Step | Hyp | Ref
| Expression |
1 | | crngring 19795 |
. . 3
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
2 | 1 | ad2antrr 723 |
. 2
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) → 𝑅 ∈ Ring) |
3 | | simplr 766 |
. 2
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) → 𝐼 ∈ (LIdeal‘𝑅)) |
4 | | qsidom.1 |
. . . . . . . . 9
⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) |
5 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → 𝐼 = (Base‘𝑅)) |
6 | 5 | oveq2d 7291 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → (𝑅 ~QG 𝐼) = (𝑅 ~QG (Base‘𝑅))) |
7 | 6 | oveq2d 7291 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → (𝑅 /s (𝑅 ~QG 𝐼)) = (𝑅 /s (𝑅 ~QG (Base‘𝑅)))) |
8 | 4, 7 | eqtrid 2790 |
. . . . . . . 8
⊢ ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → 𝑄 = (𝑅 /s (𝑅 ~QG (Base‘𝑅)))) |
9 | 8 | fveq2d 6778 |
. . . . . . 7
⊢ ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → (Base‘𝑄) = (Base‘(𝑅 /s (𝑅 ~QG (Base‘𝑅))))) |
10 | | ringgrp 19788 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
11 | 1, 10 | syl 17 |
. . . . . . . . 9
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Grp) |
12 | 11 | ad3antrrr 727 |
. . . . . . . 8
⊢ ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → 𝑅 ∈ Grp) |
13 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) |
14 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑅 /s (𝑅 ~QG
(Base‘𝑅))) = (𝑅 /s (𝑅 ~QG
(Base‘𝑅))) |
15 | 13, 14 | qustriv 31560 |
. . . . . . . 8
⊢ (𝑅 ∈ Grp →
(Base‘(𝑅
/s (𝑅
~QG (Base‘𝑅)))) = {(Base‘𝑅)}) |
16 | 12, 15 | syl 17 |
. . . . . . 7
⊢ ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → (Base‘(𝑅 /s (𝑅 ~QG (Base‘𝑅)))) = {(Base‘𝑅)}) |
17 | 9, 16 | eqtrd 2778 |
. . . . . 6
⊢ ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → (Base‘𝑄) = {(Base‘𝑅)}) |
18 | 17 | fveq2d 6778 |
. . . . 5
⊢ ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → (♯‘(Base‘𝑄)) =
(♯‘{(Base‘𝑅)})) |
19 | | fvex 6787 |
. . . . . 6
⊢
(Base‘𝑅)
∈ V |
20 | | hashsng 14084 |
. . . . . 6
⊢
((Base‘𝑅)
∈ V → (♯‘{(Base‘𝑅)}) = 1) |
21 | 19, 20 | ax-mp 5 |
. . . . 5
⊢
(♯‘{(Base‘𝑅)}) = 1 |
22 | 18, 21 | eqtrdi 2794 |
. . . 4
⊢ ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → (♯‘(Base‘𝑄)) = 1) |
23 | | 1red 10976 |
. . . . . 6
⊢ ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → 1 ∈ ℝ) |
24 | | isidom 20575 |
. . . . . . . . . 10
⊢ (𝑄 ∈ IDomn ↔ (𝑄 ∈ CRing ∧ 𝑄 ∈ Domn)) |
25 | 24 | simprbi 497 |
. . . . . . . . 9
⊢ (𝑄 ∈ IDomn → 𝑄 ∈ Domn) |
26 | | domnnzr 20566 |
. . . . . . . . 9
⊢ (𝑄 ∈ Domn → 𝑄 ∈ NzRing) |
27 | 25, 26 | syl 17 |
. . . . . . . 8
⊢ (𝑄 ∈ IDomn → 𝑄 ∈ NzRing) |
28 | 27 | ad2antlr 724 |
. . . . . . 7
⊢ ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → 𝑄 ∈ NzRing) |
29 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝑄) =
(Base‘𝑄) |
30 | 29 | isnzr2hash 20535 |
. . . . . . . 8
⊢ (𝑄 ∈ NzRing ↔ (𝑄 ∈ Ring ∧ 1 <
(♯‘(Base‘𝑄)))) |
31 | 30 | simprbi 497 |
. . . . . . 7
⊢ (𝑄 ∈ NzRing → 1 <
(♯‘(Base‘𝑄))) |
32 | 28, 31 | syl 17 |
. . . . . 6
⊢ ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → 1 <
(♯‘(Base‘𝑄))) |
33 | 23, 32 | gtned 11110 |
. . . . 5
⊢ ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → (♯‘(Base‘𝑄)) ≠ 1) |
34 | 33 | neneqd 2948 |
. . . 4
⊢ ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ 𝐼 = (Base‘𝑅)) → ¬
(♯‘(Base‘𝑄)) = 1) |
35 | 22, 34 | pm2.65da 814 |
. . 3
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) → ¬ 𝐼 = (Base‘𝑅)) |
36 | 35 | neqned 2950 |
. 2
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) → 𝐼 ≠ (Base‘𝑅)) |
37 | 25 | ad4antlr 730 |
. . . . . . 7
⊢
((((((𝑅 ∈ CRing
∧ 𝐼 ∈
(LIdeal‘𝑅)) ∧
𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝐼) → 𝑄 ∈ Domn) |
38 | | ovex 7308 |
. . . . . . . . . 10
⊢ (𝑅 ~QG 𝐼) ∈ V |
39 | 38 | ecelqsi 8562 |
. . . . . . . . 9
⊢ (𝑥 ∈ (Base‘𝑅) → [𝑥](𝑅 ~QG 𝐼) ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼))) |
40 | 39 | ad3antlr 728 |
. . . . . . . 8
⊢
((((((𝑅 ∈ CRing
∧ 𝐼 ∈
(LIdeal‘𝑅)) ∧
𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝐼) → [𝑥](𝑅 ~QG 𝐼) ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼))) |
41 | | simp-5l 782 |
. . . . . . . . 9
⊢
((((((𝑅 ∈ CRing
∧ 𝐼 ∈
(LIdeal‘𝑅)) ∧
𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝐼) → 𝑅 ∈ CRing) |
42 | 4 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑅 ∈ CRing → 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))) |
43 | | eqidd 2739 |
. . . . . . . . . 10
⊢ (𝑅 ∈ CRing →
(Base‘𝑅) =
(Base‘𝑅)) |
44 | | ovexd 7310 |
. . . . . . . . . 10
⊢ (𝑅 ∈ CRing → (𝑅 ~QG 𝐼) ∈ V) |
45 | | id 22 |
. . . . . . . . . 10
⊢ (𝑅 ∈ CRing → 𝑅 ∈ CRing) |
46 | 42, 43, 44, 45 | qusbas 17256 |
. . . . . . . . 9
⊢ (𝑅 ∈ CRing →
((Base‘𝑅) /
(𝑅 ~QG
𝐼)) = (Base‘𝑄)) |
47 | 41, 46 | syl 17 |
. . . . . . . 8
⊢
((((((𝑅 ∈ CRing
∧ 𝐼 ∈
(LIdeal‘𝑅)) ∧
𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝐼) → ((Base‘𝑅) / (𝑅 ~QG 𝐼)) = (Base‘𝑄)) |
48 | 40, 47 | eleqtrd 2841 |
. . . . . . 7
⊢
((((((𝑅 ∈ CRing
∧ 𝐼 ∈
(LIdeal‘𝑅)) ∧
𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝐼) → [𝑥](𝑅 ~QG 𝐼) ∈ (Base‘𝑄)) |
49 | 38 | ecelqsi 8562 |
. . . . . . . . 9
⊢ (𝑦 ∈ (Base‘𝑅) → [𝑦](𝑅 ~QG 𝐼) ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼))) |
50 | 49 | ad2antlr 724 |
. . . . . . . 8
⊢
((((((𝑅 ∈ CRing
∧ 𝐼 ∈
(LIdeal‘𝑅)) ∧
𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝐼) → [𝑦](𝑅 ~QG 𝐼) ∈ ((Base‘𝑅) / (𝑅 ~QG 𝐼))) |
51 | 50, 47 | eleqtrd 2841 |
. . . . . . 7
⊢
((((((𝑅 ∈ CRing
∧ 𝐼 ∈
(LIdeal‘𝑅)) ∧
𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝐼) → [𝑦](𝑅 ~QG 𝐼) ∈ (Base‘𝑄)) |
52 | 41, 1, 10 | 3syl 18 |
. . . . . . . . 9
⊢
((((((𝑅 ∈ CRing
∧ 𝐼 ∈
(LIdeal‘𝑅)) ∧
𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝐼) → 𝑅 ∈ Grp) |
53 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
54 | 53 | lidlsubg 20486 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (SubGrp‘𝑅)) |
55 | 1, 54 | sylan 580 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (SubGrp‘𝑅)) |
56 | 55 | ad4antr 729 |
. . . . . . . . 9
⊢
((((((𝑅 ∈ CRing
∧ 𝐼 ∈
(LIdeal‘𝑅)) ∧
𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝐼) → 𝐼 ∈ (SubGrp‘𝑅)) |
57 | | simpr 485 |
. . . . . . . . 9
⊢
((((((𝑅 ∈ CRing
∧ 𝐼 ∈
(LIdeal‘𝑅)) ∧
𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝐼) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐼) |
58 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼) |
59 | 58 | eqg0el 31557 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅)) → ([(𝑥(.r‘𝑅)𝑦)](𝑅 ~QG 𝐼) = 𝐼 ↔ (𝑥(.r‘𝑅)𝑦) ∈ 𝐼)) |
60 | 59 | biimpar 478 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝐼) → [(𝑥(.r‘𝑅)𝑦)](𝑅 ~QG 𝐼) = 𝐼) |
61 | 52, 56, 57, 60 | syl21anc 835 |
. . . . . . . 8
⊢
((((((𝑅 ∈ CRing
∧ 𝐼 ∈
(LIdeal‘𝑅)) ∧
𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝐼) → [(𝑥(.r‘𝑅)𝑦)](𝑅 ~QG 𝐼) = 𝐼) |
62 | 4 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))) |
63 | | eqidd 2739 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (Base‘𝑅) = (Base‘𝑅)) |
64 | 13, 58 | eqger 18806 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝐼) Er (Base‘𝑅)) |
65 | 55, 64 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (𝑅 ~QG 𝐼) Er (Base‘𝑅)) |
66 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝑅 ∈ CRing) |
67 | 53 | crng2idl 20510 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ CRing →
(LIdeal‘𝑅) =
(2Ideal‘𝑅)) |
68 | 67 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ CRing → (𝐼 ∈ (LIdeal‘𝑅) ↔ 𝐼 ∈ (2Ideal‘𝑅))) |
69 | 68 | biimpa 477 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (2Ideal‘𝑅)) |
70 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(2Ideal‘𝑅) =
(2Ideal‘𝑅) |
71 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(.r‘𝑅) = (.r‘𝑅) |
72 | 13, 58, 70, 71 | 2idlcpbl 20505 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → ((𝑔(𝑅 ~QG 𝐼)𝑒 ∧ ℎ(𝑅 ~QG 𝐼)𝑓) → (𝑔(.r‘𝑅)ℎ)(𝑅 ~QG 𝐼)(𝑒(.r‘𝑅)𝑓))) |
73 | 1, 69, 72 | syl2an2r 682 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ((𝑔(𝑅 ~QG 𝐼)𝑒 ∧ ℎ(𝑅 ~QG 𝐼)𝑓) → (𝑔(.r‘𝑅)ℎ)(𝑅 ~QG 𝐼)(𝑒(.r‘𝑅)𝑓))) |
74 | 1 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅))) → 𝑅 ∈ Ring) |
75 | | simprl 768 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅))) → 𝑒 ∈ (Base‘𝑅)) |
76 | | simprr 770 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅))) → 𝑓 ∈ (Base‘𝑅)) |
77 | 13, 71 | ringcl 19800 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅)) → (𝑒(.r‘𝑅)𝑓) ∈ (Base‘𝑅)) |
78 | 74, 75, 76, 77 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝑒 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑅))) → (𝑒(.r‘𝑅)𝑓) ∈ (Base‘𝑅)) |
79 | | eqid 2738 |
. . . . . . . . . 10
⊢
(.r‘𝑄) = (.r‘𝑄) |
80 | 62, 63, 65, 66, 73, 78, 71, 79 | qusmulval 17266 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ([𝑥](𝑅 ~QG 𝐼)(.r‘𝑄)[𝑦](𝑅 ~QG 𝐼)) = [(𝑥(.r‘𝑅)𝑦)](𝑅 ~QG 𝐼)) |
81 | 80 | ad5ant134 1366 |
. . . . . . . 8
⊢
((((((𝑅 ∈ CRing
∧ 𝐼 ∈
(LIdeal‘𝑅)) ∧
𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝐼) → ([𝑥](𝑅 ~QG 𝐼)(.r‘𝑄)[𝑦](𝑅 ~QG 𝐼)) = [(𝑥(.r‘𝑅)𝑦)](𝑅 ~QG 𝐼)) |
82 | | lidlnsg 31621 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (NrmSGrp‘𝑅)) |
83 | 1, 82 | sylan 580 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (NrmSGrp‘𝑅)) |
84 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(0g‘𝑅) = (0g‘𝑅) |
85 | 4, 84 | qus0 18814 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ (NrmSGrp‘𝑅) →
[(0g‘𝑅)](𝑅 ~QG 𝐼) = (0g‘𝑄)) |
86 | 83, 85 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) →
[(0g‘𝑅)](𝑅 ~QG 𝐼) = (0g‘𝑄)) |
87 | 13, 58, 84 | eqgid 18808 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ (SubGrp‘𝑅) →
[(0g‘𝑅)](𝑅 ~QG 𝐼) = 𝐼) |
88 | 55, 87 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) →
[(0g‘𝑅)](𝑅 ~QG 𝐼) = 𝐼) |
89 | 86, 88 | eqtr3d 2780 |
. . . . . . . . 9
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) →
(0g‘𝑄) =
𝐼) |
90 | 89 | ad4antr 729 |
. . . . . . . 8
⊢
((((((𝑅 ∈ CRing
∧ 𝐼 ∈
(LIdeal‘𝑅)) ∧
𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝐼) → (0g‘𝑄) = 𝐼) |
91 | 61, 81, 90 | 3eqtr4d 2788 |
. . . . . . 7
⊢
((((((𝑅 ∈ CRing
∧ 𝐼 ∈
(LIdeal‘𝑅)) ∧
𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝐼) → ([𝑥](𝑅 ~QG 𝐼)(.r‘𝑄)[𝑦](𝑅 ~QG 𝐼)) = (0g‘𝑄)) |
92 | | eqid 2738 |
. . . . . . . . 9
⊢
(0g‘𝑄) = (0g‘𝑄) |
93 | 29, 79, 92 | domneq0 20568 |
. . . . . . . 8
⊢ ((𝑄 ∈ Domn ∧ [𝑥](𝑅 ~QG 𝐼) ∈ (Base‘𝑄) ∧ [𝑦](𝑅 ~QG 𝐼) ∈ (Base‘𝑄)) → (([𝑥](𝑅 ~QG 𝐼)(.r‘𝑄)[𝑦](𝑅 ~QG 𝐼)) = (0g‘𝑄) ↔ ([𝑥](𝑅 ~QG 𝐼) = (0g‘𝑄) ∨ [𝑦](𝑅 ~QG 𝐼) = (0g‘𝑄)))) |
94 | 93 | biimpa 477 |
. . . . . . 7
⊢ (((𝑄 ∈ Domn ∧ [𝑥](𝑅 ~QG 𝐼) ∈ (Base‘𝑄) ∧ [𝑦](𝑅 ~QG 𝐼) ∈ (Base‘𝑄)) ∧ ([𝑥](𝑅 ~QG 𝐼)(.r‘𝑄)[𝑦](𝑅 ~QG 𝐼)) = (0g‘𝑄)) → ([𝑥](𝑅 ~QG 𝐼) = (0g‘𝑄) ∨ [𝑦](𝑅 ~QG 𝐼) = (0g‘𝑄))) |
95 | 37, 48, 51, 91, 94 | syl31anc 1372 |
. . . . . 6
⊢
((((((𝑅 ∈ CRing
∧ 𝐼 ∈
(LIdeal‘𝑅)) ∧
𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝐼) → ([𝑥](𝑅 ~QG 𝐼) = (0g‘𝑄) ∨ [𝑦](𝑅 ~QG 𝐼) = (0g‘𝑄))) |
96 | 89 | eqeq2d 2749 |
. . . . . . . . 9
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ([𝑥](𝑅 ~QG 𝐼) = (0g‘𝑄) ↔ [𝑥](𝑅 ~QG 𝐼) = 𝐼)) |
97 | 66, 1, 10 | 3syl 18 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝑅 ∈ Grp) |
98 | 58 | eqg0el 31557 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅)) → ([𝑥](𝑅 ~QG 𝐼) = 𝐼 ↔ 𝑥 ∈ 𝐼)) |
99 | 97, 55, 98 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ([𝑥](𝑅 ~QG 𝐼) = 𝐼 ↔ 𝑥 ∈ 𝐼)) |
100 | 96, 99 | bitrd 278 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ([𝑥](𝑅 ~QG 𝐼) = (0g‘𝑄) ↔ 𝑥 ∈ 𝐼)) |
101 | 89 | eqeq2d 2749 |
. . . . . . . . 9
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ([𝑦](𝑅 ~QG 𝐼) = (0g‘𝑄) ↔ [𝑦](𝑅 ~QG 𝐼) = 𝐼)) |
102 | 58 | eqg0el 31557 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ (SubGrp‘𝑅)) → ([𝑦](𝑅 ~QG 𝐼) = 𝐼 ↔ 𝑦 ∈ 𝐼)) |
103 | 97, 55, 102 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ([𝑦](𝑅 ~QG 𝐼) = 𝐼 ↔ 𝑦 ∈ 𝐼)) |
104 | 101, 103 | bitrd 278 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ([𝑦](𝑅 ~QG 𝐼) = (0g‘𝑄) ↔ 𝑦 ∈ 𝐼)) |
105 | 100, 104 | orbi12d 916 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → (([𝑥](𝑅 ~QG 𝐼) = (0g‘𝑄) ∨ [𝑦](𝑅 ~QG 𝐼) = (0g‘𝑄)) ↔ (𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼))) |
106 | 105 | ad4antr 729 |
. . . . . 6
⊢
((((((𝑅 ∈ CRing
∧ 𝐼 ∈
(LIdeal‘𝑅)) ∧
𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝐼) → (([𝑥](𝑅 ~QG 𝐼) = (0g‘𝑄) ∨ [𝑦](𝑅 ~QG 𝐼) = (0g‘𝑄)) ↔ (𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼))) |
107 | 95, 106 | mpbid 231 |
. . . . 5
⊢
((((((𝑅 ∈ CRing
∧ 𝐼 ∈
(LIdeal‘𝑅)) ∧
𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r‘𝑅)𝑦) ∈ 𝐼) → (𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼)) |
108 | 107 | ex 413 |
. . . 4
⊢
(((((𝑅 ∈ CRing
∧ 𝐼 ∈
(LIdeal‘𝑅)) ∧
𝑄 ∈ IDomn) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r‘𝑅)𝑦) ∈ 𝐼 → (𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼))) |
109 | 108 | anasss 467 |
. . 3
⊢ ((((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(.r‘𝑅)𝑦) ∈ 𝐼 → (𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼))) |
110 | 109 | ralrimivva 3123 |
. 2
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) ∈ 𝐼 → (𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼))) |
111 | 13, 71 | prmidl2 31616 |
. 2
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ (𝐼 ≠ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)𝑦) ∈ 𝐼 → (𝑥 ∈ 𝐼 ∨ 𝑦 ∈ 𝐼)))) → 𝐼 ∈ (PrmIdeal‘𝑅)) |
112 | 2, 3, 36, 110, 111 | syl22anc 836 |
1
⊢ (((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) ∧ 𝑄 ∈ IDomn) → 𝐼 ∈ (PrmIdeal‘𝑅)) |