Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupvaluz2 Structured version   Visualization version   GIF version

Theorem limsupvaluz2 44754
Description: The superior limit, when the domain of a real-valued function is a set of upper integers, and the superior limit is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupvaluz2.m (πœ‘ β†’ 𝑀 ∈ β„€)
limsupvaluz2.z 𝑍 = (β„€β‰₯β€˜π‘€)
limsupvaluz2.f (πœ‘ β†’ 𝐹:π‘βŸΆβ„)
limsupvaluz2.r (πœ‘ β†’ (lim supβ€˜πΉ) ∈ ℝ)
Assertion
Ref Expression
limsupvaluz2 (πœ‘ β†’ (lim supβ€˜πΉ) = inf(ran (π‘˜ ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘˜)), ℝ*, < )), ℝ, < ))
Distinct variable groups:   π‘˜,𝐹   π‘˜,𝑍
Allowed substitution hints:   πœ‘(π‘˜)   𝑀(π‘˜)

Proof of Theorem limsupvaluz2
Dummy variables 𝑖 𝑗 π‘₯ 𝑛 π‘š 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupvaluz2.m . . 3 (πœ‘ β†’ 𝑀 ∈ β„€)
2 limsupvaluz2.z . . 3 𝑍 = (β„€β‰₯β€˜π‘€)
3 limsupvaluz2.f . . . 4 (πœ‘ β†’ 𝐹:π‘βŸΆβ„)
43frexr 44395 . . 3 (πœ‘ β†’ 𝐹:π‘βŸΆβ„*)
51, 2, 4limsupvaluz 44724 . 2 (πœ‘ β†’ (lim supβ€˜πΉ) = inf(ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < )), ℝ*, < ))
63adantr 480 . . . . . . . . 9 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ 𝐹:π‘βŸΆβ„)
7 id 22 . . . . . . . . . . 11 (𝑛 ∈ 𝑍 β†’ 𝑛 ∈ 𝑍)
82, 7uzssd2 44427 . . . . . . . . . 10 (𝑛 ∈ 𝑍 β†’ (β„€β‰₯β€˜π‘›) βŠ† 𝑍)
98adantl 481 . . . . . . . . 9 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ (β„€β‰₯β€˜π‘›) βŠ† 𝑍)
106, 9feqresmpt 6962 . . . . . . . 8 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)) = (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ (πΉβ€˜π‘š)))
1110rneqd 5938 . . . . . . 7 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)) = ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ (πΉβ€˜π‘š)))
1211supeq1d 9444 . . . . . 6 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ) = sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ (πΉβ€˜π‘š)), ℝ*, < ))
13 nfcv 2902 . . . . . . . . . 10 β„²π‘šπΉ
14 limsupvaluz2.r . . . . . . . . . . 11 (πœ‘ β†’ (lim supβ€˜πΉ) ∈ ℝ)
1514renepnfd 11270 . . . . . . . . . 10 (πœ‘ β†’ (lim supβ€˜πΉ) β‰  +∞)
1613, 2, 3, 15limsupubuz 44729 . . . . . . . . 9 (πœ‘ β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘š ∈ 𝑍 (πΉβ€˜π‘š) ≀ π‘₯)
1716adantr 480 . . . . . . . 8 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘š ∈ 𝑍 (πΉβ€˜π‘š) ≀ π‘₯)
18 ssralv 4051 . . . . . . . . . . 11 ((β„€β‰₯β€˜π‘›) βŠ† 𝑍 β†’ (βˆ€π‘š ∈ 𝑍 (πΉβ€˜π‘š) ≀ π‘₯ β†’ βˆ€π‘š ∈ (β„€β‰₯β€˜π‘›)(πΉβ€˜π‘š) ≀ π‘₯))
198, 18syl 17 . . . . . . . . . 10 (𝑛 ∈ 𝑍 β†’ (βˆ€π‘š ∈ 𝑍 (πΉβ€˜π‘š) ≀ π‘₯ β†’ βˆ€π‘š ∈ (β„€β‰₯β€˜π‘›)(πΉβ€˜π‘š) ≀ π‘₯))
2019adantl 481 . . . . . . . . 9 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ (βˆ€π‘š ∈ 𝑍 (πΉβ€˜π‘š) ≀ π‘₯ β†’ βˆ€π‘š ∈ (β„€β‰₯β€˜π‘›)(πΉβ€˜π‘š) ≀ π‘₯))
2120reximdv 3169 . . . . . . . 8 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ (βˆƒπ‘₯ ∈ ℝ βˆ€π‘š ∈ 𝑍 (πΉβ€˜π‘š) ≀ π‘₯ β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘š ∈ (β„€β‰₯β€˜π‘›)(πΉβ€˜π‘š) ≀ π‘₯))
2217, 21mpd 15 . . . . . . 7 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘š ∈ (β„€β‰₯β€˜π‘›)(πΉβ€˜π‘š) ≀ π‘₯)
23 nfv 1916 . . . . . . . 8 β„²π‘š(πœ‘ ∧ 𝑛 ∈ 𝑍)
242eluzelz2 44413 . . . . . . . . . 10 (𝑛 ∈ 𝑍 β†’ 𝑛 ∈ β„€)
25 uzid 12842 . . . . . . . . . 10 (𝑛 ∈ β„€ β†’ 𝑛 ∈ (β„€β‰₯β€˜π‘›))
26 ne0i 4335 . . . . . . . . . 10 (𝑛 ∈ (β„€β‰₯β€˜π‘›) β†’ (β„€β‰₯β€˜π‘›) β‰  βˆ…)
2724, 25, 263syl 18 . . . . . . . . 9 (𝑛 ∈ 𝑍 β†’ (β„€β‰₯β€˜π‘›) β‰  βˆ…)
2827adantl 481 . . . . . . . 8 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ (β„€β‰₯β€˜π‘›) β‰  βˆ…)
296adantr 480 . . . . . . . . 9 (((πœ‘ ∧ 𝑛 ∈ 𝑍) ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ 𝐹:π‘βŸΆβ„)
309sselda 3983 . . . . . . . . 9 (((πœ‘ ∧ 𝑛 ∈ 𝑍) ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ π‘š ∈ 𝑍)
3129, 30ffvelcdmd 7088 . . . . . . . 8 (((πœ‘ ∧ 𝑛 ∈ 𝑍) ∧ π‘š ∈ (β„€β‰₯β€˜π‘›)) β†’ (πΉβ€˜π‘š) ∈ ℝ)
3223, 28, 31supxrre3rnmpt 44439 . . . . . . 7 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ (sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ (πΉβ€˜π‘š)), ℝ*, < ) ∈ ℝ ↔ βˆƒπ‘₯ ∈ ℝ βˆ€π‘š ∈ (β„€β‰₯β€˜π‘›)(πΉβ€˜π‘š) ≀ π‘₯))
3322, 32mpbird 256 . . . . . 6 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ sup(ran (π‘š ∈ (β„€β‰₯β€˜π‘›) ↦ (πΉβ€˜π‘š)), ℝ*, < ) ∈ ℝ)
3412, 33eqeltrd 2832 . . . . 5 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ) ∈ ℝ)
3534fmpttd 7117 . . . 4 (πœ‘ β†’ (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < )):π‘βŸΆβ„)
3635frnd 6726 . . 3 (πœ‘ β†’ ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < )) βŠ† ℝ)
37 nfv 1916 . . . 4 β„²π‘›πœ‘
38 eqid 2731 . . . 4 (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < )) = (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ))
391, 2uzn0d 44435 . . . 4 (πœ‘ β†’ 𝑍 β‰  βˆ…)
4037, 34, 38, 39rnmptn0 6244 . . 3 (πœ‘ β†’ ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < )) β‰  βˆ…)
41 nfcv 2902 . . . . . . . . . 10 Ⅎ𝑗𝐹
4241, 1, 2, 4limsupre3uz 44752 . . . . . . . . 9 (πœ‘ β†’ ((lim supβ€˜πΉ) ∈ ℝ ↔ (βˆƒπ‘₯ ∈ ℝ βˆ€π‘– ∈ 𝑍 βˆƒπ‘— ∈ (β„€β‰₯β€˜π‘–)π‘₯ ≀ (πΉβ€˜π‘—) ∧ βˆƒπ‘₯ ∈ ℝ βˆƒπ‘– ∈ 𝑍 βˆ€π‘— ∈ (β„€β‰₯β€˜π‘–)(πΉβ€˜π‘—) ≀ π‘₯)))
4314, 42mpbid 231 . . . . . . . 8 (πœ‘ β†’ (βˆƒπ‘₯ ∈ ℝ βˆ€π‘– ∈ 𝑍 βˆƒπ‘— ∈ (β„€β‰₯β€˜π‘–)π‘₯ ≀ (πΉβ€˜π‘—) ∧ βˆƒπ‘₯ ∈ ℝ βˆƒπ‘– ∈ 𝑍 βˆ€π‘— ∈ (β„€β‰₯β€˜π‘–)(πΉβ€˜π‘—) ≀ π‘₯))
4443simpld 494 . . . . . . 7 (πœ‘ β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘– ∈ 𝑍 βˆƒπ‘— ∈ (β„€β‰₯β€˜π‘–)π‘₯ ≀ (πΉβ€˜π‘—))
45 simp-4r 781 . . . . . . . . . . . 12 (((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) ∧ π‘₯ ≀ (πΉβ€˜π‘—)) β†’ π‘₯ ∈ ℝ)
4645rexrd 11269 . . . . . . . . . . 11 (((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) ∧ π‘₯ ≀ (πΉβ€˜π‘—)) β†’ π‘₯ ∈ ℝ*)
4743ad2ant1 1132 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) β†’ 𝐹:π‘βŸΆβ„*)
482uztrn2 12846 . . . . . . . . . . . . . 14 ((𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) β†’ 𝑗 ∈ 𝑍)
49483adant1 1129 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) β†’ 𝑗 ∈ 𝑍)
5047, 49ffvelcdmd 7088 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) β†’ (πΉβ€˜π‘—) ∈ ℝ*)
5150ad5ant134 1366 . . . . . . . . . . 11 (((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) ∧ π‘₯ ≀ (πΉβ€˜π‘—)) β†’ (πΉβ€˜π‘—) ∈ ℝ*)
52 rnresss 6018 . . . . . . . . . . . . . . . 16 ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)) βŠ† ran 𝐹
5352a1i 11 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)) βŠ† ran 𝐹)
543frnd 6726 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ ran 𝐹 βŠ† ℝ)
5554adantr 480 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ ran 𝐹 βŠ† ℝ)
5653, 55sstrd 3993 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)) βŠ† ℝ)
57 ressxr 11263 . . . . . . . . . . . . . . 15 ℝ βŠ† ℝ*
5857a1i 11 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ ℝ βŠ† ℝ*)
5956, 58sstrd 3993 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)) βŠ† ℝ*)
6059supxrcld 44099 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ) ∈ ℝ*)
6160ad5ant13 754 . . . . . . . . . . 11 (((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) ∧ π‘₯ ≀ (πΉβ€˜π‘—)) β†’ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ) ∈ ℝ*)
62 simpr 484 . . . . . . . . . . 11 (((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) ∧ π‘₯ ≀ (πΉβ€˜π‘—)) β†’ π‘₯ ≀ (πΉβ€˜π‘—))
63593adant3 1131 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) β†’ ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)) βŠ† ℝ*)
64 fvres 6911 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (β„€β‰₯β€˜π‘–) β†’ ((𝐹 β†Ύ (β„€β‰₯β€˜π‘–))β€˜π‘—) = (πΉβ€˜π‘—))
6564eqcomd 2737 . . . . . . . . . . . . . . 15 (𝑗 ∈ (β„€β‰₯β€˜π‘–) β†’ (πΉβ€˜π‘—) = ((𝐹 β†Ύ (β„€β‰₯β€˜π‘–))β€˜π‘—))
66653ad2ant3 1134 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) β†’ (πΉβ€˜π‘—) = ((𝐹 β†Ύ (β„€β‰₯β€˜π‘–))β€˜π‘—))
673ffnd 6719 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ 𝐹 Fn 𝑍)
6867adantr 480 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ 𝐹 Fn 𝑍)
69 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ 𝑍 β†’ 𝑖 ∈ 𝑍)
702, 69uzssd2 44427 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ 𝑍 β†’ (β„€β‰₯β€˜π‘–) βŠ† 𝑍)
7170adantl 481 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ (β„€β‰₯β€˜π‘–) βŠ† 𝑍)
72 fnssres 6674 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝑍 ∧ (β„€β‰₯β€˜π‘–) βŠ† 𝑍) β†’ (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)) Fn (β„€β‰₯β€˜π‘–))
7368, 71, 72syl2anc 583 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)) Fn (β„€β‰₯β€˜π‘–))
74733adant3 1131 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) β†’ (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)) Fn (β„€β‰₯β€˜π‘–))
75 simp3 1137 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) β†’ 𝑗 ∈ (β„€β‰₯β€˜π‘–))
76 fnfvelrn 7083 . . . . . . . . . . . . . . 15 (((𝐹 β†Ύ (β„€β‰₯β€˜π‘–)) Fn (β„€β‰₯β€˜π‘–) ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) β†’ ((𝐹 β†Ύ (β„€β‰₯β€˜π‘–))β€˜π‘—) ∈ ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)))
7774, 75, 76syl2anc 583 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) β†’ ((𝐹 β†Ύ (β„€β‰₯β€˜π‘–))β€˜π‘—) ∈ ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)))
7866, 77eqeltrd 2832 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) β†’ (πΉβ€˜π‘—) ∈ ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)))
79 eqid 2731 . . . . . . . . . . . . 13 sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ) = sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < )
8063, 78, 79supxrubd 44105 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑖 ∈ 𝑍 ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) β†’ (πΉβ€˜π‘—) ≀ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ))
8180ad5ant134 1366 . . . . . . . . . . 11 (((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) ∧ π‘₯ ≀ (πΉβ€˜π‘—)) β†’ (πΉβ€˜π‘—) ≀ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ))
8246, 51, 61, 62, 81xrletrd 13146 . . . . . . . . . 10 (((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ 𝑖 ∈ 𝑍) ∧ 𝑗 ∈ (β„€β‰₯β€˜π‘–)) ∧ π‘₯ ≀ (πΉβ€˜π‘—)) β†’ π‘₯ ≀ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ))
8382rexlimdva2 3156 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ 𝑖 ∈ 𝑍) β†’ (βˆƒπ‘— ∈ (β„€β‰₯β€˜π‘–)π‘₯ ≀ (πΉβ€˜π‘—) β†’ π‘₯ ≀ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < )))
8483ralimdva 3166 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ (βˆ€π‘– ∈ 𝑍 βˆƒπ‘— ∈ (β„€β‰₯β€˜π‘–)π‘₯ ≀ (πΉβ€˜π‘—) β†’ βˆ€π‘– ∈ 𝑍 π‘₯ ≀ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < )))
8584reximdva 3167 . . . . . . 7 (πœ‘ β†’ (βˆƒπ‘₯ ∈ ℝ βˆ€π‘– ∈ 𝑍 βˆƒπ‘— ∈ (β„€β‰₯β€˜π‘–)π‘₯ ≀ (πΉβ€˜π‘—) β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘– ∈ 𝑍 π‘₯ ≀ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < )))
8644, 85mpd 15 . . . . . 6 (πœ‘ β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘– ∈ 𝑍 π‘₯ ≀ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ))
8786idi 1 . . . . 5 (πœ‘ β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘– ∈ 𝑍 π‘₯ ≀ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ))
88 fveq2 6892 . . . . . . . . . . . 12 (𝑛 = 𝑖 β†’ (β„€β‰₯β€˜π‘›) = (β„€β‰₯β€˜π‘–))
8988reseq2d 5982 . . . . . . . . . . 11 (𝑛 = 𝑖 β†’ (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)) = (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)))
9089rneqd 5938 . . . . . . . . . 10 (𝑛 = 𝑖 β†’ ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)) = ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)))
9190supeq1d 9444 . . . . . . . . 9 (𝑛 = 𝑖 β†’ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ) = sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ))
92 eqcom 2738 . . . . . . . . . . 11 (𝑛 = 𝑖 ↔ 𝑖 = 𝑛)
9392imbi1i 348 . . . . . . . . . 10 ((𝑛 = 𝑖 β†’ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ) = sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < )) ↔ (𝑖 = 𝑛 β†’ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ) = sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < )))
94 eqcom 2738 . . . . . . . . . . 11 (sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ) = sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ) ↔ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ) = sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ))
9594imbi2i 335 . . . . . . . . . 10 ((𝑖 = 𝑛 β†’ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ) = sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < )) ↔ (𝑖 = 𝑛 β†’ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ) = sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < )))
9693, 95bitri 274 . . . . . . . . 9 ((𝑛 = 𝑖 β†’ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ) = sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < )) ↔ (𝑖 = 𝑛 β†’ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ) = sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < )))
9791, 96mpbi 229 . . . . . . . 8 (𝑖 = 𝑛 β†’ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ) = sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ))
9897breq2d 5161 . . . . . . 7 (𝑖 = 𝑛 β†’ (π‘₯ ≀ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ) ↔ π‘₯ ≀ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < )))
9998cbvralvw 3233 . . . . . 6 (βˆ€π‘– ∈ 𝑍 π‘₯ ≀ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ) ↔ βˆ€π‘› ∈ 𝑍 π‘₯ ≀ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ))
10099rexbii 3093 . . . . 5 (βˆƒπ‘₯ ∈ ℝ βˆ€π‘– ∈ 𝑍 π‘₯ ≀ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘–)), ℝ*, < ) ↔ βˆƒπ‘₯ ∈ ℝ βˆ€π‘› ∈ 𝑍 π‘₯ ≀ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ))
10187, 100sylib 217 . . . 4 (πœ‘ β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘› ∈ 𝑍 π‘₯ ≀ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ))
10234elexd 3494 . . . . 5 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ) ∈ V)
10337, 102rnmptbd2 44253 . . . 4 (πœ‘ β†’ (βˆƒπ‘₯ ∈ ℝ βˆ€π‘› ∈ 𝑍 π‘₯ ≀ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ) ↔ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ))π‘₯ ≀ 𝑦))
104101, 103mpbid 231 . . 3 (πœ‘ β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ))π‘₯ ≀ 𝑦)
105 infxrre 13320 . . 3 ((ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < )) βŠ† ℝ ∧ ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < )) β‰  βˆ… ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ))π‘₯ ≀ 𝑦) β†’ inf(ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < )), ℝ*, < ) = inf(ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < )), ℝ, < ))
10636, 40, 104, 105syl3anc 1370 . 2 (πœ‘ β†’ inf(ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < )), ℝ*, < ) = inf(ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < )), ℝ, < ))
107 fveq2 6892 . . . . . . . . 9 (𝑛 = π‘˜ β†’ (β„€β‰₯β€˜π‘›) = (β„€β‰₯β€˜π‘˜))
108107reseq2d 5982 . . . . . . . 8 (𝑛 = π‘˜ β†’ (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)) = (𝐹 β†Ύ (β„€β‰₯β€˜π‘˜)))
109108rneqd 5938 . . . . . . 7 (𝑛 = π‘˜ β†’ ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)) = ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘˜)))
110109supeq1d 9444 . . . . . 6 (𝑛 = π‘˜ β†’ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < ) = sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘˜)), ℝ*, < ))
111110cbvmptv 5262 . . . . 5 (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < )) = (π‘˜ ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘˜)), ℝ*, < ))
112111rneqi 5937 . . . 4 ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < )) = ran (π‘˜ ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘˜)), ℝ*, < ))
113112infeq1i 9476 . . 3 inf(ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < )), ℝ, < ) = inf(ran (π‘˜ ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘˜)), ℝ*, < )), ℝ, < )
114113a1i 11 . 2 (πœ‘ β†’ inf(ran (𝑛 ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘›)), ℝ*, < )), ℝ, < ) = inf(ran (π‘˜ ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘˜)), ℝ*, < )), ℝ, < ))
1155, 106, 1143eqtrd 2775 1 (πœ‘ β†’ (lim supβ€˜πΉ) = inf(ran (π‘˜ ∈ 𝑍 ↦ sup(ran (𝐹 β†Ύ (β„€β‰₯β€˜π‘˜)), ℝ*, < )), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   β‰  wne 2939  βˆ€wral 3060  βˆƒwrex 3069  Vcvv 3473   βŠ† wss 3949  βˆ…c0 4323   class class class wbr 5149   ↦ cmpt 5232  ran crn 5678   β†Ύ cres 5679   Fn wfn 6539  βŸΆwf 6540  β€˜cfv 6544  supcsup 9438  infcinf 9439  β„cr 11112  β„*cxr 11252   < clt 11253   ≀ cle 11254  β„€cz 12563  β„€β‰₯cuz 12827  lim supclsp 15419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-sup 9440  df-inf 9441  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-n0 12478  df-z 12564  df-uz 12828  df-ico 13335  df-fz 13490  df-fl 13762  df-ceil 13763  df-limsup 15420
This theorem is referenced by:  supcnvlimsup  44756
  Copyright terms: Public domain W3C validator