦 = (𝑤 / 2) → (∃𝑧𝐵 (𝑥𝑦) < 𝑧 ↔ ∃𝑧𝐵 (𝑥 − (𝑤 / 2)) < 𝑧))
138137rspcva 3611 . . . . . . . . . 10 (((𝑤 / 2) ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+𝑧𝐵 (𝑥𝑦) < 𝑧) → ∃𝑧𝐵 (𝑥 − (𝑤 / 2)) < 𝑧)
139133, 134, 138syl2anc 583 . . . . . . . . 9 ((𝜑𝑤 ∈ ℝ+𝑥𝐴) → ∃𝑧𝐵 (𝑥 − (𝑤 / 2)) < 𝑧)
140139ad5ant134 1366 . . . . . . . 8 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) → ∃𝑧𝐵 (𝑥 − (𝑤 / 2)) < 𝑧)
141 recn 11203 . . . . . . . . . . . . . . . . 17 (sup(𝐴, ℝ*, < ) ∈ ℝ → sup(𝐴, ℝ*, < ) ∈ ℂ)
142141adantr 480 . . . . . . . . . . . . . . . 16 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → sup(𝐴, ℝ*, < ) ∈ ℂ)
143120recnd 11247 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℝ+𝑤 ∈ ℂ)
144143adantl 481 . . . . . . . . . . . . . . . . 17 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℂ)
145144halfcld 12462 . . . . . . . . . . . . . . . 16 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → (𝑤 / 2) ∈ ℂ)
146142, 145, 145subsub4d 11607 . . . . . . . . . . . . . . 15 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) = (sup(𝐴, ℝ*, < ) − ((𝑤 / 2) + (𝑤 / 2))))
1471432halvesd 12463 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℝ+ → ((𝑤 / 2) + (𝑤 / 2)) = 𝑤)
148147oveq2d 7428 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℝ+ → (sup(𝐴, ℝ*, < ) − ((𝑤 / 2) + (𝑤 / 2))) = (sup(𝐴, ℝ*, < ) − 𝑤))
149148adantl 481 . . . . . . . . . . . . . . 15 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → (sup(𝐴, ℝ*, < ) − ((𝑤 / 2) + (𝑤 / 2))) = (sup(𝐴, ℝ*, < ) − 𝑤))
150146, 149eqtr2d 2772 . . . . . . . . . . . . . 14 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → (sup(𝐴, ℝ*, < ) − 𝑤) = ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)))
151150adantll 711 . . . . . . . . . . . . 13 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (sup(𝐴, ℝ*, < ) − 𝑤) = ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)))
152151adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → (sup(𝐴, ℝ*, < ) − 𝑤) = ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)))
153152ad3antrrr 727 . . . . . . . . . . 11 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (sup(𝐴, ℝ*, < ) − 𝑤) = ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)))
154127, 126resubcld 11647 . . . . . . . . . . . . . . 15 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) ∈ ℝ)
155154adantr 480 . . . . . . . . . . . . . 14 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) ∈ ℝ)
156155ad3antrrr 727 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) ∈ ℝ)
1572, 156sselid 3981 . . . . . . . . . . . 12 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) ∈ ℝ*)
158120, 49sylanl2 678 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
159125ad2antlr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → (𝑤 / 2) ∈ ℝ)
160158, 159resubcld 11647 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → (𝑥 − (𝑤 / 2)) ∈ ℝ)
161160adantllr 716 . . . . . . . . . . . . . 14 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → (𝑥 − (𝑤 / 2)) ∈ ℝ)
162161ad3antrrr 727 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (𝑥 − (𝑤 / 2)) ∈ ℝ)
1632, 162sselid 3981 . . . . . . . . . . . 12 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (𝑥 − (𝑤 / 2)) ∈ ℝ*)
164 simp-6l 784 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → 𝜑)
165 simplr 766 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → 𝑧𝐵)
166164, 165, 42syl2anc 583 . . . . . . . . . . . 12 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → 𝑧 ∈ ℝ*)
167 simp-6r 785 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → sup(𝐴, ℝ*, < ) ∈ ℝ)
168120ad5antlr 732 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → 𝑤 ∈ ℝ)
169168rehalfcld 12464 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (𝑤 / 2) ∈ ℝ)
170167, 169resubcld 11647 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) ∈ ℝ)
171 simp-4r 781 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → 𝑥𝐴)
172164, 171, 34syl2anc 583 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → 𝑥 ∈ ℝ)
173 simpllr 773 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥)
174170, 172, 169, 173ltsub1dd 11831 . . . . . . . . . . . 12 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) < (𝑥 − (𝑤 / 2)))
175 simpr 484 . . . . . . . . . . . 12 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (𝑥 − (𝑤 / 2)) < 𝑧)
176157, 163, 166, 174, 175xrlttrd 13143 . . . . . . . . . . 11 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) < 𝑧)
177153, 176eqbrtrd 5171 . . . . . . . . . 10 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧)
178177ex 412 . . . . . . . . 9 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) → ((𝑥 − (𝑤 / 2)) < 𝑧 → (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧))
179178reximdva 3167 . . . . . . . 8 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) → (∃𝑧𝐵 (𝑥 − (𝑤 / 2)) < 𝑧 → ∃𝑧𝐵 (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧))
180140, 179mpd 15 . . . . . . 7 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) → ∃𝑧𝐵 (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧)
181180rexlimdva2 3156 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (∃𝑥𝐴 (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥 → ∃𝑧𝐵 (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧))
182131, 181mpd 15 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → ∃𝑧𝐵 (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧)
183112, 113, 114, 182supxrgere 44343 . . . 4 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
18492, 111, 183syl2anc 583 . . 3 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
18591, 184pm2.61dan 810 . 2 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
18679, 185pm2.61dan 810 1 (𝜑 → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wne 2939  wral 3060  wrex 3069  wss 3949  c0 4323   class class class wbr 5149  (class class class)co 7412  supcsup 9438  cc 11111  cr 11112  0cc0 11113  1c1 11114   + caddc 11116  +∞cpnf 11250  -∞cmnf 11251  *cxr 11252   < clt 11253  cle 11254  cmin 11449   / cdiv 11876  2c2 12272  +crp 12979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-sup 9440  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-2 12280  df-rp 12980
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator