Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupvaluz2 Structured version   Visualization version   GIF version

Theorem limsupvaluz2 44227
Description: The superior limit, when the domain of a real-valued function is a set of upper integers, and the superior limit is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupvaluz2.m (𝜑𝑀 ∈ ℤ)
limsupvaluz2.z 𝑍 = (ℤ𝑀)
limsupvaluz2.f (𝜑𝐹:𝑍⟶ℝ)
limsupvaluz2.r (𝜑 → (lim sup‘𝐹) ∈ ℝ)
Assertion
Ref Expression
limsupvaluz2 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ, < ))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝑀(𝑘)

Proof of Theorem limsupvaluz2
Dummy variables 𝑖 𝑗 𝑥 𝑛 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupvaluz2.m . . 3 (𝜑𝑀 ∈ ℤ)
2 limsupvaluz2.z . . 3 𝑍 = (ℤ𝑀)
3 limsupvaluz2.f . . . 4 (𝜑𝐹:𝑍⟶ℝ)
43frexr 43868 . . 3 (𝜑𝐹:𝑍⟶ℝ*)
51, 2, 4limsupvaluz 44197 . 2 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ*, < ))
63adantr 481 . . . . . . . . 9 ((𝜑𝑛𝑍) → 𝐹:𝑍⟶ℝ)
7 id 22 . . . . . . . . . . 11 (𝑛𝑍𝑛𝑍)
82, 7uzssd2 43900 . . . . . . . . . 10 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
98adantl 482 . . . . . . . . 9 ((𝜑𝑛𝑍) → (ℤ𝑛) ⊆ 𝑍)
106, 9feqresmpt 6947 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐹 ↾ (ℤ𝑛)) = (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)))
1110rneqd 5929 . . . . . . 7 ((𝜑𝑛𝑍) → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)))
1211supeq1d 9423 . . . . . 6 ((𝜑𝑛𝑍) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)), ℝ*, < ))
13 nfcv 2902 . . . . . . . . . 10 𝑚𝐹
14 limsupvaluz2.r . . . . . . . . . . 11 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
1514renepnfd 11247 . . . . . . . . . 10 (𝜑 → (lim sup‘𝐹) ≠ +∞)
1613, 2, 3, 15limsupubuz 44202 . . . . . . . . 9 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥)
1716adantr 481 . . . . . . . 8 ((𝜑𝑛𝑍) → ∃𝑥 ∈ ℝ ∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥)
18 ssralv 4046 . . . . . . . . . . 11 ((ℤ𝑛) ⊆ 𝑍 → (∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
198, 18syl 17 . . . . . . . . . 10 (𝑛𝑍 → (∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
2019adantl 482 . . . . . . . . 9 ((𝜑𝑛𝑍) → (∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
2120reximdv 3169 . . . . . . . 8 ((𝜑𝑛𝑍) → (∃𝑥 ∈ ℝ ∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
2217, 21mpd 15 . . . . . . 7 ((𝜑𝑛𝑍) → ∃𝑥 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥)
23 nfv 1917 . . . . . . . 8 𝑚(𝜑𝑛𝑍)
242eluzelz2 43886 . . . . . . . . . 10 (𝑛𝑍𝑛 ∈ ℤ)
25 uzid 12819 . . . . . . . . . 10 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
26 ne0i 4330 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑛) → (ℤ𝑛) ≠ ∅)
2724, 25, 263syl 18 . . . . . . . . 9 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
2827adantl 482 . . . . . . . 8 ((𝜑𝑛𝑍) → (ℤ𝑛) ≠ ∅)
296adantr 481 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐹:𝑍⟶ℝ)
309sselda 3978 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
3129, 30ffvelcdmd 7072 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚) ∈ ℝ)
3223, 28, 31supxrre3rnmpt 43912 . . . . . . 7 ((𝜑𝑛𝑍) → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)), ℝ*, < ) ∈ ℝ ↔ ∃𝑥 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
3322, 32mpbird 256 . . . . . 6 ((𝜑𝑛𝑍) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)), ℝ*, < ) ∈ ℝ)
3412, 33eqeltrd 2832 . . . . 5 ((𝜑𝑛𝑍) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) ∈ ℝ)
3534fmpttd 7099 . . . 4 (𝜑 → (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )):𝑍⟶ℝ)
3635frnd 6712 . . 3 (𝜑 → ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) ⊆ ℝ)
37 nfv 1917 . . . 4 𝑛𝜑
38 eqid 2731 . . . 4 (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))
391, 2uzn0d 43908 . . . 4 (𝜑𝑍 ≠ ∅)
4037, 34, 38, 39rnmptn0 6232 . . 3 (𝜑 → ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) ≠ ∅)
41 nfcv 2902 . . . . . . . . . 10 𝑗𝐹
4241, 1, 2, 4limsupre3uz 44225 . . . . . . . . 9 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)(𝐹𝑗) ≤ 𝑥)))
4314, 42mpbid 231 . . . . . . . 8 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)(𝐹𝑗) ≤ 𝑥))
4443simpld 495 . . . . . . 7 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗))
45 simp-4r 782 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ∈ ℝ)
4645rexrd 11246 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ∈ ℝ*)
4743ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝐹:𝑍⟶ℝ*)
482uztrn2 12823 . . . . . . . . . . . . . 14 ((𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝑗𝑍)
49483adant1 1130 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝑗𝑍)
5047, 49ffvelcdmd 7072 . . . . . . . . . . . 12 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) ∈ ℝ*)
5150ad5ant134 1367 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
52 rnresss 6009 . . . . . . . . . . . . . . . 16 ran (𝐹 ↾ (ℤ𝑖)) ⊆ ran 𝐹
5352a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ran 𝐹)
543frnd 6712 . . . . . . . . . . . . . . . 16 (𝜑 → ran 𝐹 ⊆ ℝ)
5554adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → ran 𝐹 ⊆ ℝ)
5653, 55sstrd 3988 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ℝ)
57 ressxr 11240 . . . . . . . . . . . . . . 15 ℝ ⊆ ℝ*
5857a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍) → ℝ ⊆ ℝ*)
5956, 58sstrd 3988 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ℝ*)
6059supxrcld 43567 . . . . . . . . . . . 12 ((𝜑𝑖𝑍) → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ∈ ℝ*)
6160ad5ant13 755 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ∈ ℝ*)
62 simpr 485 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ≤ (𝐹𝑗))
63593adant3 1132 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ℝ*)
64 fvres 6897 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ𝑖) → ((𝐹 ↾ (ℤ𝑖))‘𝑗) = (𝐹𝑗))
6564eqcomd 2737 . . . . . . . . . . . . . . 15 (𝑗 ∈ (ℤ𝑖) → (𝐹𝑗) = ((𝐹 ↾ (ℤ𝑖))‘𝑗))
66653ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) = ((𝐹 ↾ (ℤ𝑖))‘𝑗))
673ffnd 6705 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 Fn 𝑍)
6867adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑍) → 𝐹 Fn 𝑍)
69 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑖𝑍𝑖𝑍)
702, 69uzssd2 43900 . . . . . . . . . . . . . . . . . 18 (𝑖𝑍 → (ℤ𝑖) ⊆ 𝑍)
7170adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑍) → (ℤ𝑖) ⊆ 𝑍)
72 fnssres 6660 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝑍 ∧ (ℤ𝑖) ⊆ 𝑍) → (𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖))
7368, 71, 72syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑍) → (𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖))
74733adant3 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖))
75 simp3 1138 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝑗 ∈ (ℤ𝑖))
76 fnfvelrn 7067 . . . . . . . . . . . . . . 15 (((𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖) ∧ 𝑗 ∈ (ℤ𝑖)) → ((𝐹 ↾ (ℤ𝑖))‘𝑗) ∈ ran (𝐹 ↾ (ℤ𝑖)))
7774, 75, 76syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → ((𝐹 ↾ (ℤ𝑖))‘𝑗) ∈ ran (𝐹 ↾ (ℤ𝑖)))
7866, 77eqeltrd 2832 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) ∈ ran (𝐹 ↾ (ℤ𝑖)))
79 eqid 2731 . . . . . . . . . . . . 13 sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )
8063, 78, 79supxrubd 43573 . . . . . . . . . . . 12 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
8180ad5ant134 1367 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
8246, 51, 61, 62, 81xrletrd 13123 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
8382rexlimdva2 3156 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) → (∃𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
8483ralimdva 3166 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) → ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
8584reximdva 3167 . . . . . . 7 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) → ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
8644, 85mpd 15 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
8786idi 1 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
88 fveq2 6878 . . . . . . . . . . . 12 (𝑛 = 𝑖 → (ℤ𝑛) = (ℤ𝑖))
8988reseq2d 5973 . . . . . . . . . . 11 (𝑛 = 𝑖 → (𝐹 ↾ (ℤ𝑛)) = (𝐹 ↾ (ℤ𝑖)))
9089rneqd 5929 . . . . . . . . . 10 (𝑛 = 𝑖 → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝐹 ↾ (ℤ𝑖)))
9190supeq1d 9423 . . . . . . . . 9 (𝑛 = 𝑖 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
92 eqcom 2738 . . . . . . . . . . 11 (𝑛 = 𝑖𝑖 = 𝑛)
9392imbi1i 349 . . . . . . . . . 10 ((𝑛 = 𝑖 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )) ↔ (𝑖 = 𝑛 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
94 eqcom 2738 . . . . . . . . . . 11 (sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ↔ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))
9594imbi2i 335 . . . . . . . . . 10 ((𝑖 = 𝑛 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )) ↔ (𝑖 = 𝑛 → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
9693, 95bitri 274 . . . . . . . . 9 ((𝑛 = 𝑖 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )) ↔ (𝑖 = 𝑛 → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
9791, 96mpbi 229 . . . . . . . 8 (𝑖 = 𝑛 → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))
9897breq2d 5153 . . . . . . 7 (𝑖 = 𝑛 → (𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ↔ 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
9998cbvralvw 3233 . . . . . 6 (∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ↔ ∀𝑛𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))
10099rexbii 3093 . . . . 5 (∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ↔ ∃𝑥 ∈ ℝ ∀𝑛𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))
10187, 100sylib 217 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))
10234elexd 3493 . . . . 5 ((𝜑𝑛𝑍) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) ∈ V)
10337, 102rnmptbd2 43726 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑛𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))𝑥𝑦))
104101, 103mpbid 231 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))𝑥𝑦)
105 infxrre 13297 . . 3 ((ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) ⊆ ℝ ∧ ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))𝑥𝑦) → inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ*, < ) = inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ))
10636, 40, 104, 105syl3anc 1371 . 2 (𝜑 → inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ*, < ) = inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ))
107 fveq2 6878 . . . . . . . . 9 (𝑛 = 𝑘 → (ℤ𝑛) = (ℤ𝑘))
108107reseq2d 5973 . . . . . . . 8 (𝑛 = 𝑘 → (𝐹 ↾ (ℤ𝑛)) = (𝐹 ↾ (ℤ𝑘)))
109108rneqd 5929 . . . . . . 7 (𝑛 = 𝑘 → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝐹 ↾ (ℤ𝑘)))
110109supeq1d 9423 . . . . . 6 (𝑛 = 𝑘 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
111110cbvmptv 5254 . . . . 5 (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
112111rneqi 5928 . . . 4 ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
113112infeq1i 9455 . . 3 inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ, < )
114113a1i 11 . 2 (𝜑 → inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ, < ))
1155, 106, 1143eqtrd 2775 1 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2939  wral 3060  wrex 3069  Vcvv 3473  wss 3944  c0 4318   class class class wbr 5141  cmpt 5224  ran crn 5670  cres 5671   Fn wfn 6527  wf 6528  cfv 6532  supcsup 9417  infcinf 9418  cr 11091  *cxr 11229   < clt 11230  cle 11231  cz 12540  cuz 12804  lim supclsp 15396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-sup 9419  df-inf 9420  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-n0 12455  df-z 12541  df-uz 12805  df-ico 13312  df-fz 13467  df-fl 13739  df-ceil 13740  df-limsup 15397
This theorem is referenced by:  supcnvlimsup  44229
  Copyright terms: Public domain W3C validator