Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsidomlem1 Structured version   Visualization version   GIF version

Theorem qsidomlem1 31530
Description: If the quotient ring of a commutative ring relative to an ideal is an integral domain, that ideal must be prime. (Contributed by Thierry Arnoux, 16-Jan-2024.)
Hypothesis
Ref Expression
qsidom.1 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
Assertion
Ref Expression
qsidomlem1 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) → 𝐼 ∈ (PrmIdeal‘𝑅))

Proof of Theorem qsidomlem1
Dummy variables 𝑦 𝑒 𝑓 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 19710 . . 3 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
21ad2antrr 722 . 2 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) → 𝑅 ∈ Ring)
3 simplr 765 . 2 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) → 𝐼 ∈ (LIdeal‘𝑅))
4 qsidom.1 . . . . . . . . 9 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
5 simpr 484 . . . . . . . . . . 11 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → 𝐼 = (Base‘𝑅))
65oveq2d 7271 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → (𝑅 ~QG 𝐼) = (𝑅 ~QG (Base‘𝑅)))
76oveq2d 7271 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → (𝑅 /s (𝑅 ~QG 𝐼)) = (𝑅 /s (𝑅 ~QG (Base‘𝑅))))
84, 7syl5eq 2791 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → 𝑄 = (𝑅 /s (𝑅 ~QG (Base‘𝑅))))
98fveq2d 6760 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → (Base‘𝑄) = (Base‘(𝑅 /s (𝑅 ~QG (Base‘𝑅)))))
10 ringgrp 19703 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
111, 10syl 17 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ Grp)
1211ad3antrrr 726 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → 𝑅 ∈ Grp)
13 eqid 2738 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
14 eqid 2738 . . . . . . . . 9 (𝑅 /s (𝑅 ~QG (Base‘𝑅))) = (𝑅 /s (𝑅 ~QG (Base‘𝑅)))
1513, 14qustriv 31462 . . . . . . . 8 (𝑅 ∈ Grp → (Base‘(𝑅 /s (𝑅 ~QG (Base‘𝑅)))) = {(Base‘𝑅)})
1612, 15syl 17 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → (Base‘(𝑅 /s (𝑅 ~QG (Base‘𝑅)))) = {(Base‘𝑅)})
179, 16eqtrd 2778 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → (Base‘𝑄) = {(Base‘𝑅)})
1817fveq2d 6760 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → (♯‘(Base‘𝑄)) = (♯‘{(Base‘𝑅)}))
19 fvex 6769 . . . . . 6 (Base‘𝑅) ∈ V
20 hashsng 14012 . . . . . 6 ((Base‘𝑅) ∈ V → (♯‘{(Base‘𝑅)}) = 1)
2119, 20ax-mp 5 . . . . 5 (♯‘{(Base‘𝑅)}) = 1
2218, 21eqtrdi 2795 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → (♯‘(Base‘𝑄)) = 1)
23 1red 10907 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → 1 ∈ ℝ)
24 isidom 20488 . . . . . . . . . 10 (𝑄 ∈ IDomn ↔ (𝑄 ∈ CRing ∧ 𝑄 ∈ Domn))
2524simprbi 496 . . . . . . . . 9 (𝑄 ∈ IDomn → 𝑄 ∈ Domn)
26 domnnzr 20479 . . . . . . . . 9 (𝑄 ∈ Domn → 𝑄 ∈ NzRing)
2725, 26syl 17 . . . . . . . 8 (𝑄 ∈ IDomn → 𝑄 ∈ NzRing)
2827ad2antlr 723 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → 𝑄 ∈ NzRing)
29 eqid 2738 . . . . . . . . 9 (Base‘𝑄) = (Base‘𝑄)
3029isnzr2hash 20448 . . . . . . . 8 (𝑄 ∈ NzRing ↔ (𝑄 ∈ Ring ∧ 1 < (♯‘(Base‘𝑄))))
3130simprbi 496 . . . . . . 7 (𝑄 ∈ NzRing → 1 < (♯‘(Base‘𝑄)))
3228, 31syl 17 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → 1 < (♯‘(Base‘𝑄)))
3323, 32gtned 11040 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → (♯‘(Base‘𝑄)) ≠ 1)
3433neneqd 2947 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → ¬ (♯‘(Base‘𝑄)) = 1)
3522, 34pm2.65da 813 . . 3 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) → ¬ 𝐼 = (Base‘𝑅))
3635neqned 2949 . 2 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) → 𝐼 ≠ (Base‘𝑅))
3725ad4antlr 729 . . . . . . 7 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → 𝑄 ∈ Domn)
38 ovex 7288 . . . . . . . . . 10 (𝑅 ~QG 𝐼) ∈ V
3938ecelqsi 8520 . . . . . . . . 9 (𝑥 ∈ (Base‘𝑅) → [𝑥](𝑅 ~QG 𝐼) ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼)))
4039ad3antlr 727 . . . . . . . 8 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → [𝑥](𝑅 ~QG 𝐼) ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼)))
41 simp-5l 781 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → 𝑅 ∈ CRing)
424a1i 11 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)))
43 eqidd 2739 . . . . . . . . . 10 (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘𝑅))
44 ovexd 7290 . . . . . . . . . 10 (𝑅 ∈ CRing → (𝑅 ~QG 𝐼) ∈ V)
45 id 22 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑅 ∈ CRing)
4642, 43, 44, 45qusbas 17173 . . . . . . . . 9 (𝑅 ∈ CRing → ((Base‘𝑅) / (𝑅 ~QG 𝐼)) = (Base‘𝑄))
4741, 46syl 17 . . . . . . . 8 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → ((Base‘𝑅) / (𝑅 ~QG 𝐼)) = (Base‘𝑄))
4840, 47eleqtrd 2841 . . . . . . 7 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → [𝑥](𝑅 ~QG 𝐼) ∈ (Base‘𝑄))
4938ecelqsi 8520 . . . . . . . . 9 (𝑦 ∈ (Base‘𝑅) → [𝑦](𝑅 ~QG 𝐼) ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼)))
5049ad2antlr 723 . . . . . . . 8 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → [𝑦](𝑅 ~QG 𝐼) ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼)))
5150, 47eleqtrd 2841 . . . . . . 7 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → [𝑦](𝑅 ~QG 𝐼) ∈ (Base‘𝑄))
5241, 1, 103syl 18 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → 𝑅 ∈ Grp)
53 eqid 2738 . . . . . . . . . . . 12 (LIdeal‘𝑅) = (LIdeal‘𝑅)
5453lidlsubg 20399 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (SubGrp‘𝑅))
551, 54sylan 579 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (SubGrp‘𝑅))
5655ad4antr 728 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → 𝐼 ∈ (SubGrp‘𝑅))
57 simpr 484 . . . . . . . . 9 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → (𝑥(.r𝑅)𝑦) ∈ 𝐼)
58 eqid 2738 . . . . . . . . . . 11 (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼)
5958eqg0el 31459 . . . . . . . . . 10 ((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅)) → ([(𝑥(.r𝑅)𝑦)](𝑅 ~QG 𝐼) = 𝐼 ↔ (𝑥(.r𝑅)𝑦) ∈ 𝐼))
6059biimpar 477 . . . . . . . . 9 (((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → [(𝑥(.r𝑅)𝑦)](𝑅 ~QG 𝐼) = 𝐼)
6152, 56, 57, 60syl21anc 834 . . . . . . . 8 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → [(𝑥(.r𝑅)𝑦)](𝑅 ~QG 𝐼) = 𝐼)
624a1i 11 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)))
63 eqidd 2739 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (Base‘𝑅) = (Base‘𝑅))
6413, 58eqger 18721 . . . . . . . . . . 11 (𝐼 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝐼) Er (Base‘𝑅))
6555, 64syl 17 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (𝑅 ~QG 𝐼) Er (Base‘𝑅))
66 simpl 482 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝑅 ∈ CRing)
6753crng2idl 20423 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → (LIdeal‘𝑅) = (2Ideal‘𝑅))
6867eleq2d 2824 . . . . . . . . . . . 12 (𝑅 ∈ CRing → (𝐼 ∈ (LIdeal‘𝑅) ↔ 𝐼 ∈ (2Ideal‘𝑅)))
6968biimpa 476 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (2Ideal‘𝑅))
70 eqid 2738 . . . . . . . . . . . 12 (2Ideal‘𝑅) = (2Ideal‘𝑅)
71 eqid 2738 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
7213, 58, 70, 712idlcpbl 20418 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → ((𝑔(𝑅 ~QG 𝐼)𝑒(𝑅 ~QG 𝐼)𝑓) → (𝑔(.r𝑅))(𝑅 ~QG 𝐼)(𝑒(.r𝑅)𝑓)))
731, 69, 72syl2an2r 681 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ((𝑔(𝑅 ~QG 𝐼)𝑒(𝑅 ~QG 𝐼)𝑓) → (𝑔(.r𝑅))(𝑅 ~QG 𝐼)(𝑒(.r𝑅)𝑓)))
741ad2antrr 722 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅))) → 𝑅 ∈ Ring)
75 simprl 767 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅))) → 𝑒 ∈ (Base‘𝑅))
76 simprr 769 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅))) → 𝑓 ∈ (Base‘𝑅))
7713, 71ringcl 19715 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅)) → (𝑒(.r𝑅)𝑓) ∈ (Base‘𝑅))
7874, 75, 76, 77syl3anc 1369 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅))) → (𝑒(.r𝑅)𝑓) ∈ (Base‘𝑅))
79 eqid 2738 . . . . . . . . . 10 (.r𝑄) = (.r𝑄)
8062, 63, 65, 66, 73, 78, 71, 79qusmulval 17183 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ([𝑥](𝑅 ~QG 𝐼)(.r𝑄)[𝑦](𝑅 ~QG 𝐼)) = [(𝑥(.r𝑅)𝑦)](𝑅 ~QG 𝐼))
8180ad5ant134 1365 . . . . . . . 8 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → ([𝑥](𝑅 ~QG 𝐼)(.r𝑄)[𝑦](𝑅 ~QG 𝐼)) = [(𝑥(.r𝑅)𝑦)](𝑅 ~QG 𝐼))
82 lidlnsg 31523 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (NrmSGrp‘𝑅))
831, 82sylan 579 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (NrmSGrp‘𝑅))
84 eqid 2738 . . . . . . . . . . . 12 (0g𝑅) = (0g𝑅)
854, 84qus0 18729 . . . . . . . . . . 11 (𝐼 ∈ (NrmSGrp‘𝑅) → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
8683, 85syl 17 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
8713, 58, 84eqgid 18723 . . . . . . . . . . 11 (𝐼 ∈ (SubGrp‘𝑅) → [(0g𝑅)](𝑅 ~QG 𝐼) = 𝐼)
8855, 87syl 17 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → [(0g𝑅)](𝑅 ~QG 𝐼) = 𝐼)
8986, 88eqtr3d 2780 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (0g𝑄) = 𝐼)
9089ad4antr 728 . . . . . . . 8 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → (0g𝑄) = 𝐼)
9161, 81, 903eqtr4d 2788 . . . . . . 7 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → ([𝑥](𝑅 ~QG 𝐼)(.r𝑄)[𝑦](𝑅 ~QG 𝐼)) = (0g𝑄))
92 eqid 2738 . . . . . . . . 9 (0g𝑄) = (0g𝑄)
9329, 79, 92domneq0 20481 . . . . . . . 8 ((𝑄 ∈ Domn ∧ [𝑥](𝑅 ~QG 𝐼) ∈ (Base‘𝑄) ∧ [𝑦](𝑅 ~QG 𝐼) ∈ (Base‘𝑄)) → (([𝑥](𝑅 ~QG 𝐼)(.r𝑄)[𝑦](𝑅 ~QG 𝐼)) = (0g𝑄) ↔ ([𝑥](𝑅 ~QG 𝐼) = (0g𝑄) ∨ [𝑦](𝑅 ~QG 𝐼) = (0g𝑄))))
9493biimpa 476 . . . . . . 7 (((𝑄 ∈ Domn ∧ [𝑥](𝑅 ~QG 𝐼) ∈ (Base‘𝑄) ∧ [𝑦](𝑅 ~QG 𝐼) ∈ (Base‘𝑄)) ∧ ([𝑥](𝑅 ~QG 𝐼)(.r𝑄)[𝑦](𝑅 ~QG 𝐼)) = (0g𝑄)) → ([𝑥](𝑅 ~QG 𝐼) = (0g𝑄) ∨ [𝑦](𝑅 ~QG 𝐼) = (0g𝑄)))
9537, 48, 51, 91, 94syl31anc 1371 . . . . . 6 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → ([𝑥](𝑅 ~QG 𝐼) = (0g𝑄) ∨ [𝑦](𝑅 ~QG 𝐼) = (0g𝑄)))
9689eqeq2d 2749 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ([𝑥](𝑅 ~QG 𝐼) = (0g𝑄) ↔ [𝑥](𝑅 ~QG 𝐼) = 𝐼))
9766, 1, 103syl 18 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝑅 ∈ Grp)
9858eqg0el 31459 . . . . . . . . . 10 ((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅)) → ([𝑥](𝑅 ~QG 𝐼) = 𝐼𝑥𝐼))
9997, 55, 98syl2anc 583 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ([𝑥](𝑅 ~QG 𝐼) = 𝐼𝑥𝐼))
10096, 99bitrd 278 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ([𝑥](𝑅 ~QG 𝐼) = (0g𝑄) ↔ 𝑥𝐼))
10189eqeq2d 2749 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ([𝑦](𝑅 ~QG 𝐼) = (0g𝑄) ↔ [𝑦](𝑅 ~QG 𝐼) = 𝐼))
10258eqg0el 31459 . . . . . . . . . 10 ((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅)) → ([𝑦](𝑅 ~QG 𝐼) = 𝐼𝑦𝐼))
10397, 55, 102syl2anc 583 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ([𝑦](𝑅 ~QG 𝐼) = 𝐼𝑦𝐼))
104101, 103bitrd 278 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ([𝑦](𝑅 ~QG 𝐼) = (0g𝑄) ↔ 𝑦𝐼))
105100, 104orbi12d 915 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (([𝑥](𝑅 ~QG 𝐼) = (0g𝑄) ∨ [𝑦](𝑅 ~QG 𝐼) = (0g𝑄)) ↔ (𝑥𝐼𝑦𝐼)))
106105ad4antr 728 . . . . . 6 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → (([𝑥](𝑅 ~QG 𝐼) = (0g𝑄) ∨ [𝑦](𝑅 ~QG 𝐼) = (0g𝑄)) ↔ (𝑥𝐼𝑦𝐼)))
10795, 106mpbid 231 . . . . 5 ((((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) ∈ 𝐼) → (𝑥𝐼𝑦𝐼))
108107ex 412 . . . 4 (((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼)))
109108anasss 466 . . 3 ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼)))
110109ralrimivva 3114 . 2 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼)))
11113, 71prmidl2 31518 . 2 (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝐼 ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r𝑅)𝑦) ∈ 𝐼 → (𝑥𝐼𝑦𝐼)))) → 𝐼 ∈ (PrmIdeal‘𝑅))
1122, 3, 36, 110, 111syl22anc 835 1 (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) → 𝐼 ∈ (PrmIdeal‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  Vcvv 3422  {csn 4558   class class class wbr 5070  cfv 6418  (class class class)co 7255   Er wer 8453  [cec 8454   / cqs 8455  1c1 10803   < clt 10940  chash 13972  Basecbs 16840  .rcmulr 16889  0gc0g 17067   /s cqus 17133  Grpcgrp 18492  SubGrpcsubg 18664  NrmSGrpcnsg 18665   ~QG cqg 18666  Ringcrg 19698  CRingccrg 19699  LIdealclidl 20347  2Idealc2idl 20415  NzRingcnzr 20441  Domncdomn 20464  IDomncidom 20465  PrmIdealcprmidl 31512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-ec 8458  df-qs 8462  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-0g 17069  df-imas 17136  df-qus 17137  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-nsg 18668  df-eqg 18669  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lsp 20149  df-sra 20349  df-rgmod 20350  df-lidl 20351  df-rsp 20352  df-2idl 20416  df-nzr 20442  df-domn 20468  df-idom 20469  df-prmidl 31513
This theorem is referenced by:  qsidom  31532
  Copyright terms: Public domain W3C validator