Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimpnfv Structured version   Visualization version   GIF version

Theorem xlimpnfv 45853
Description: A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimpnfv.m (𝜑𝑀 ∈ ℤ)
xlimpnfv.z 𝑍 = (ℤ𝑀)
xlimpnfv.f (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
xlimpnfv (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))
Distinct variable groups:   𝑗,𝐹,𝑘,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝑀(𝑥,𝑘)

Proof of Theorem xlimpnfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 xlimpnfv.m . . . . 5 (𝜑𝑀 ∈ ℤ)
21ad2antrr 726 . . . 4 (((𝜑𝐹~~>*+∞) ∧ 𝑥 ∈ ℝ) → 𝑀 ∈ ℤ)
3 xlimpnfv.z . . . 4 𝑍 = (ℤ𝑀)
4 xlimpnfv.f . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
54ad2antrr 726 . . . 4 (((𝜑𝐹~~>*+∞) ∧ 𝑥 ∈ ℝ) → 𝐹:𝑍⟶ℝ*)
6 simplr 769 . . . 4 (((𝜑𝐹~~>*+∞) ∧ 𝑥 ∈ ℝ) → 𝐹~~>*+∞)
7 simpr 484 . . . 4 (((𝜑𝐹~~>*+∞) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
82, 3, 5, 6, 7xlimpnfvlem1 45851 . . 3 (((𝜑𝐹~~>*+∞) ∧ 𝑥 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
98ralrimiva 3146 . 2 ((𝜑𝐹~~>*+∞) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
10 nfv 1914 . . . 4 𝑘𝜑
11 nfcv 2905 . . . . 5 𝑘
12 nfcv 2905 . . . . . 6 𝑘𝑍
13 nfra1 3284 . . . . . 6 𝑘𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)
1412, 13nfrexw 3313 . . . . 5 𝑘𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)
1511, 14nfralw 3311 . . . 4 𝑘𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)
1610, 15nfan 1899 . . 3 𝑘(𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
17 nfv 1914 . . . 4 𝑗𝜑
18 nfcv 2905 . . . . 5 𝑗
19 nfre1 3285 . . . . 5 𝑗𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)
2018, 19nfralw 3311 . . . 4 𝑗𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)
2117, 20nfan 1899 . . 3 𝑗(𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
221adantr 480 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → 𝑀 ∈ ℤ)
234adantr 480 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → 𝐹:𝑍⟶ℝ*)
24 nfv 1914 . . . . . 6 𝑗 𝑦 ∈ ℝ
2521, 24nfan 1899 . . . . 5 𝑗((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ℝ)
26 simp-4r 784 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → 𝑦 ∈ ℝ)
27 rexr 11307 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
2826, 27syl 17 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → 𝑦 ∈ ℝ*)
29 peano2re 11434 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
3029rexrd 11311 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ*)
3126, 30syl 17 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → (𝑦 + 1) ∈ ℝ*)
3243ad2ant1 1134 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝐹:𝑍⟶ℝ*)
333uztrn2 12897 . . . . . . . . . . . . . 14 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
34333adant1 1131 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
3532, 34ffvelcdmd 7105 . . . . . . . . . . . 12 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ*)
3635ad5ant134 1369 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → (𝐹𝑘) ∈ ℝ*)
3726ltp1d 12198 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → 𝑦 < (𝑦 + 1))
38 simpr 484 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → (𝑦 + 1) ≤ (𝐹𝑘))
3928, 31, 36, 37, 38xrltletrd 13203 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝑦 + 1) ≤ (𝐹𝑘)) → 𝑦 < (𝐹𝑘))
4039ex 412 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑦 + 1) ≤ (𝐹𝑘) → 𝑦 < (𝐹𝑘)))
4140ralimdva 3167 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘) → ∀𝑘 ∈ (ℤ𝑗)𝑦 < (𝐹𝑘)))
4241imp 406 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘)) → ∀𝑘 ∈ (ℤ𝑗)𝑦 < (𝐹𝑘))
4342adantl3r 750 . . . . . 6 (((((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘)) → ∀𝑘 ∈ (ℤ𝑗)𝑦 < (𝐹𝑘))
44433impa 1110 . . . . 5 ((((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ℝ) ∧ 𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘)) → ∀𝑘 ∈ (ℤ𝑗)𝑦 < (𝐹𝑘))
4529adantl 481 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ∧ 𝑦 ∈ ℝ) → (𝑦 + 1) ∈ ℝ)
46 simpl 482 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ∧ 𝑦 ∈ ℝ) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
47 breq1 5146 . . . . . . . . . 10 (𝑥 = (𝑦 + 1) → (𝑥 ≤ (𝐹𝑘) ↔ (𝑦 + 1) ≤ (𝐹𝑘)))
4847ralbidv 3178 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (∀𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘)))
4948rexbidv 3179 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘)))
5049rspcva 3620 . . . . . . 7 (((𝑦 + 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘))
5145, 46, 50syl2anc 584 . . . . . 6 ((∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ∧ 𝑦 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘))
5251adantll 714 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑦 + 1) ≤ (𝐹𝑘))
5325, 44, 52reximdd 45153 . . . 4 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) ∧ 𝑦 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑦 < (𝐹𝑘))
5453ralrimiva 3146 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → ∀𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑦 < (𝐹𝑘))
5516, 21, 22, 3, 23, 54xlimpnfvlem2 45852 . 2 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → 𝐹~~>*+∞)
569, 55impbida 801 1 (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070   class class class wbr 5143  wf 6557  cfv 6561  (class class class)co 7431  cr 11154  1c1 11156   + caddc 11158  +∞cpnf 11292  *cxr 11294   < clt 11295  cle 11296  cz 12613  cuz 12878  ~~>*clsxlim 45833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-1o 8506  df-2o 8507  df-er 8745  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-z 12614  df-uz 12879  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-topgen 17488  df-ordt 17546  df-ps 18611  df-tsr 18612  df-top 22900  df-topon 22917  df-bases 22953  df-lm 23237  df-xlim 45834
This theorem is referenced by:  xlimpnf  45857  xlimpnfliminf  45875  xlimpnfliminf2  45876
  Copyright terms: Public domain W3C validator