| Step | Hyp | Ref
| Expression |
| 1 | | xlimmnfv.m |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 2 | 1 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ 𝐹~~>*-∞) ∧ 𝑥 ∈ ℝ) → 𝑀 ∈ ℤ) |
| 3 | | xlimmnfv.z |
. . . 4
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 4 | | xlimmnfv.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
| 5 | 4 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ 𝐹~~>*-∞) ∧ 𝑥 ∈ ℝ) → 𝐹:𝑍⟶ℝ*) |
| 6 | | simplr 769 |
. . . 4
⊢ (((𝜑 ∧ 𝐹~~>*-∞) ∧ 𝑥 ∈ ℝ) → 𝐹~~>*-∞) |
| 7 | | simpr 484 |
. . . 4
⊢ (((𝜑 ∧ 𝐹~~>*-∞) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) |
| 8 | 2, 3, 5, 6, 7 | xlimmnfvlem1 45847 |
. . 3
⊢ (((𝜑 ∧ 𝐹~~>*-∞) ∧ 𝑥 ∈ ℝ) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) |
| 9 | 8 | ralrimiva 3146 |
. 2
⊢ ((𝜑 ∧ 𝐹~~>*-∞) → ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) |
| 10 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑘𝜑 |
| 11 | | nfcv 2905 |
. . . . 5
⊢
Ⅎ𝑘ℝ |
| 12 | | nfcv 2905 |
. . . . . 6
⊢
Ⅎ𝑘𝑍 |
| 13 | | nfra1 3284 |
. . . . . 6
⊢
Ⅎ𝑘∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥 |
| 14 | 12, 13 | nfrexw 3313 |
. . . . 5
⊢
Ⅎ𝑘∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥 |
| 15 | 11, 14 | nfralw 3311 |
. . . 4
⊢
Ⅎ𝑘∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥 |
| 16 | 10, 15 | nfan 1899 |
. . 3
⊢
Ⅎ𝑘(𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) |
| 17 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑗𝜑 |
| 18 | | nfcv 2905 |
. . . . 5
⊢
Ⅎ𝑗ℝ |
| 19 | | nfre1 3285 |
. . . . 5
⊢
Ⅎ𝑗∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥 |
| 20 | 18, 19 | nfralw 3311 |
. . . 4
⊢
Ⅎ𝑗∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥 |
| 21 | 17, 20 | nfan 1899 |
. . 3
⊢
Ⅎ𝑗(𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) |
| 22 | 1 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) → 𝑀 ∈ ℤ) |
| 23 | 4 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) → 𝐹:𝑍⟶ℝ*) |
| 24 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑗 𝑦 ∈ ℝ |
| 25 | 21, 24 | nfan 1899 |
. . . . 5
⊢
Ⅎ𝑗((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) ∧ 𝑦 ∈ ℝ) |
| 26 | 4 | 3ad2ant1 1134 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝐹:𝑍⟶ℝ*) |
| 27 | 3 | uztrn2 12897 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
| 28 | 27 | 3adant1 1131 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
| 29 | 26, 28 | ffvelcdmd 7105 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈
ℝ*) |
| 30 | 29 | ad5ant134 1369 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ (𝐹‘𝑘) ≤ (𝑦 − 1)) → (𝐹‘𝑘) ∈
ℝ*) |
| 31 | | simp-4r 784 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ (𝐹‘𝑘) ≤ (𝑦 − 1)) → 𝑦 ∈ ℝ) |
| 32 | | peano2rem 11576 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℝ → (𝑦 − 1) ∈
ℝ) |
| 33 | 32 | rexrd 11311 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ → (𝑦 − 1) ∈
ℝ*) |
| 34 | 31, 33 | syl 17 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ (𝐹‘𝑘) ≤ (𝑦 − 1)) → (𝑦 − 1) ∈
ℝ*) |
| 35 | | rexr 11307 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℝ*) |
| 36 | 35 | ad4antlr 733 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ (𝐹‘𝑘) ≤ (𝑦 − 1)) → 𝑦 ∈ ℝ*) |
| 37 | | simpr 484 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ (𝐹‘𝑘) ≤ (𝑦 − 1)) → (𝐹‘𝑘) ≤ (𝑦 − 1)) |
| 38 | 31 | ltm1d 12200 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ (𝐹‘𝑘) ≤ (𝑦 − 1)) → (𝑦 − 1) < 𝑦) |
| 39 | 30, 34, 36, 37, 38 | xrlelttrd 13202 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ (𝐹‘𝑘) ≤ (𝑦 − 1)) → (𝐹‘𝑘) < 𝑦) |
| 40 | 39 | ex 412 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹‘𝑘) ≤ (𝑦 − 1) → (𝐹‘𝑘) < 𝑦)) |
| 41 | 40 | ralimdva 3167 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ (𝑦 − 1) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) < 𝑦)) |
| 42 | 41 | imp 406 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ (𝑦 − 1)) → ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) < 𝑦) |
| 43 | 42 | adantl3r 750 |
. . . . . 6
⊢
(((((𝜑 ∧
∀𝑥 ∈ ℝ
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ (𝑦 − 1)) → ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) < 𝑦) |
| 44 | 43 | 3impa 1110 |
. . . . 5
⊢ ((((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ (𝑦 − 1)) → ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) < 𝑦) |
| 45 | 32 | adantl 481 |
. . . . . . 7
⊢
((∀𝑥 ∈
ℝ ∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥 ∧ 𝑦 ∈ ℝ) → (𝑦 − 1) ∈ ℝ) |
| 46 | | simpl 482 |
. . . . . . 7
⊢
((∀𝑥 ∈
ℝ ∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥 ∧ 𝑦 ∈ ℝ) → ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) |
| 47 | | breq2 5147 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 − 1) → ((𝐹‘𝑘) ≤ 𝑥 ↔ (𝐹‘𝑘) ≤ (𝑦 − 1))) |
| 48 | 47 | ralbidv 3178 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 − 1) → (∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ (𝑦 − 1))) |
| 49 | 48 | rexbidv 3179 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 − 1) → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ (𝑦 − 1))) |
| 50 | 49 | rspcva 3620 |
. . . . . . 7
⊢ (((𝑦 − 1) ∈ ℝ ∧
∀𝑥 ∈ ℝ
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ (𝑦 − 1)) |
| 51 | 45, 46, 50 | syl2anc 584 |
. . . . . 6
⊢
((∀𝑥 ∈
ℝ ∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥 ∧ 𝑦 ∈ ℝ) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ (𝑦 − 1)) |
| 52 | 51 | adantll 714 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) ∧ 𝑦 ∈ ℝ) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ (𝑦 − 1)) |
| 53 | 25, 44, 52 | reximdd 45153 |
. . . 4
⊢ (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) ∧ 𝑦 ∈ ℝ) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) < 𝑦) |
| 54 | 53 | ralrimiva 3146 |
. . 3
⊢ ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) → ∀𝑦 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) < 𝑦) |
| 55 | 16, 21, 22, 3, 23, 54 | xlimmnfvlem2 45848 |
. 2
⊢ ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) → 𝐹~~>*-∞) |
| 56 | 9, 55 | impbida 801 |
1
⊢ (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥)) |