Step | Hyp | Ref
| Expression |
1 | | limsupvaluz2.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℤ) |
2 | | limsupvaluz2.z |
. . 3
⊢ 𝑍 =
(ℤ≥‘𝑀) |
3 | | limsupvaluz2.f |
. . . 4
⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
4 | 3 | frexr 42931 |
. . 3
⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
5 | 1, 2, 4 | limsupvaluz 43256 |
. 2
⊢ (𝜑 → (lim sup‘𝐹) = inf(ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
)), ℝ*, < )) |
6 | 3 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐹:𝑍⟶ℝ) |
7 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ 𝑍) |
8 | 2, 7 | uzssd2 42964 |
. . . . . . . . . 10
⊢ (𝑛 ∈ 𝑍 → (ℤ≥‘𝑛) ⊆ 𝑍) |
9 | 8 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (ℤ≥‘𝑛) ⊆ 𝑍) |
10 | 6, 9 | feqresmpt 6847 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹 ↾ (ℤ≥‘𝑛)) = (𝑚 ∈ (ℤ≥‘𝑛) ↦ (𝐹‘𝑚))) |
11 | 10 | rneqd 5850 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ran (𝐹 ↾ (ℤ≥‘𝑛)) = ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ (𝐹‘𝑚))) |
12 | 11 | supeq1d 9214 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < )
= sup(ran (𝑚 ∈
(ℤ≥‘𝑛) ↦ (𝐹‘𝑚)), ℝ*, <
)) |
13 | | nfcv 2908 |
. . . . . . . . . 10
⊢
Ⅎ𝑚𝐹 |
14 | | limsupvaluz2.r |
. . . . . . . . . . 11
⊢ (𝜑 → (lim sup‘𝐹) ∈
ℝ) |
15 | 14 | renepnfd 11035 |
. . . . . . . . . 10
⊢ (𝜑 → (lim sup‘𝐹) ≠
+∞) |
16 | 13, 2, 3, 15 | limsupubuz 43261 |
. . . . . . . . 9
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑚 ∈ 𝑍 (𝐹‘𝑚) ≤ 𝑥) |
17 | 16 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ∃𝑥 ∈ ℝ ∀𝑚 ∈ 𝑍 (𝐹‘𝑚) ≤ 𝑥) |
18 | | ssralv 3988 |
. . . . . . . . . . 11
⊢
((ℤ≥‘𝑛) ⊆ 𝑍 → (∀𝑚 ∈ 𝑍 (𝐹‘𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ≥‘𝑛)(𝐹‘𝑚) ≤ 𝑥)) |
19 | 8, 18 | syl 17 |
. . . . . . . . . 10
⊢ (𝑛 ∈ 𝑍 → (∀𝑚 ∈ 𝑍 (𝐹‘𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ≥‘𝑛)(𝐹‘𝑚) ≤ 𝑥)) |
20 | 19 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (∀𝑚 ∈ 𝑍 (𝐹‘𝑚) ≤ 𝑥 → ∀𝑚 ∈ (ℤ≥‘𝑛)(𝐹‘𝑚) ≤ 𝑥)) |
21 | 20 | reximdv 3203 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (∃𝑥 ∈ ℝ ∀𝑚 ∈ 𝑍 (𝐹‘𝑚) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑚 ∈ (ℤ≥‘𝑛)(𝐹‘𝑚) ≤ 𝑥)) |
22 | 17, 21 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ∃𝑥 ∈ ℝ ∀𝑚 ∈ (ℤ≥‘𝑛)(𝐹‘𝑚) ≤ 𝑥) |
23 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑚(𝜑 ∧ 𝑛 ∈ 𝑍) |
24 | 2 | eluzelz2 42950 |
. . . . . . . . . 10
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ) |
25 | | uzid 12606 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
(ℤ≥‘𝑛)) |
26 | | ne0i 4269 |
. . . . . . . . . 10
⊢ (𝑛 ∈
(ℤ≥‘𝑛) → (ℤ≥‘𝑛) ≠ ∅) |
27 | 24, 25, 26 | 3syl 18 |
. . . . . . . . 9
⊢ (𝑛 ∈ 𝑍 → (ℤ≥‘𝑛) ≠ ∅) |
28 | 27 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (ℤ≥‘𝑛) ≠ ∅) |
29 | 6 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝐹:𝑍⟶ℝ) |
30 | 9 | sselda 3922 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → 𝑚 ∈ 𝑍) |
31 | 29, 30 | ffvelrnd 6971 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑚) ∈ ℝ) |
32 | 23, 28, 31 | supxrre3rnmpt 42976 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ (𝐹‘𝑚)), ℝ*, < ) ∈
ℝ ↔ ∃𝑥
∈ ℝ ∀𝑚
∈ (ℤ≥‘𝑛)(𝐹‘𝑚) ≤ 𝑥)) |
33 | 22, 32 | mpbird 256 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ (𝐹‘𝑚)), ℝ*, < ) ∈
ℝ) |
34 | 12, 33 | eqeltrd 2840 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < )
∈ ℝ) |
35 | 34 | fmpttd 6998 |
. . . 4
⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
)):𝑍⟶ℝ) |
36 | 35 | frnd 6617 |
. . 3
⊢ (𝜑 → ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < ))
⊆ ℝ) |
37 | | nfv 1918 |
. . . 4
⊢
Ⅎ𝑛𝜑 |
38 | | eqid 2739 |
. . . 4
⊢ (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < ))
= (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑛)), ℝ*, <
)) |
39 | 1, 2 | uzn0d 42972 |
. . . 4
⊢ (𝜑 → 𝑍 ≠ ∅) |
40 | 37, 34, 38, 39 | rnmptn0 6152 |
. . 3
⊢ (𝜑 → ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < ))
≠ ∅) |
41 | | nfcv 2908 |
. . . . . . . . . 10
⊢
Ⅎ𝑗𝐹 |
42 | 41, 1, 2, 4 | limsupre3uz 43284 |
. . . . . . . . 9
⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔
(∃𝑥 ∈ ℝ
∀𝑖 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑖)𝑥 ≤ (𝐹‘𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)(𝐹‘𝑗) ≤ 𝑥))) |
43 | 14, 42 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑖)𝑥 ≤ (𝐹‘𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑖)(𝐹‘𝑗) ≤ 𝑥)) |
44 | 43 | simpld 495 |
. . . . . . 7
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑖)𝑥 ≤ (𝐹‘𝑗)) |
45 | | simp-4r 781 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑖)) ∧ 𝑥 ≤ (𝐹‘𝑗)) → 𝑥 ∈ ℝ) |
46 | 45 | rexrd 11034 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑖)) ∧ 𝑥 ≤ (𝐹‘𝑗)) → 𝑥 ∈ ℝ*) |
47 | 4 | 3ad2ant1 1132 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → 𝐹:𝑍⟶ℝ*) |
48 | 2 | uztrn2 12610 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → 𝑗 ∈ 𝑍) |
49 | 48 | 3adant1 1129 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → 𝑗 ∈ 𝑍) |
50 | 47, 49 | ffvelrnd 6971 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → (𝐹‘𝑗) ∈
ℝ*) |
51 | 50 | ad5ant134 1366 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑖)) ∧ 𝑥 ≤ (𝐹‘𝑗)) → (𝐹‘𝑗) ∈
ℝ*) |
52 | | rnresss 5930 |
. . . . . . . . . . . . . . . 16
⊢ ran
(𝐹 ↾
(ℤ≥‘𝑖)) ⊆ ran 𝐹 |
53 | 52 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ran (𝐹 ↾ (ℤ≥‘𝑖)) ⊆ ran 𝐹) |
54 | 3 | frnd 6617 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
55 | 54 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ran 𝐹 ⊆ ℝ) |
56 | 53, 55 | sstrd 3932 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ran (𝐹 ↾ (ℤ≥‘𝑖)) ⊆
ℝ) |
57 | | ressxr 11028 |
. . . . . . . . . . . . . . 15
⊢ ℝ
⊆ ℝ* |
58 | 57 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ℝ ⊆
ℝ*) |
59 | 56, 58 | sstrd 3932 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ran (𝐹 ↾ (ℤ≥‘𝑖)) ⊆
ℝ*) |
60 | 59 | supxrcld 42664 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, < )
∈ ℝ*) |
61 | 60 | ad5ant13 754 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑖)) ∧ 𝑥 ≤ (𝐹‘𝑗)) → sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, < )
∈ ℝ*) |
62 | | simpr 485 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑖)) ∧ 𝑥 ≤ (𝐹‘𝑗)) → 𝑥 ≤ (𝐹‘𝑗)) |
63 | 59 | 3adant3 1131 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → ran (𝐹 ↾ (ℤ≥‘𝑖)) ⊆
ℝ*) |
64 | | fvres 6802 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈
(ℤ≥‘𝑖) → ((𝐹 ↾ (ℤ≥‘𝑖))‘𝑗) = (𝐹‘𝑗)) |
65 | 64 | eqcomd 2745 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈
(ℤ≥‘𝑖) → (𝐹‘𝑗) = ((𝐹 ↾ (ℤ≥‘𝑖))‘𝑗)) |
66 | 65 | 3ad2ant3 1134 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → (𝐹‘𝑗) = ((𝐹 ↾ (ℤ≥‘𝑖))‘𝑗)) |
67 | 3 | ffnd 6610 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹 Fn 𝑍) |
68 | 67 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → 𝐹 Fn 𝑍) |
69 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ 𝑍 → 𝑖 ∈ 𝑍) |
70 | 2, 69 | uzssd2 42964 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ 𝑍 → (ℤ≥‘𝑖) ⊆ 𝑍) |
71 | 70 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (ℤ≥‘𝑖) ⊆ 𝑍) |
72 | | fnssres 6564 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 Fn 𝑍 ∧ (ℤ≥‘𝑖) ⊆ 𝑍) → (𝐹 ↾ (ℤ≥‘𝑖)) Fn
(ℤ≥‘𝑖)) |
73 | 68, 71, 72 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐹 ↾ (ℤ≥‘𝑖)) Fn
(ℤ≥‘𝑖)) |
74 | 73 | 3adant3 1131 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → (𝐹 ↾ (ℤ≥‘𝑖)) Fn
(ℤ≥‘𝑖)) |
75 | | simp3 1137 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → 𝑗 ∈ (ℤ≥‘𝑖)) |
76 | | fnfvelrn 6967 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ↾
(ℤ≥‘𝑖)) Fn (ℤ≥‘𝑖) ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → ((𝐹 ↾ (ℤ≥‘𝑖))‘𝑗) ∈ ran (𝐹 ↾ (ℤ≥‘𝑖))) |
77 | 74, 75, 76 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → ((𝐹 ↾ (ℤ≥‘𝑖))‘𝑗) ∈ ran (𝐹 ↾ (ℤ≥‘𝑖))) |
78 | 66, 77 | eqeltrd 2840 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → (𝐹‘𝑗) ∈ ran (𝐹 ↾ (ℤ≥‘𝑖))) |
79 | | eqid 2739 |
. . . . . . . . . . . . 13
⊢ sup(ran
(𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, < ) = sup(ran
(𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, <
) |
80 | 63, 78, 79 | supxrubd 42670 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑖)) → (𝐹‘𝑗) ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, <
)) |
81 | 80 | ad5ant134 1366 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑖)) ∧ 𝑥 ≤ (𝐹‘𝑗)) → (𝐹‘𝑗) ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, <
)) |
82 | 46, 51, 61, 62, 81 | xrletrd 12905 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑖)) ∧ 𝑥 ≤ (𝐹‘𝑗)) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, <
)) |
83 | 82 | rexlimdva2 3217 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑖 ∈ 𝑍) → (∃𝑗 ∈ (ℤ≥‘𝑖)𝑥 ≤ (𝐹‘𝑗) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, <
))) |
84 | 83 | ralimdva 3109 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑖 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑖)𝑥 ≤ (𝐹‘𝑗) → ∀𝑖 ∈ 𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, <
))) |
85 | 84 | reximdva 3204 |
. . . . . . 7
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑖)𝑥 ≤ (𝐹‘𝑗) → ∃𝑥 ∈ ℝ ∀𝑖 ∈ 𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, <
))) |
86 | 44, 85 | mpd 15 |
. . . . . 6
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖 ∈ 𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, <
)) |
87 | 86 | idi 1 |
. . . . 5
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖 ∈ 𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, <
)) |
88 | | fveq2 6783 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑖 → (ℤ≥‘𝑛) =
(ℤ≥‘𝑖)) |
89 | 88 | reseq2d 5894 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑖 → (𝐹 ↾ (ℤ≥‘𝑛)) = (𝐹 ↾ (ℤ≥‘𝑖))) |
90 | 89 | rneqd 5850 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑖 → ran (𝐹 ↾ (ℤ≥‘𝑛)) = ran (𝐹 ↾ (ℤ≥‘𝑖))) |
91 | 90 | supeq1d 9214 |
. . . . . . . . 9
⊢ (𝑛 = 𝑖 → sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < )
= sup(ran (𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, <
)) |
92 | | eqcom 2746 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑖 ↔ 𝑖 = 𝑛) |
93 | 92 | imbi1i 350 |
. . . . . . . . . 10
⊢ ((𝑛 = 𝑖 → sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < )
= sup(ran (𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, < )) ↔
(𝑖 = 𝑛 → sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < )
= sup(ran (𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, <
))) |
94 | | eqcom 2746 |
. . . . . . . . . . 11
⊢ (sup(ran
(𝐹 ↾
(ℤ≥‘𝑛)), ℝ*, < ) = sup(ran
(𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, < ) ↔
sup(ran (𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, < ) = sup(ran
(𝐹 ↾
(ℤ≥‘𝑛)), ℝ*, <
)) |
95 | 94 | imbi2i 336 |
. . . . . . . . . 10
⊢ ((𝑖 = 𝑛 → sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < )
= sup(ran (𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, < )) ↔
(𝑖 = 𝑛 → sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, < )
= sup(ran (𝐹 ↾
(ℤ≥‘𝑛)), ℝ*, <
))) |
96 | 93, 95 | bitri 274 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑖 → sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < )
= sup(ran (𝐹 ↾
(ℤ≥‘𝑖)), ℝ*, < )) ↔
(𝑖 = 𝑛 → sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, < )
= sup(ran (𝐹 ↾
(ℤ≥‘𝑛)), ℝ*, <
))) |
97 | 91, 96 | mpbi 229 |
. . . . . . . 8
⊢ (𝑖 = 𝑛 → sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, < )
= sup(ran (𝐹 ↾
(ℤ≥‘𝑛)), ℝ*, <
)) |
98 | 97 | breq2d 5087 |
. . . . . . 7
⊢ (𝑖 = 𝑛 → (𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, < )
↔ 𝑥 ≤ sup(ran
(𝐹 ↾
(ℤ≥‘𝑛)), ℝ*, <
))) |
99 | 98 | cbvralvw 3384 |
. . . . . 6
⊢
(∀𝑖 ∈
𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, < )
↔ ∀𝑛 ∈
𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
)) |
100 | 99 | rexbii 3182 |
. . . . 5
⊢
(∃𝑥 ∈
ℝ ∀𝑖 ∈
𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑖)), ℝ*, < )
↔ ∃𝑥 ∈
ℝ ∀𝑛 ∈
𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
)) |
101 | 87, 100 | sylib 217 |
. . . 4
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
)) |
102 | 34 | elexd 3453 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < )
∈ V) |
103 | 37, 102 | rnmptbd2 42802 |
. . . 4
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < )
↔ ∃𝑥 ∈
ℝ ∀𝑦 ∈
ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑛)), ℝ*, < ))𝑥 ≤ 𝑦)) |
104 | 101, 103 | mpbid 231 |
. . 3
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
))𝑥 ≤ 𝑦) |
105 | | infxrre 13079 |
. . 3
⊢ ((ran
(𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < ))
⊆ ℝ ∧ ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < ))
≠ ∅ ∧ ∃𝑥
∈ ℝ ∀𝑦
∈ ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑛)), ℝ*, < ))𝑥 ≤ 𝑦) → inf(ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
)), ℝ*, < ) = inf(ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
)), ℝ, < )) |
106 | 36, 40, 104, 105 | syl3anc 1370 |
. 2
⊢ (𝜑 → inf(ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
)), ℝ*, < ) = inf(ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
)), ℝ, < )) |
107 | | fveq2 6783 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (ℤ≥‘𝑛) =
(ℤ≥‘𝑘)) |
108 | 107 | reseq2d 5894 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → (𝐹 ↾ (ℤ≥‘𝑛)) = (𝐹 ↾ (ℤ≥‘𝑘))) |
109 | 108 | rneqd 5850 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → ran (𝐹 ↾ (ℤ≥‘𝑛)) = ran (𝐹 ↾ (ℤ≥‘𝑘))) |
110 | 109 | supeq1d 9214 |
. . . . . 6
⊢ (𝑛 = 𝑘 → sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < )
= sup(ran (𝐹 ↾
(ℤ≥‘𝑘)), ℝ*, <
)) |
111 | 110 | cbvmptv 5188 |
. . . . 5
⊢ (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < ))
= (𝑘 ∈ 𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑘)), ℝ*, <
)) |
112 | 111 | rneqi 5849 |
. . . 4
⊢ ran
(𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, < ))
= ran (𝑘 ∈ 𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑘)), ℝ*, <
)) |
113 | 112 | infeq1i 9246 |
. . 3
⊢ inf(ran
(𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
)), ℝ, < ) = inf(ran (𝑘 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑘)), ℝ*, <
)), ℝ, < ) |
114 | 113 | a1i 11 |
. 2
⊢ (𝜑 → inf(ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑛)), ℝ*, <
)), ℝ, < ) = inf(ran (𝑘 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑘)), ℝ*, <
)), ℝ, < )) |
115 | 5, 106, 114 | 3eqtrd 2783 |
1
⊢ (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑘)), ℝ*, <
)), ℝ, < )) |