Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupvaluz2 Structured version   Visualization version   GIF version

Theorem limsupvaluz2 42908
Description: The superior limit, when the domain of a real-valued function is a set of upper integers, and the superior limit is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupvaluz2.m (𝜑𝑀 ∈ ℤ)
limsupvaluz2.z 𝑍 = (ℤ𝑀)
limsupvaluz2.f (𝜑𝐹:𝑍⟶ℝ)
limsupvaluz2.r (𝜑 → (lim sup‘𝐹) ∈ ℝ)
Assertion
Ref Expression
limsupvaluz2 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ, < ))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝑀(𝑘)

Proof of Theorem limsupvaluz2
Dummy variables 𝑖 𝑗 𝑥 𝑛 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupvaluz2.m . . 3 (𝜑𝑀 ∈ ℤ)
2 limsupvaluz2.z . . 3 𝑍 = (ℤ𝑀)
3 limsupvaluz2.f . . . 4 (𝜑𝐹:𝑍⟶ℝ)
43frexr 42549 . . 3 (𝜑𝐹:𝑍⟶ℝ*)
51, 2, 4limsupvaluz 42878 . 2 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ*, < ))
63adantr 484 . . . . . . . . 9 ((𝜑𝑛𝑍) → 𝐹:𝑍⟶ℝ)
7 id 22 . . . . . . . . . . 11 (𝑛𝑍𝑛𝑍)
82, 7uzssd2 42582 . . . . . . . . . 10 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
98adantl 485 . . . . . . . . 9 ((𝜑𝑛𝑍) → (ℤ𝑛) ⊆ 𝑍)
106, 9feqresmpt 6770 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐹 ↾ (ℤ𝑛)) = (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)))
1110rneqd 5796 . . . . . . 7 ((𝜑𝑛𝑍) → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)))
1211supeq1d 9051 . . . . . 6 ((𝜑𝑛𝑍) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)), ℝ*, < ))
13 nfcv 2900 . . . . . . . . . 10 𝑚𝐹
14 limsupvaluz2.r . . . . . . . . . . 11 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
1514renepnfd 10867 . . . . . . . . . 10 (𝜑 → (lim sup‘𝐹) ≠ +∞)
1613, 2, 3, 15limsupubuz 42883 . . . . . . . . 9 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥)
1716adantr 484 . . . . . . . 8 ((𝜑𝑛𝑍) → ∃𝑥 ∈ ℝ ∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥)
18 ssralv 3957 . . . . . . . . . . 11 ((ℤ𝑛) ⊆ 𝑍 → (∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
198, 18syl 17 . . . . . . . . . 10 (𝑛𝑍 → (∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
2019adantl 485 . . . . . . . . 9 ((𝜑𝑛𝑍) → (∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
2120reximdv 3185 . . . . . . . 8 ((𝜑𝑛𝑍) → (∃𝑥 ∈ ℝ ∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
2217, 21mpd 15 . . . . . . 7 ((𝜑𝑛𝑍) → ∃𝑥 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥)
23 nfv 1922 . . . . . . . 8 𝑚(𝜑𝑛𝑍)
242eluzelz2 42568 . . . . . . . . . 10 (𝑛𝑍𝑛 ∈ ℤ)
25 uzid 12436 . . . . . . . . . 10 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
26 ne0i 4239 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑛) → (ℤ𝑛) ≠ ∅)
2724, 25, 263syl 18 . . . . . . . . 9 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
2827adantl 485 . . . . . . . 8 ((𝜑𝑛𝑍) → (ℤ𝑛) ≠ ∅)
296adantr 484 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐹:𝑍⟶ℝ)
309sselda 3891 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
3129, 30ffvelrnd 6894 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚) ∈ ℝ)
3223, 28, 31supxrre3rnmpt 42594 . . . . . . 7 ((𝜑𝑛𝑍) → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)), ℝ*, < ) ∈ ℝ ↔ ∃𝑥 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
3322, 32mpbird 260 . . . . . 6 ((𝜑𝑛𝑍) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)), ℝ*, < ) ∈ ℝ)
3412, 33eqeltrd 2834 . . . . 5 ((𝜑𝑛𝑍) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) ∈ ℝ)
3534fmpttd 6921 . . . 4 (𝜑 → (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )):𝑍⟶ℝ)
3635frnd 6542 . . 3 (𝜑 → ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) ⊆ ℝ)
37 nfv 1922 . . . 4 𝑛𝜑
38 eqid 2734 . . . 4 (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))
391, 2uzn0d 42590 . . . 4 (𝜑𝑍 ≠ ∅)
4037, 34, 38, 39rnmptn0 6096 . . 3 (𝜑 → ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) ≠ ∅)
41 nfcv 2900 . . . . . . . . . 10 𝑗𝐹
4241, 1, 2, 4limsupre3uz 42906 . . . . . . . . 9 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)(𝐹𝑗) ≤ 𝑥)))
4314, 42mpbid 235 . . . . . . . 8 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)(𝐹𝑗) ≤ 𝑥))
4443simpld 498 . . . . . . 7 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗))
45 simp-4r 784 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ∈ ℝ)
4645rexrd 10866 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ∈ ℝ*)
4743ad2ant1 1135 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝐹:𝑍⟶ℝ*)
482uztrn2 12440 . . . . . . . . . . . . . 14 ((𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝑗𝑍)
49483adant1 1132 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝑗𝑍)
5047, 49ffvelrnd 6894 . . . . . . . . . . . 12 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) ∈ ℝ*)
5150ad5ant134 1369 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
52 rnresss 5876 . . . . . . . . . . . . . . . 16 ran (𝐹 ↾ (ℤ𝑖)) ⊆ ran 𝐹
5352a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ran 𝐹)
543frnd 6542 . . . . . . . . . . . . . . . 16 (𝜑 → ran 𝐹 ⊆ ℝ)
5554adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → ran 𝐹 ⊆ ℝ)
5653, 55sstrd 3901 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ℝ)
57 ressxr 10860 . . . . . . . . . . . . . . 15 ℝ ⊆ ℝ*
5857a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍) → ℝ ⊆ ℝ*)
5956, 58sstrd 3901 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ℝ*)
6059supxrcld 42282 . . . . . . . . . . . 12 ((𝜑𝑖𝑍) → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ∈ ℝ*)
6160ad5ant13 757 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ∈ ℝ*)
62 simpr 488 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ≤ (𝐹𝑗))
63593adant3 1134 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ℝ*)
64 fvres 6725 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ𝑖) → ((𝐹 ↾ (ℤ𝑖))‘𝑗) = (𝐹𝑗))
6564eqcomd 2740 . . . . . . . . . . . . . . 15 (𝑗 ∈ (ℤ𝑖) → (𝐹𝑗) = ((𝐹 ↾ (ℤ𝑖))‘𝑗))
66653ad2ant3 1137 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) = ((𝐹 ↾ (ℤ𝑖))‘𝑗))
673ffnd 6535 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 Fn 𝑍)
6867adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑍) → 𝐹 Fn 𝑍)
69 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑖𝑍𝑖𝑍)
702, 69uzssd2 42582 . . . . . . . . . . . . . . . . . 18 (𝑖𝑍 → (ℤ𝑖) ⊆ 𝑍)
7170adantl 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑍) → (ℤ𝑖) ⊆ 𝑍)
72 fnssres 6489 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝑍 ∧ (ℤ𝑖) ⊆ 𝑍) → (𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖))
7368, 71, 72syl2anc 587 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑍) → (𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖))
74733adant3 1134 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖))
75 simp3 1140 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝑗 ∈ (ℤ𝑖))
76 fnfvelrn 6890 . . . . . . . . . . . . . . 15 (((𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖) ∧ 𝑗 ∈ (ℤ𝑖)) → ((𝐹 ↾ (ℤ𝑖))‘𝑗) ∈ ran (𝐹 ↾ (ℤ𝑖)))
7774, 75, 76syl2anc 587 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → ((𝐹 ↾ (ℤ𝑖))‘𝑗) ∈ ran (𝐹 ↾ (ℤ𝑖)))
7866, 77eqeltrd 2834 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) ∈ ran (𝐹 ↾ (ℤ𝑖)))
79 eqid 2734 . . . . . . . . . . . . 13 sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )
8063, 78, 79supxrubd 42288 . . . . . . . . . . . 12 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
8180ad5ant134 1369 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
8246, 51, 61, 62, 81xrletrd 12735 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
8382rexlimdva2 3199 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) → (∃𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
8483ralimdva 3093 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) → ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
8584reximdva 3186 . . . . . . 7 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) → ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
8644, 85mpd 15 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
8786idi 1 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
88 fveq2 6706 . . . . . . . . . . . 12 (𝑛 = 𝑖 → (ℤ𝑛) = (ℤ𝑖))
8988reseq2d 5840 . . . . . . . . . . 11 (𝑛 = 𝑖 → (𝐹 ↾ (ℤ𝑛)) = (𝐹 ↾ (ℤ𝑖)))
9089rneqd 5796 . . . . . . . . . 10 (𝑛 = 𝑖 → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝐹 ↾ (ℤ𝑖)))
9190supeq1d 9051 . . . . . . . . 9 (𝑛 = 𝑖 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
92 eqcom 2741 . . . . . . . . . . 11 (𝑛 = 𝑖𝑖 = 𝑛)
9392imbi1i 353 . . . . . . . . . 10 ((𝑛 = 𝑖 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )) ↔ (𝑖 = 𝑛 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
94 eqcom 2741 . . . . . . . . . . 11 (sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ↔ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))
9594imbi2i 339 . . . . . . . . . 10 ((𝑖 = 𝑛 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )) ↔ (𝑖 = 𝑛 → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
9693, 95bitri 278 . . . . . . . . 9 ((𝑛 = 𝑖 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )) ↔ (𝑖 = 𝑛 → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
9791, 96mpbi 233 . . . . . . . 8 (𝑖 = 𝑛 → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))
9897breq2d 5055 . . . . . . 7 (𝑖 = 𝑛 → (𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ↔ 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
9998cbvralvw 3351 . . . . . 6 (∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ↔ ∀𝑛𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))
10099rexbii 3163 . . . . 5 (∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ↔ ∃𝑥 ∈ ℝ ∀𝑛𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))
10187, 100sylib 221 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))
10234elexd 3421 . . . . 5 ((𝜑𝑛𝑍) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) ∈ V)
10337, 102rnmptbd2 42419 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑛𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))𝑥𝑦))
104101, 103mpbid 235 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))𝑥𝑦)
105 infxrre 12909 . . 3 ((ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) ⊆ ℝ ∧ ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))𝑥𝑦) → inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ*, < ) = inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ))
10636, 40, 104, 105syl3anc 1373 . 2 (𝜑 → inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ*, < ) = inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ))
107 fveq2 6706 . . . . . . . . 9 (𝑛 = 𝑘 → (ℤ𝑛) = (ℤ𝑘))
108107reseq2d 5840 . . . . . . . 8 (𝑛 = 𝑘 → (𝐹 ↾ (ℤ𝑛)) = (𝐹 ↾ (ℤ𝑘)))
109108rneqd 5796 . . . . . . 7 (𝑛 = 𝑘 → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝐹 ↾ (ℤ𝑘)))
110109supeq1d 9051 . . . . . 6 (𝑛 = 𝑘 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
111110cbvmptv 5147 . . . . 5 (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
112111rneqi 5795 . . . 4 ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
113112infeq1i 9083 . . 3 inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ, < )
114113a1i 11 . 2 (𝜑 → inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ, < ))
1155, 106, 1143eqtrd 2778 1 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2935  wral 3054  wrex 3055  Vcvv 3401  wss 3857  c0 4227   class class class wbr 5043  cmpt 5124  ran crn 5541  cres 5542   Fn wfn 6364  wf 6365  cfv 6369  supcsup 9045  infcinf 9046  cr 10711  *cxr 10849   < clt 10850  cle 10851  cz 12159  cuz 12421  lim supclsp 15014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-inf 9048  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-n0 12074  df-z 12160  df-uz 12422  df-ico 12924  df-fz 13079  df-fl 13350  df-ceil 13351  df-limsup 15015
This theorem is referenced by:  supcnvlimsup  42910
  Copyright terms: Public domain W3C validator