Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimpnfv Structured version   Visualization version   GIF version

Theorem xlimpnfv 42125
Description: A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimpnfv.m (𝜑𝑀 ∈ ℤ)
xlimpnfv.z 𝑍 = (ℤ𝑀)
xlimpnfv.f (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
xlimpnfv (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))
Distinct variable groups:   𝑗,𝐹,𝑘,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝑀(𝑥,𝑘)

Proof of Theorem xlimpnfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 xlimpnfv.m . . . . 5 (𝜑𝑀 ∈ ℤ)
21ad2antrr 724 . . . 4 (((𝜑𝐹~~>*+∞) ∧ 𝑥 ∈ ℝ) → 𝑀 ∈ ℤ)
3 xlimpnfv.z . . . 4 𝑍 = (ℤ𝑀)
4 xlimpnfv.f . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
54ad2antrr 724 . . . 4 (((𝜑𝐹~~>*+∞) ∧ 𝑥 ∈ ℝ) → 𝐹:𝑍⟶ℝ*)
6 simplr 767 . . . 4 (((𝜑𝐹~~>*+∞) ∧ 𝑥 ∈ ℝ) → 𝐹~~>*+∞)
7 simpr 487 . . . 4 (((𝜑𝐹~~>*+∞) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
82, 3, 5, 6, 7xlimpnfvlem1 42123 . . 3 (((𝜑𝐹~~>*+∞) ∧ 𝑥 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
98ralrimiva 3185 . 2 ((𝜑𝐹~~>*+∞) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
10 nfv 1914 . . . 4 𝑘𝜑
11 nfcv 2980 . . . . 5 𝑘
12 nfcv 2980 . . . . . 6 𝑘𝑍
13 nfra1 3222 . . . . . 6 𝑘𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)
1412, 13nfrex 3312 . . . . 5 𝑘𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)
1511, 14nfralw 3228 . . . 4 𝑘𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)
1610, 15nfan 1899 . . 3 𝑘(𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
17 nfv 1914 . . . 4 𝑗𝜑
18 nfcv 2980 . . . . 5 𝑗
19 nfre1 3309 . . . . 5 𝑗𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)
2018, 19nfralw 3228 . . . 4 𝑗𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)
2117, 20nfan 1899 . . 3 𝑗(𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
221adantr 483 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → 𝑀 ∈ ℤ)
234adantr 483 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → 𝐹:𝑍⟶ℝ*)
24 nfv 1914 . . . . . 6 𝑗 𝑦 ∈ ℝ
2521, 24nfan 1899 . . . . 5 𝑗((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ℝ)
26 simp-4r 782 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → 𝑦 ∈ ℝ)
27 rexr 10690 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
2826, 27syl 17 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → 𝑦 ∈ ℝ*)
29 peano2re 10816 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
3029rexrd 10694 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ*)
3126, 30syl 17 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → (𝑦 + 1) ∈ ℝ*)
3243ad2ant1 1129 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝐹:𝑍⟶ℝ*)
333uztrn2 12265 . . . . . . . . . . . . . 14 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
34333adant1 1126 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
3532, 34ffvelrnd 6855 . . . . . . . . . . . 12 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ*)
3635ad5ant134 1363 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → (𝐹𝑘) ∈ ℝ*)
3726ltp1d 11573 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → 𝑦 < (𝑦 + 1))
38 simpr 487 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → (𝑦 + 1) ≤ (𝐹𝑘))
3928, 31, 36, 37, 38xrltletrd 12557 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → 𝑦 < (𝐹𝑘))
4039ex 415 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑦 + 1) ≤ (𝐹𝑘) → 𝑦 < (𝐹𝑘)))
4140ralimdva 3180 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘) → ∀𝑘 ∈ (ℤ𝑗)𝑦 < (𝐹𝑘)))
4241imp 409 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘)) → ∀𝑘 ∈ (ℤ𝑗)𝑦 < (𝐹𝑘))
4342adantl3r 748 . . . . . 6 (((((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘)) → ∀𝑘 ∈ (ℤ𝑗)𝑦 < (𝐹𝑘))
44433impa 1106 . . . . 5 ((((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ℝ) ∧ 𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘)) → ∀𝑘 ∈ (ℤ𝑗)𝑦 < (𝐹𝑘))
4529adantl 484 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ∧ 𝑦 ∈ ℝ) → (𝑦 + 1) ∈ ℝ)
46 simpl 485 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ∧ 𝑦 ∈ ℝ) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
47 breq1 5072 . . . . . . . . . 10 (𝑥 = (𝑦 + 1) → (𝑥 ≤ (𝐹𝑘) ↔ (𝑦 + 1) ≤ (𝐹𝑘)))
4847ralbidv 3200 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (∀𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘)))
4948rexbidv 3300 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘)))
5049rspcva 3624 . . . . . . 7 (((𝑦 + 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘))
5145, 46, 50syl2anc 586 . . . . . 6 ((∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ∧ 𝑦 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘))
5251adantll 712 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘))
5325, 44, 52reximdd 41427 . . . 4 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑦 < (𝐹𝑘))
5453ralrimiva 3185 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → ∀𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑦 < (𝐹𝑘))
5516, 21, 22, 3, 23, 54xlimpnfvlem2 42124 . 2 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → 𝐹~~>*+∞)
569, 55impbida 799 1 (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  wrex 3142   class class class wbr 5069  wf 6354  cfv 6358  (class class class)co 7159  cr 10539  1c1 10541   + caddc 10543  +∞cpnf 10675  *cxr 10677   < clt 10678  cle 10679  cz 11984  cuz 12246  ~~>*clsxlim 42105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fi 8878  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-z 11985  df-uz 12247  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-topgen 16720  df-ordt 16777  df-ps 17813  df-tsr 17814  df-top 21505  df-topon 21522  df-bases 21557  df-lm 21840  df-xlim 42106
This theorem is referenced by:  xlimpnf  42129  xlimpnfliminf  42147  xlimpnfliminf2  42148
  Copyright terms: Public domain W3C validator