Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suplesup Structured version   Visualization version   GIF version

Theorem suplesup 41971
Description: If any element of 𝐴 can be approximated from below by members of 𝐵, then the supremum of 𝐴 is less than or equal to the supremum of 𝐵. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
suplesup.a (𝜑𝐴 ⊆ ℝ)
suplesup.b (𝜑𝐵 ⊆ ℝ*)
suplesup.c (𝜑 → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧𝐵 (𝑥𝑦) < 𝑧)
Assertion
Ref Expression
suplesup (𝜑 → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)

Proof of Theorem suplesup
Dummy variables 𝑟 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplesup.a . . . . . 6 (𝜑𝐴 ⊆ ℝ)
2 ressxr 10674 . . . . . 6 ℝ ⊆ ℝ*
31, 2sstrdi 3927 . . . . 5 (𝜑𝐴 ⊆ ℝ*)
4 supxrcl 12696 . . . . 5 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
53, 4syl 17 . . . 4 (𝜑 → sup(𝐴, ℝ*, < ) ∈ ℝ*)
65adantr 484 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
7 eqidd 2799 . . . 4 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → +∞ = +∞)
8 simpr 488 . . . 4 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) = +∞)
9 peano2re 10802 . . . . . . . . . 10 (𝑤 ∈ ℝ → (𝑤 + 1) ∈ ℝ)
109adantl 485 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → (𝑤 + 1) ∈ ℝ)
113adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝐴 ⊆ ℝ*)
12 supxrunb2 12701 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ* → (∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟 < 𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
1311, 12syl 17 . . . . . . . . . . 11 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → (∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟 < 𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
148, 13mpbird 260 . . . . . . . . . 10 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → ∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟 < 𝑥)
1514adantr 484 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → ∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟 < 𝑥)
16 breq1 5033 . . . . . . . . . . 11 (𝑟 = (𝑤 + 1) → (𝑟 < 𝑥 ↔ (𝑤 + 1) < 𝑥))
1716rexbidv 3256 . . . . . . . . . 10 (𝑟 = (𝑤 + 1) → (∃𝑥𝐴 𝑟 < 𝑥 ↔ ∃𝑥𝐴 (𝑤 + 1) < 𝑥))
1817rspcva 3569 . . . . . . . . 9 (((𝑤 + 1) ∈ ℝ ∧ ∀𝑟 ∈ ℝ ∃𝑥𝐴 𝑟 < 𝑥) → ∃𝑥𝐴 (𝑤 + 1) < 𝑥)
1910, 15, 18syl2anc 587 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → ∃𝑥𝐴 (𝑤 + 1) < 𝑥)
20 1rp 12381 . . . . . . . . . . . . . . . 16 1 ∈ ℝ+
2120a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 1 ∈ ℝ+)
22 suplesup.c . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧𝐵 (𝑥𝑦) < 𝑧)
2322r19.21bi 3173 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → ∀𝑦 ∈ ℝ+𝑧𝐵 (𝑥𝑦) < 𝑧)
24 oveq2 7143 . . . . . . . . . . . . . . . . . 18 (𝑦 = 1 → (𝑥𝑦) = (𝑥 − 1))
2524breq1d 5040 . . . . . . . . . . . . . . . . 17 (𝑦 = 1 → ((𝑥𝑦) < 𝑧 ↔ (𝑥 − 1) < 𝑧))
2625rexbidv 3256 . . . . . . . . . . . . . . . 16 (𝑦 = 1 → (∃𝑧𝐵 (𝑥𝑦) < 𝑧 ↔ ∃𝑧𝐵 (𝑥 − 1) < 𝑧))
2726rspcva 3569 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+𝑧𝐵 (𝑥𝑦) < 𝑧) → ∃𝑧𝐵 (𝑥 − 1) < 𝑧)
2821, 23, 27syl2anc 587 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → ∃𝑧𝐵 (𝑥 − 1) < 𝑧)
2928adantlr 714 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → ∃𝑧𝐵 (𝑥 − 1) < 𝑧)
30293adant3 1129 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → ∃𝑧𝐵 (𝑥 − 1) < 𝑧)
31 nfv 1915 . . . . . . . . . . . . 13 𝑧((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥)
32 simp11r 1282 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → 𝑤 ∈ ℝ)
332, 32sseldi 3913 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → 𝑤 ∈ ℝ*)
341sselda 3915 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
35 1red 10631 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → 1 ∈ ℝ)
3634, 35resubcld 11057 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → (𝑥 − 1) ∈ ℝ)
3736adantlr 714 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → (𝑥 − 1) ∈ ℝ)
38373adant3 1129 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → (𝑥 − 1) ∈ ℝ)
39383ad2ant1 1130 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → (𝑥 − 1) ∈ ℝ)
402, 39sseldi 3913 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → (𝑥 − 1) ∈ ℝ*)
41 suplesup.b . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ⊆ ℝ*)
4241sselda 3915 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝐵) → 𝑧 ∈ ℝ*)
4342adantlr 714 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ) ∧ 𝑧𝐵) → 𝑧 ∈ ℝ*)
44433ad2antl1 1182 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵) → 𝑧 ∈ ℝ*)
45443adant3 1129 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → 𝑧 ∈ ℝ*)
46 simp3 1135 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → (𝑤 + 1) < 𝑥)
47 simp1r 1195 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → 𝑤 ∈ ℝ)
48 1red 10631 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → 1 ∈ ℝ)
4934adantlr 714 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
50493adant3 1129 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → 𝑥 ∈ ℝ)
5147, 48, 50ltaddsubd 11229 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → ((𝑤 + 1) < 𝑥𝑤 < (𝑥 − 1)))
5246, 51mpbid 235 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → 𝑤 < (𝑥 − 1))
53523ad2ant1 1130 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → 𝑤 < (𝑥 − 1))
54 simp3 1135 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → (𝑥 − 1) < 𝑧)
5533, 40, 45, 53, 54xrlttrd 12540 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) ∧ 𝑧𝐵 ∧ (𝑥 − 1) < 𝑧) → 𝑤 < 𝑧)
56553exp 1116 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → (𝑧𝐵 → ((𝑥 − 1) < 𝑧𝑤 < 𝑧)))
5731, 56reximdai 3270 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → (∃𝑧𝐵 (𝑥 − 1) < 𝑧 → ∃𝑧𝐵 𝑤 < 𝑧))
5830, 57mpd 15 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ (𝑤 + 1) < 𝑥) → ∃𝑧𝐵 𝑤 < 𝑧)
59583exp 1116 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℝ) → (𝑥𝐴 → ((𝑤 + 1) < 𝑥 → ∃𝑧𝐵 𝑤 < 𝑧)))
6059adantlr 714 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → (𝑥𝐴 → ((𝑤 + 1) < 𝑥 → ∃𝑧𝐵 𝑤 < 𝑧)))
6160rexlimdv 3242 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → (∃𝑥𝐴 (𝑤 + 1) < 𝑥 → ∃𝑧𝐵 𝑤 < 𝑧))
6219, 61mpd 15 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → ∃𝑧𝐵 𝑤 < 𝑧)
632a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ⊆ ℝ*)
6463sselda 3915 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ℝ) → 𝑤 ∈ ℝ*)
6564ad2antrr 725 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑧𝐵) ∧ 𝑤 < 𝑧) → 𝑤 ∈ ℝ*)
6643adantr 484 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑧𝐵) ∧ 𝑤 < 𝑧) → 𝑧 ∈ ℝ*)
67 simpr 488 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑧𝐵) ∧ 𝑤 < 𝑧) → 𝑤 < 𝑧)
6865, 66, 67xrltled 12531 . . . . . . . . . 10 ((((𝜑𝑤 ∈ ℝ) ∧ 𝑧𝐵) ∧ 𝑤 < 𝑧) → 𝑤𝑧)
6968ex 416 . . . . . . . . 9 (((𝜑𝑤 ∈ ℝ) ∧ 𝑧𝐵) → (𝑤 < 𝑧𝑤𝑧))
7069adantllr 718 . . . . . . . 8 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) ∧ 𝑧𝐵) → (𝑤 < 𝑧𝑤𝑧))
7170reximdva 3233 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → (∃𝑧𝐵 𝑤 < 𝑧 → ∃𝑧𝐵 𝑤𝑧))
7262, 71mpd 15 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝑤 ∈ ℝ) → ∃𝑧𝐵 𝑤𝑧)
7372ralrimiva 3149 . . . . 5 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → ∀𝑤 ∈ ℝ ∃𝑧𝐵 𝑤𝑧)
74 supxrunb1 12700 . . . . . . 7 (𝐵 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑧𝐵 𝑤𝑧 ↔ sup(𝐵, ℝ*, < ) = +∞))
7541, 74syl 17 . . . . . 6 (𝜑 → (∀𝑤 ∈ ℝ ∃𝑧𝐵 𝑤𝑧 ↔ sup(𝐵, ℝ*, < ) = +∞))
7675adantr 484 . . . . 5 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → (∀𝑤 ∈ ℝ ∃𝑧𝐵 𝑤𝑧 ↔ sup(𝐵, ℝ*, < ) = +∞))
7773, 76mpbid 235 . . . 4 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐵, ℝ*, < ) = +∞)
787, 8, 773eqtr4d 2843 . . 3 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) = sup(𝐵, ℝ*, < ))
796, 78xreqled 41962 . 2 ((𝜑 ∧ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
80 supeq1 8893 . . . . . . 7 (𝐴 = ∅ → sup(𝐴, ℝ*, < ) = sup(∅, ℝ*, < ))
81 xrsup0 12704 . . . . . . . 8 sup(∅, ℝ*, < ) = -∞
8281a1i 11 . . . . . . 7 (𝐴 = ∅ → sup(∅, ℝ*, < ) = -∞)
8380, 82eqtrd 2833 . . . . . 6 (𝐴 = ∅ → sup(𝐴, ℝ*, < ) = -∞)
8483adantl 485 . . . . 5 ((𝜑𝐴 = ∅) → sup(𝐴, ℝ*, < ) = -∞)
85 supxrcl 12696 . . . . . . . 8 (𝐵 ⊆ ℝ* → sup(𝐵, ℝ*, < ) ∈ ℝ*)
8641, 85syl 17 . . . . . . 7 (𝜑 → sup(𝐵, ℝ*, < ) ∈ ℝ*)
87 mnfle 12517 . . . . . . 7 (sup(𝐵, ℝ*, < ) ∈ ℝ* → -∞ ≤ sup(𝐵, ℝ*, < ))
8886, 87syl 17 . . . . . 6 (𝜑 → -∞ ≤ sup(𝐵, ℝ*, < ))
8988adantr 484 . . . . 5 ((𝜑𝐴 = ∅) → -∞ ≤ sup(𝐵, ℝ*, < ))
9084, 89eqbrtrd 5052 . . . 4 ((𝜑𝐴 = ∅) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
9190adantlr 714 . . 3 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ 𝐴 = ∅) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
92 simpll 766 . . . 4 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → 𝜑)
931adantr 484 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ⊆ ℝ)
94 neqne 2995 . . . . . . . . 9 𝐴 = ∅ → 𝐴 ≠ ∅)
9594adantl 485 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ ∅)
96 supxrgtmnf 12710 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → -∞ < sup(𝐴, ℝ*, < ))
9793, 95, 96syl2anc 587 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = ∅) → -∞ < sup(𝐴, ℝ*, < ))
9897adantlr 714 . . . . . 6 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → -∞ < sup(𝐴, ℝ*, < ))
99 simpr 488 . . . . . . . . 9 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ¬ sup(𝐴, ℝ*, < ) = +∞)
100 simpl 486 . . . . . . . . . 10 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → 𝜑)
101 nltpnft 12545 . . . . . . . . . 10 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
102100, 5, 1013syl 18 . . . . . . . . 9 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
10399, 102mtbid 327 . . . . . . . 8 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → ¬ ¬ sup(𝐴, ℝ*, < ) < +∞)
104 notnotr 132 . . . . . . . 8 (¬ ¬ sup(𝐴, ℝ*, < ) < +∞ → sup(𝐴, ℝ*, < ) < +∞)
105103, 104syl 17 . . . . . . 7 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) < +∞)
106105adantr 484 . . . . . 6 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ*, < ) < +∞)
10798, 106jca 515 . . . . 5 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞))
10892, 5syl 17 . . . . . 6 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
109 xrrebnd 12549 . . . . . 6 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞)))
110108, 109syl 17 . . . . 5 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ (-∞ < sup(𝐴, ℝ*, < ) ∧ sup(𝐴, ℝ*, < ) < +∞)))
111107, 110mpbird 260 . . . 4 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ*, < ) ∈ ℝ)
112 nfv 1915 . . . . 5 𝑤(𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ)
11341adantr 484 . . . . 5 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → 𝐵 ⊆ ℝ*)
114 simpr 488 . . . . 5 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → sup(𝐴, ℝ*, < ) ∈ ℝ)
115114adantr 484 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → sup(𝐴, ℝ*, < ) ∈ ℝ)
116 simpr 488 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
117116rphalfcld 12431 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (𝑤 / 2) ∈ ℝ+)
118115, 117ltsubrpd 12451 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < sup(𝐴, ℝ*, < ))
1193ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → 𝐴 ⊆ ℝ*)
120 rpre 12385 . . . . . . . . . . . 12 (𝑤 ∈ ℝ+𝑤 ∈ ℝ)
121 2re 11699 . . . . . . . . . . . . 13 2 ∈ ℝ
122121a1i 11 . . . . . . . . . . . 12 (𝑤 ∈ ℝ+ → 2 ∈ ℝ)
123 2ne0 11729 . . . . . . . . . . . . 13 2 ≠ 0
124123a1i 11 . . . . . . . . . . . 12 (𝑤 ∈ ℝ+ → 2 ≠ 0)
125120, 122, 124redivcld 11457 . . . . . . . . . . 11 (𝑤 ∈ ℝ+ → (𝑤 / 2) ∈ ℝ)
126125adantl 485 . . . . . . . . . 10 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (𝑤 / 2) ∈ ℝ)
127115, 126resubcld 11057 . . . . . . . . 9 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) ∈ ℝ)
1282, 127sseldi 3913 . . . . . . . 8 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) ∈ ℝ*)
129 supxrlub 12706 . . . . . . . 8 ((𝐴 ⊆ ℝ* ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) ∈ ℝ*) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < sup(𝐴, ℝ*, < ) ↔ ∃𝑥𝐴 (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥))
130119, 128, 129syl2anc 587 . . . . . . 7 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < sup(𝐴, ℝ*, < ) ↔ ∃𝑥𝐴 (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥))
131118, 130mpbid 235 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → ∃𝑥𝐴 (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥)
132 rphalfcl 12404 . . . . . . . . . . 11 (𝑤 ∈ ℝ+ → (𝑤 / 2) ∈ ℝ+)
1331323ad2ant2 1131 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℝ+𝑥𝐴) → (𝑤 / 2) ∈ ℝ+)
134233adant2 1128 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℝ+𝑥𝐴) → ∀𝑦 ∈ ℝ+𝑧𝐵 (𝑥𝑦) < 𝑧)
135 oveq2 7143 . . . . . . . . . . . . 13 (𝑦 = (𝑤 / 2) → (𝑥𝑦) = (𝑥 − (𝑤 / 2)))
136135breq1d 5040 . . . . . . . . . . . 12 (𝑦 = (𝑤 / 2) → ((𝑥𝑦) < 𝑧 ↔ (𝑥 − (𝑤 / 2)) < 𝑧))
137136rexbidv 3256 . . . . . . . . . . 11 (𝑦 = (𝑤 / 2) → (∃𝑧𝐵 (𝑥𝑦) < 𝑧 ↔ ∃𝑧𝐵 (𝑥 − (𝑤 / 2)) < 𝑧))
138137rspcva 3569 . . . . . . . . . 10 (((𝑤 / 2) ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+𝑧𝐵 (𝑥𝑦) < 𝑧) → ∃𝑧𝐵 (𝑥 − (𝑤 / 2)) < 𝑧)
139133, 134, 138syl2anc 587 . . . . . . . . 9 ((𝜑𝑤 ∈ ℝ+𝑥𝐴) → ∃𝑧𝐵 (𝑥 − (𝑤 / 2)) < 𝑧)
140139ad5ant134 1364 . . . . . . . 8 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) → ∃𝑧𝐵 (𝑥 − (𝑤 / 2)) < 𝑧)
141 recn 10616 . . . . . . . . . . . . . . . . 17 (sup(𝐴, ℝ*, < ) ∈ ℝ → sup(𝐴, ℝ*, < ) ∈ ℂ)
142141adantr 484 . . . . . . . . . . . . . . . 16 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → sup(𝐴, ℝ*, < ) ∈ ℂ)
143120recnd 10658 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℝ+𝑤 ∈ ℂ)
144143adantl 485 . . . . . . . . . . . . . . . . 17 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈ ℂ)
145144halfcld 11870 . . . . . . . . . . . . . . . 16 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → (𝑤 / 2) ∈ ℂ)
146142, 145, 145subsub4d 11017 . . . . . . . . . . . . . . 15 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) = (sup(𝐴, ℝ*, < ) − ((𝑤 / 2) + (𝑤 / 2))))
1471432halvesd 11871 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℝ+ → ((𝑤 / 2) + (𝑤 / 2)) = 𝑤)
148147oveq2d 7151 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℝ+ → (sup(𝐴, ℝ*, < ) − ((𝑤 / 2) + (𝑤 / 2))) = (sup(𝐴, ℝ*, < ) − 𝑤))
149148adantl 485 . . . . . . . . . . . . . . 15 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → (sup(𝐴, ℝ*, < ) − ((𝑤 / 2) + (𝑤 / 2))) = (sup(𝐴, ℝ*, < ) − 𝑤))
150146, 149eqtr2d 2834 . . . . . . . . . . . . . 14 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∧ 𝑤 ∈ ℝ+) → (sup(𝐴, ℝ*, < ) − 𝑤) = ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)))
151150adantll 713 . . . . . . . . . . . . 13 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (sup(𝐴, ℝ*, < ) − 𝑤) = ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)))
152151adantr 484 . . . . . . . . . . . 12 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → (sup(𝐴, ℝ*, < ) − 𝑤) = ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)))
153152ad3antrrr 729 . . . . . . . . . . 11 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (sup(𝐴, ℝ*, < ) − 𝑤) = ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)))
154127, 126resubcld 11057 . . . . . . . . . . . . . . 15 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) ∈ ℝ)
155154adantr 484 . . . . . . . . . . . . . 14 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) ∈ ℝ)
156155ad3antrrr 729 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) ∈ ℝ)
1572, 156sseldi 3913 . . . . . . . . . . . 12 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) ∈ ℝ*)
158120, 49sylanl2 680 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
159125ad2antlr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → (𝑤 / 2) ∈ ℝ)
160158, 159resubcld 11057 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → (𝑥 − (𝑤 / 2)) ∈ ℝ)
161160adantllr 718 . . . . . . . . . . . . . 14 ((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) → (𝑥 − (𝑤 / 2)) ∈ ℝ)
162161ad3antrrr 729 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (𝑥 − (𝑤 / 2)) ∈ ℝ)
1632, 162sseldi 3913 . . . . . . . . . . . 12 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (𝑥 − (𝑤 / 2)) ∈ ℝ*)
164 simp-6l 786 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → 𝜑)
165 simplr 768 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → 𝑧𝐵)
166164, 165, 42syl2anc 587 . . . . . . . . . . . 12 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → 𝑧 ∈ ℝ*)
167 simp-6r 787 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → sup(𝐴, ℝ*, < ) ∈ ℝ)
168120ad5antlr 734 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → 𝑤 ∈ ℝ)
169168rehalfcld 11872 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (𝑤 / 2) ∈ ℝ)
170167, 169resubcld 11057 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) ∈ ℝ)
171 simp-4r 783 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → 𝑥𝐴)
172164, 171, 34syl2anc 587 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → 𝑥 ∈ ℝ)
173 simpllr 775 . . . . . . . . . . . . 13 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥)
174170, 172, 169, 173ltsub1dd 11241 . . . . . . . . . . . 12 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) < (𝑥 − (𝑤 / 2)))
175 simpr 488 . . . . . . . . . . . 12 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (𝑥 − (𝑤 / 2)) < 𝑧)
176157, 163, 166, 174, 175xrlttrd 12540 . . . . . . . . . . 11 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → ((sup(𝐴, ℝ*, < ) − (𝑤 / 2)) − (𝑤 / 2)) < 𝑧)
177153, 176eqbrtrd 5052 . . . . . . . . . 10 (((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) ∧ (𝑥 − (𝑤 / 2)) < 𝑧) → (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧)
178177ex 416 . . . . . . . . 9 ((((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) ∧ 𝑧𝐵) → ((𝑥 − (𝑤 / 2)) < 𝑧 → (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧))
179178reximdva 3233 . . . . . . . 8 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) → (∃𝑧𝐵 (𝑥 − (𝑤 / 2)) < 𝑧 → ∃𝑧𝐵 (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧))
180140, 179mpd 15 . . . . . . 7 (((((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥) → ∃𝑧𝐵 (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧)
181180rexlimdva2 3246 . . . . . 6 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → (∃𝑥𝐴 (sup(𝐴, ℝ*, < ) − (𝑤 / 2)) < 𝑥 → ∃𝑧𝐵 (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧))
182131, 181mpd 15 . . . . 5 (((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) ∧ 𝑤 ∈ ℝ+) → ∃𝑧𝐵 (sup(𝐴, ℝ*, < ) − 𝑤) < 𝑧)
183112, 113, 114, 182supxrgere 41965 . . . 4 ((𝜑 ∧ sup(𝐴, ℝ*, < ) ∈ ℝ) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
18492, 111, 183syl2anc 587 . . 3 (((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) ∧ ¬ 𝐴 = ∅) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
18591, 184pm2.61dan 812 . 2 ((𝜑 ∧ ¬ sup(𝐴, ℝ*, < ) = +∞) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
18679, 185pm2.61dan 812 1 (𝜑 → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  wss 3881  c0 4243   class class class wbr 5030  (class class class)co 7135  supcsup 8888  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529  +∞cpnf 10661  -∞cmnf 10662  *cxr 10663   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  2c2 11680  +crp 12377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-2 11688  df-rp 12378
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator