Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimpnfv Structured version   Visualization version   GIF version

Theorem xlimpnfv 45819
Description: A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimpnfv.m (𝜑𝑀 ∈ ℤ)
xlimpnfv.z 𝑍 = (ℤ𝑀)
xlimpnfv.f (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
xlimpnfv (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))
Distinct variable groups:   𝑗,𝐹,𝑘,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝑀(𝑥,𝑘)

Proof of Theorem xlimpnfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 xlimpnfv.m . . . . 5 (𝜑𝑀 ∈ ℤ)
21ad2antrr 726 . . . 4 (((𝜑𝐹~~>*+∞) ∧ 𝑥 ∈ ℝ) → 𝑀 ∈ ℤ)
3 xlimpnfv.z . . . 4 𝑍 = (ℤ𝑀)
4 xlimpnfv.f . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
54ad2antrr 726 . . . 4 (((𝜑𝐹~~>*+∞) ∧ 𝑥 ∈ ℝ) → 𝐹:𝑍⟶ℝ*)
6 simplr 768 . . . 4 (((𝜑𝐹~~>*+∞) ∧ 𝑥 ∈ ℝ) → 𝐹~~>*+∞)
7 simpr 484 . . . 4 (((𝜑𝐹~~>*+∞) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
82, 3, 5, 6, 7xlimpnfvlem1 45817 . . 3 (((𝜑𝐹~~>*+∞) ∧ 𝑥 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
98ralrimiva 3121 . 2 ((𝜑𝐹~~>*+∞) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
10 nfv 1914 . . . 4 𝑘𝜑
11 nfcv 2891 . . . . 5 𝑘
12 nfcv 2891 . . . . . 6 𝑘𝑍
13 nfra1 3253 . . . . . 6 𝑘𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)
1412, 13nfrexw 3277 . . . . 5 𝑘𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)
1511, 14nfralw 3276 . . . 4 𝑘𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)
1610, 15nfan 1899 . . 3 𝑘(𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
17 nfv 1914 . . . 4 𝑗𝜑
18 nfcv 2891 . . . . 5 𝑗
19 nfre1 3254 . . . . 5 𝑗𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)
2018, 19nfralw 3276 . . . 4 𝑗𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)
2117, 20nfan 1899 . . 3 𝑗(𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
221adantr 480 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → 𝑀 ∈ ℤ)
234adantr 480 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → 𝐹:𝑍⟶ℝ*)
24 nfv 1914 . . . . . 6 𝑗 𝑦 ∈ ℝ
2521, 24nfan 1899 . . . . 5 𝑗((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ℝ)
26 simp-4r 783 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → 𝑦 ∈ ℝ)
27 rexr 11161 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
2826, 27syl 17 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → 𝑦 ∈ ℝ*)
29 peano2re 11289 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
3029rexrd 11165 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ*)
3126, 30syl 17 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → (𝑦 + 1) ∈ ℝ*)
3243ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝐹:𝑍⟶ℝ*)
333uztrn2 12754 . . . . . . . . . . . . . 14 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
34333adant1 1130 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
3532, 34ffvelcdmd 7019 . . . . . . . . . . . 12 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ*)
3635ad5ant134 1369 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → (𝐹𝑘) ∈ ℝ*)
3726ltp1d 12055 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → 𝑦 < (𝑦 + 1))
38 simpr 484 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → (𝑦 + 1) ≤ (𝐹𝑘))
3928, 31, 36, 37, 38xrltletrd 13063 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → 𝑦 < (𝐹𝑘))
4039ex 412 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑦 + 1) ≤ (𝐹𝑘) → 𝑦 < (𝐹𝑘)))
4140ralimdva 3141 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘) → ∀𝑘 ∈ (ℤ𝑗)𝑦 < (𝐹𝑘)))
4241imp 406 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘)) → ∀𝑘 ∈ (ℤ𝑗)𝑦 < (𝐹𝑘))
4342adantl3r 750 . . . . . 6 (((((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘)) → ∀𝑘 ∈ (ℤ𝑗)𝑦 < (𝐹𝑘))
44433impa 1109 . . . . 5 ((((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ℝ) ∧ 𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘)) → ∀𝑘 ∈ (ℤ𝑗)𝑦 < (𝐹𝑘))
4529adantl 481 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ∧ 𝑦 ∈ ℝ) → (𝑦 + 1) ∈ ℝ)
46 simpl 482 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ∧ 𝑦 ∈ ℝ) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
47 breq1 5095 . . . . . . . . . 10 (𝑥 = (𝑦 + 1) → (𝑥 ≤ (𝐹𝑘) ↔ (𝑦 + 1) ≤ (𝐹𝑘)))
4847ralbidv 3152 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (∀𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘)))
4948rexbidv 3153 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘)))
5049rspcva 3575 . . . . . . 7 (((𝑦 + 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘))
5145, 46, 50syl2anc 584 . . . . . 6 ((∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ∧ 𝑦 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘))
5251adantll 714 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘))
5325, 44, 52reximdd 45126 . . . 4 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑦 < (𝐹𝑘))
5453ralrimiva 3121 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → ∀𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑦 < (𝐹𝑘))
5516, 21, 22, 3, 23, 54xlimpnfvlem2 45818 . 2 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → 𝐹~~>*+∞)
569, 55impbida 800 1 (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5092  wf 6478  cfv 6482  (class class class)co 7349  cr 11008  1c1 11010   + caddc 11012  +∞cpnf 11146  *cxr 11148   < clt 11149  cle 11150  cz 12471  cuz 12735  ~~>*clsxlim 45799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-1o 8388  df-2o 8389  df-er 8625  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-z 12472  df-uz 12736  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-topgen 17347  df-ordt 17405  df-ps 18472  df-tsr 18473  df-top 22779  df-topon 22796  df-bases 22831  df-lm 23114  df-xlim 45800
This theorem is referenced by:  xlimpnf  45823  xlimpnfliminf  45841  xlimpnfliminf2  45842
  Copyright terms: Public domain W3C validator