Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimpnfv Structured version   Visualization version   GIF version

Theorem xlimpnfv 43723
Description: A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimpnfv.m (𝜑𝑀 ∈ ℤ)
xlimpnfv.z 𝑍 = (ℤ𝑀)
xlimpnfv.f (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
xlimpnfv (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))
Distinct variable groups:   𝑗,𝐹,𝑘,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝑀(𝑥,𝑘)

Proof of Theorem xlimpnfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 xlimpnfv.m . . . . 5 (𝜑𝑀 ∈ ℤ)
21ad2antrr 723 . . . 4 (((𝜑𝐹~~>*+∞) ∧ 𝑥 ∈ ℝ) → 𝑀 ∈ ℤ)
3 xlimpnfv.z . . . 4 𝑍 = (ℤ𝑀)
4 xlimpnfv.f . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
54ad2antrr 723 . . . 4 (((𝜑𝐹~~>*+∞) ∧ 𝑥 ∈ ℝ) → 𝐹:𝑍⟶ℝ*)
6 simplr 766 . . . 4 (((𝜑𝐹~~>*+∞) ∧ 𝑥 ∈ ℝ) → 𝐹~~>*+∞)
7 simpr 485 . . . 4 (((𝜑𝐹~~>*+∞) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
82, 3, 5, 6, 7xlimpnfvlem1 43721 . . 3 (((𝜑𝐹~~>*+∞) ∧ 𝑥 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
98ralrimiva 3139 . 2 ((𝜑𝐹~~>*+∞) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
10 nfv 1916 . . . 4 𝑘𝜑
11 nfcv 2904 . . . . 5 𝑘
12 nfcv 2904 . . . . . 6 𝑘𝑍
13 nfra1 3263 . . . . . 6 𝑘𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)
1412, 13nfrexw 3292 . . . . 5 𝑘𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)
1511, 14nfralw 3290 . . . 4 𝑘𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)
1610, 15nfan 1901 . . 3 𝑘(𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
17 nfv 1916 . . . 4 𝑗𝜑
18 nfcv 2904 . . . . 5 𝑗
19 nfre1 3264 . . . . 5 𝑗𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)
2018, 19nfralw 3290 . . . 4 𝑗𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)
2117, 20nfan 1901 . . 3 𝑗(𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
221adantr 481 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → 𝑀 ∈ ℤ)
234adantr 481 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → 𝐹:𝑍⟶ℝ*)
24 nfv 1916 . . . . . 6 𝑗 𝑦 ∈ ℝ
2521, 24nfan 1901 . . . . 5 𝑗((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ℝ)
26 simp-4r 781 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → 𝑦 ∈ ℝ)
27 rexr 11122 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
2826, 27syl 17 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → 𝑦 ∈ ℝ*)
29 peano2re 11249 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
3029rexrd 11126 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ*)
3126, 30syl 17 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → (𝑦 + 1) ∈ ℝ*)
3243ad2ant1 1132 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝐹:𝑍⟶ℝ*)
333uztrn2 12702 . . . . . . . . . . . . . 14 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
34333adant1 1129 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
3532, 34ffvelcdmd 7018 . . . . . . . . . . . 12 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ*)
3635ad5ant134 1366 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → (𝐹𝑘) ∈ ℝ*)
3726ltp1d 12006 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → 𝑦 < (𝑦 + 1))
38 simpr 485 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → (𝑦 + 1) ≤ (𝐹𝑘))
3928, 31, 36, 37, 38xrltletrd 12996 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → 𝑦 < (𝐹𝑘))
4039ex 413 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑦 + 1) ≤ (𝐹𝑘) → 𝑦 < (𝐹𝑘)))
4140ralimdva 3160 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘) → ∀𝑘 ∈ (ℤ𝑗)𝑦 < (𝐹𝑘)))
4241imp 407 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘)) → ∀𝑘 ∈ (ℤ𝑗)𝑦 < (𝐹𝑘))
4342adantl3r 747 . . . . . 6 (((((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘)) → ∀𝑘 ∈ (ℤ𝑗)𝑦 < (𝐹𝑘))
44433impa 1109 . . . . 5 ((((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ℝ) ∧ 𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘)) → ∀𝑘 ∈ (ℤ𝑗)𝑦 < (𝐹𝑘))
4529adantl 482 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ∧ 𝑦 ∈ ℝ) → (𝑦 + 1) ∈ ℝ)
46 simpl 483 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ∧ 𝑦 ∈ ℝ) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
47 breq1 5095 . . . . . . . . . 10 (𝑥 = (𝑦 + 1) → (𝑥 ≤ (𝐹𝑘) ↔ (𝑦 + 1) ≤ (𝐹𝑘)))
4847ralbidv 3170 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (∀𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘)))
4948rexbidv 3171 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘)))
5049rspcva 3568 . . . . . . 7 (((𝑦 + 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘))
5145, 46, 50syl2anc 584 . . . . . 6 ((∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ∧ 𝑦 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘))
5251adantll 711 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘))
5325, 44, 52reximdd 43030 . . . 4 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑦 < (𝐹𝑘))
5453ralrimiva 3139 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → ∀𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑦 < (𝐹𝑘))
5516, 21, 22, 3, 23, 54xlimpnfvlem2 43722 . 2 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → 𝐹~~>*+∞)
569, 55impbida 798 1 (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wral 3061  wrex 3070   class class class wbr 5092  wf 6475  cfv 6479  (class class class)co 7337  cr 10971  1c1 10973   + caddc 10975  +∞cpnf 11107  *cxr 11109   < clt 11110  cle 11111  cz 12420  cuz 12683  ~~>*clsxlim 43703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-1o 8367  df-er 8569  df-pm 8689  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-fi 9268  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-z 12421  df-uz 12684  df-ioo 13184  df-ioc 13185  df-ico 13186  df-icc 13187  df-topgen 17251  df-ordt 17309  df-ps 18381  df-tsr 18382  df-top 22149  df-topon 22166  df-bases 22202  df-lm 22486  df-xlim 43704
This theorem is referenced by:  xlimpnf  43727  xlimpnfliminf  43745  xlimpnfliminf2  43746
  Copyright terms: Public domain W3C validator