Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupvaluz2 Structured version   Visualization version   GIF version

Theorem limsupvaluz2 45659
Description: The superior limit, when the domain of a real-valued function is a set of upper integers, and the superior limit is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupvaluz2.m (𝜑𝑀 ∈ ℤ)
limsupvaluz2.z 𝑍 = (ℤ𝑀)
limsupvaluz2.f (𝜑𝐹:𝑍⟶ℝ)
limsupvaluz2.r (𝜑 → (lim sup‘𝐹) ∈ ℝ)
Assertion
Ref Expression
limsupvaluz2 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ, < ))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝑀(𝑘)

Proof of Theorem limsupvaluz2
Dummy variables 𝑖 𝑗 𝑥 𝑛 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupvaluz2.m . . 3 (𝜑𝑀 ∈ ℤ)
2 limsupvaluz2.z . . 3 𝑍 = (ℤ𝑀)
3 limsupvaluz2.f . . . 4 (𝜑𝐹:𝑍⟶ℝ)
43frexr 45300 . . 3 (𝜑𝐹:𝑍⟶ℝ*)
51, 2, 4limsupvaluz 45629 . 2 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ*, < ))
63adantr 480 . . . . . . . . 9 ((𝜑𝑛𝑍) → 𝐹:𝑍⟶ℝ)
7 id 22 . . . . . . . . . . 11 (𝑛𝑍𝑛𝑍)
82, 7uzssd2 45332 . . . . . . . . . 10 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
98adantl 481 . . . . . . . . 9 ((𝜑𝑛𝑍) → (ℤ𝑛) ⊆ 𝑍)
106, 9feqresmpt 6991 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐹 ↾ (ℤ𝑛)) = (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)))
1110rneqd 5963 . . . . . . 7 ((𝜑𝑛𝑍) → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)))
1211supeq1d 9515 . . . . . 6 ((𝜑𝑛𝑍) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)), ℝ*, < ))
13 nfcv 2908 . . . . . . . . . 10 𝑚𝐹
14 limsupvaluz2.r . . . . . . . . . . 11 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
1514renepnfd 11341 . . . . . . . . . 10 (𝜑 → (lim sup‘𝐹) ≠ +∞)
1613, 2, 3, 15limsupubuz 45634 . . . . . . . . 9 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥)
1716adantr 480 . . . . . . . 8 ((𝜑𝑛𝑍) → ∃𝑥 ∈ ℝ ∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥)
18 ssralv 4077 . . . . . . . . . . 11 ((ℤ𝑛) ⊆ 𝑍 → (∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
198, 18syl 17 . . . . . . . . . 10 (𝑛𝑍 → (∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
2019adantl 481 . . . . . . . . 9 ((𝜑𝑛𝑍) → (∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
2120reximdv 3176 . . . . . . . 8 ((𝜑𝑛𝑍) → (∃𝑥 ∈ ℝ ∀𝑚𝑍 (𝐹𝑚) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
2217, 21mpd 15 . . . . . . 7 ((𝜑𝑛𝑍) → ∃𝑥 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥)
23 nfv 1913 . . . . . . . 8 𝑚(𝜑𝑛𝑍)
242eluzelz2 45318 . . . . . . . . . 10 (𝑛𝑍𝑛 ∈ ℤ)
25 uzid 12918 . . . . . . . . . 10 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
26 ne0i 4364 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑛) → (ℤ𝑛) ≠ ∅)
2724, 25, 263syl 18 . . . . . . . . 9 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
2827adantl 481 . . . . . . . 8 ((𝜑𝑛𝑍) → (ℤ𝑛) ≠ ∅)
296adantr 480 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝐹:𝑍⟶ℝ)
309sselda 4008 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
3129, 30ffvelcdmd 7119 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚) ∈ ℝ)
3223, 28, 31supxrre3rnmpt 45344 . . . . . . 7 ((𝜑𝑛𝑍) → (sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)), ℝ*, < ) ∈ ℝ ↔ ∃𝑥 ∈ ℝ ∀𝑚 ∈ (ℤ𝑛)(𝐹𝑚) ≤ 𝑥))
3322, 32mpbird 257 . . . . . 6 ((𝜑𝑛𝑍) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ (𝐹𝑚)), ℝ*, < ) ∈ ℝ)
3412, 33eqeltrd 2844 . . . . 5 ((𝜑𝑛𝑍) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) ∈ ℝ)
3534fmpttd 7149 . . . 4 (𝜑 → (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )):𝑍⟶ℝ)
3635frnd 6755 . . 3 (𝜑 → ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) ⊆ ℝ)
37 nfv 1913 . . . 4 𝑛𝜑
38 eqid 2740 . . . 4 (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))
391, 2uzn0d 45340 . . . 4 (𝜑𝑍 ≠ ∅)
4037, 34, 38, 39rnmptn0 6275 . . 3 (𝜑 → ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) ≠ ∅)
41 nfcv 2908 . . . . . . . . . 10 𝑗𝐹
4241, 1, 2, 4limsupre3uz 45657 . . . . . . . . 9 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)(𝐹𝑗) ≤ 𝑥)))
4314, 42mpbid 232 . . . . . . . 8 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑖𝑍𝑗 ∈ (ℤ𝑖)(𝐹𝑗) ≤ 𝑥))
4443simpld 494 . . . . . . 7 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗))
45 simp-4r 783 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ∈ ℝ)
4645rexrd 11340 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ∈ ℝ*)
4743ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝐹:𝑍⟶ℝ*)
482uztrn2 12922 . . . . . . . . . . . . . 14 ((𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝑗𝑍)
49483adant1 1130 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝑗𝑍)
5047, 49ffvelcdmd 7119 . . . . . . . . . . . 12 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) ∈ ℝ*)
5150ad5ant134 1367 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
52 rnresss 6046 . . . . . . . . . . . . . . . 16 ran (𝐹 ↾ (ℤ𝑖)) ⊆ ran 𝐹
5352a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ran 𝐹)
543frnd 6755 . . . . . . . . . . . . . . . 16 (𝜑 → ran 𝐹 ⊆ ℝ)
5554adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → ran 𝐹 ⊆ ℝ)
5653, 55sstrd 4019 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ℝ)
57 ressxr 11334 . . . . . . . . . . . . . . 15 ℝ ⊆ ℝ*
5857a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍) → ℝ ⊆ ℝ*)
5956, 58sstrd 4019 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ℝ*)
6059supxrcld 45009 . . . . . . . . . . . 12 ((𝜑𝑖𝑍) → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ∈ ℝ*)
6160ad5ant13 756 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ∈ ℝ*)
62 simpr 484 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ≤ (𝐹𝑗))
63593adant3 1132 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → ran (𝐹 ↾ (ℤ𝑖)) ⊆ ℝ*)
64 fvres 6939 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ𝑖) → ((𝐹 ↾ (ℤ𝑖))‘𝑗) = (𝐹𝑗))
6564eqcomd 2746 . . . . . . . . . . . . . . 15 (𝑗 ∈ (ℤ𝑖) → (𝐹𝑗) = ((𝐹 ↾ (ℤ𝑖))‘𝑗))
66653ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) = ((𝐹 ↾ (ℤ𝑖))‘𝑗))
673ffnd 6748 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 Fn 𝑍)
6867adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑍) → 𝐹 Fn 𝑍)
69 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑖𝑍𝑖𝑍)
702, 69uzssd2 45332 . . . . . . . . . . . . . . . . . 18 (𝑖𝑍 → (ℤ𝑖) ⊆ 𝑍)
7170adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑍) → (ℤ𝑖) ⊆ 𝑍)
72 fnssres 6703 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝑍 ∧ (ℤ𝑖) ⊆ 𝑍) → (𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖))
7368, 71, 72syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑍) → (𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖))
74733adant3 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖))
75 simp3 1138 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → 𝑗 ∈ (ℤ𝑖))
76 fnfvelrn 7114 . . . . . . . . . . . . . . 15 (((𝐹 ↾ (ℤ𝑖)) Fn (ℤ𝑖) ∧ 𝑗 ∈ (ℤ𝑖)) → ((𝐹 ↾ (ℤ𝑖))‘𝑗) ∈ ran (𝐹 ↾ (ℤ𝑖)))
7774, 75, 76syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → ((𝐹 ↾ (ℤ𝑖))‘𝑗) ∈ ran (𝐹 ↾ (ℤ𝑖)))
7866, 77eqeltrd 2844 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) ∈ ran (𝐹 ↾ (ℤ𝑖)))
79 eqid 2740 . . . . . . . . . . . . 13 sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )
8063, 78, 79supxrubd 45015 . . . . . . . . . . . 12 ((𝜑𝑖𝑍𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
8180ad5ant134 1367 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
8246, 51, 61, 62, 81xrletrd 13224 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) ∧ 𝑗 ∈ (ℤ𝑖)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
8382rexlimdva2 3163 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑖𝑍) → (∃𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
8483ralimdva 3173 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) → ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
8584reximdva 3174 . . . . . . 7 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖𝑍𝑗 ∈ (ℤ𝑖)𝑥 ≤ (𝐹𝑗) → ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
8644, 85mpd 15 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
8786idi 1 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
88 fveq2 6920 . . . . . . . . . . . 12 (𝑛 = 𝑖 → (ℤ𝑛) = (ℤ𝑖))
8988reseq2d 6009 . . . . . . . . . . 11 (𝑛 = 𝑖 → (𝐹 ↾ (ℤ𝑛)) = (𝐹 ↾ (ℤ𝑖)))
9089rneqd 5963 . . . . . . . . . 10 (𝑛 = 𝑖 → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝐹 ↾ (ℤ𝑖)))
9190supeq1d 9515 . . . . . . . . 9 (𝑛 = 𝑖 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ))
92 eqcom 2747 . . . . . . . . . . 11 (𝑛 = 𝑖𝑖 = 𝑛)
9392imbi1i 349 . . . . . . . . . 10 ((𝑛 = 𝑖 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )) ↔ (𝑖 = 𝑛 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )))
94 eqcom 2747 . . . . . . . . . . 11 (sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ↔ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))
9594imbi2i 336 . . . . . . . . . 10 ((𝑖 = 𝑛 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )) ↔ (𝑖 = 𝑛 → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
9693, 95bitri 275 . . . . . . . . 9 ((𝑛 = 𝑖 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < )) ↔ (𝑖 = 𝑛 → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
9791, 96mpbi 230 . . . . . . . 8 (𝑖 = 𝑛 → sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))
9897breq2d 5178 . . . . . . 7 (𝑖 = 𝑛 → (𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ↔ 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )))
9998cbvralvw 3243 . . . . . 6 (∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ↔ ∀𝑛𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))
10099rexbii 3100 . . . . 5 (∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑖)), ℝ*, < ) ↔ ∃𝑥 ∈ ℝ ∀𝑛𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))
10187, 100sylib 218 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))
10234elexd 3512 . . . . 5 ((𝜑𝑛𝑍) → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) ∈ V)
10337, 102rnmptbd2 45158 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑛𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))𝑥𝑦))
104101, 103mpbid 232 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))𝑥𝑦)
105 infxrre 13398 . . 3 ((ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) ⊆ ℝ ∧ ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ))𝑥𝑦) → inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ*, < ) = inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ))
10636, 40, 104, 105syl3anc 1371 . 2 (𝜑 → inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ*, < ) = inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ))
107 fveq2 6920 . . . . . . . . 9 (𝑛 = 𝑘 → (ℤ𝑛) = (ℤ𝑘))
108107reseq2d 6009 . . . . . . . 8 (𝑛 = 𝑘 → (𝐹 ↾ (ℤ𝑛)) = (𝐹 ↾ (ℤ𝑘)))
109108rneqd 5963 . . . . . . 7 (𝑛 = 𝑘 → ran (𝐹 ↾ (ℤ𝑛)) = ran (𝐹 ↾ (ℤ𝑘)))
110109supeq1d 9515 . . . . . 6 (𝑛 = 𝑘 → sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
111110cbvmptv 5279 . . . . 5 (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
112111rneqi 5962 . . . 4 ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )) = ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < ))
113112infeq1i 9547 . . 3 inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ, < )
114113a1i 11 . 2 (𝜑 → inf(ran (𝑛𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑛)), ℝ*, < )), ℝ, < ) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ, < ))
1155, 106, 1143eqtrd 2784 1 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑘)), ℝ*, < )), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  wss 3976  c0 4352   class class class wbr 5166  cmpt 5249  ran crn 5701  cres 5702   Fn wfn 6568  wf 6569  cfv 6573  supcsup 9509  infcinf 9510  cr 11183  *cxr 11323   < clt 11324  cle 11325  cz 12639  cuz 12903  lim supclsp 15516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-ico 13413  df-fz 13568  df-fl 13843  df-ceil 13844  df-limsup 15517
This theorem is referenced by:  supcnvlimsup  45661
  Copyright terms: Public domain W3C validator