Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimmnfv Structured version   Visualization version   GIF version

Theorem xlimmnfv 42107
Description: A function converges to minus infinity if it eventually becomes (and stays) smaller than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimmnfv.m (𝜑𝑀 ∈ ℤ)
xlimmnfv.z 𝑍 = (ℤ𝑀)
xlimmnfv.f (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
xlimmnfv (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥))
Distinct variable groups:   𝑗,𝐹,𝑘,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝑀(𝑥,𝑘)

Proof of Theorem xlimmnfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 xlimmnfv.m . . . . 5 (𝜑𝑀 ∈ ℤ)
21ad2antrr 724 . . . 4 (((𝜑𝐹~~>*-∞) ∧ 𝑥 ∈ ℝ) → 𝑀 ∈ ℤ)
3 xlimmnfv.z . . . 4 𝑍 = (ℤ𝑀)
4 xlimmnfv.f . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
54ad2antrr 724 . . . 4 (((𝜑𝐹~~>*-∞) ∧ 𝑥 ∈ ℝ) → 𝐹:𝑍⟶ℝ*)
6 simplr 767 . . . 4 (((𝜑𝐹~~>*-∞) ∧ 𝑥 ∈ ℝ) → 𝐹~~>*-∞)
7 simpr 487 . . . 4 (((𝜑𝐹~~>*-∞) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
82, 3, 5, 6, 7xlimmnfvlem1 42105 . . 3 (((𝜑𝐹~~>*-∞) ∧ 𝑥 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)
98ralrimiva 3182 . 2 ((𝜑𝐹~~>*-∞) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)
10 nfv 1911 . . . 4 𝑘𝜑
11 nfcv 2977 . . . . 5 𝑘
12 nfcv 2977 . . . . . 6 𝑘𝑍
13 nfra1 3219 . . . . . 6 𝑘𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥
1412, 13nfrex 3309 . . . . 5 𝑘𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥
1511, 14nfralw 3225 . . . 4 𝑘𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥
1610, 15nfan 1896 . . 3 𝑘(𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)
17 nfv 1911 . . . 4 𝑗𝜑
18 nfcv 2977 . . . . 5 𝑗
19 nfre1 3306 . . . . 5 𝑗𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥
2018, 19nfralw 3225 . . . 4 𝑗𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥
2117, 20nfan 1896 . . 3 𝑗(𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)
221adantr 483 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) → 𝑀 ∈ ℤ)
234adantr 483 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) → 𝐹:𝑍⟶ℝ*)
24 nfv 1911 . . . . . 6 𝑗 𝑦 ∈ ℝ
2521, 24nfan 1896 . . . . 5 𝑗((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∧ 𝑦 ∈ ℝ)
2643ad2ant1 1129 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝐹:𝑍⟶ℝ*)
273uztrn2 12256 . . . . . . . . . . . . . 14 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
28273adant1 1126 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2926, 28ffvelrnd 6847 . . . . . . . . . . . 12 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ*)
3029ad5ant134 1363 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) ≤ (𝑦 − 1)) → (𝐹𝑘) ∈ ℝ*)
31 simp-4r 782 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) ≤ (𝑦 − 1)) → 𝑦 ∈ ℝ)
32 peano2rem 10947 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → (𝑦 − 1) ∈ ℝ)
3332rexrd 10685 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (𝑦 − 1) ∈ ℝ*)
3431, 33syl 17 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) ≤ (𝑦 − 1)) → (𝑦 − 1) ∈ ℝ*)
35 rexr 10681 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
3635ad4antlr 731 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) ≤ (𝑦 − 1)) → 𝑦 ∈ ℝ*)
37 simpr 487 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) ≤ (𝑦 − 1)) → (𝐹𝑘) ≤ (𝑦 − 1))
3831ltm1d 11566 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) ≤ (𝑦 − 1)) → (𝑦 − 1) < 𝑦)
3930, 34, 36, 37, 38xrlelttrd 12547 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) ≤ (𝑦 − 1)) → (𝐹𝑘) < 𝑦)
4039ex 415 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ≤ (𝑦 − 1) → (𝐹𝑘) < 𝑦))
4140ralimdva 3177 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ (𝑦 − 1) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑦))
4241imp 409 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ (𝑦 − 1)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑦)
4342adantl3r 748 . . . . . 6 (((((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ (𝑦 − 1)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑦)
44433impa 1106 . . . . 5 ((((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ (𝑦 − 1)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑦)
4532adantl 484 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥𝑦 ∈ ℝ) → (𝑦 − 1) ∈ ℝ)
46 simpl 485 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥𝑦 ∈ ℝ) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)
47 breq2 5063 . . . . . . . . . 10 (𝑥 = (𝑦 − 1) → ((𝐹𝑘) ≤ 𝑥 ↔ (𝐹𝑘) ≤ (𝑦 − 1)))
4847ralbidv 3197 . . . . . . . . 9 (𝑥 = (𝑦 − 1) → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ (𝑦 − 1)))
4948rexbidv 3297 . . . . . . . 8 (𝑥 = (𝑦 − 1) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ (𝑦 − 1)))
5049rspcva 3621 . . . . . . 7 (((𝑦 − 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ (𝑦 − 1))
5145, 46, 50syl2anc 586 . . . . . 6 ((∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥𝑦 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ (𝑦 − 1))
5251adantll 712 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∧ 𝑦 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ (𝑦 − 1))
5325, 44, 52reximdd 41413 . . . 4 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∧ 𝑦 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑦)
5453ralrimiva 3182 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) → ∀𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑦)
5516, 21, 22, 3, 23, 54xlimmnfvlem2 42106 . 2 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) → 𝐹~~>*-∞)
569, 55impbida 799 1 (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wrex 3139   class class class wbr 5059  wf 6346  cfv 6350  (class class class)co 7150  cr 10530  1c1 10532  -∞cmnf 10667  *cxr 10668   < clt 10669  cle 10670  cmin 10864  cz 11975  cuz 12237  ~~>*clsxlim 42091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-z 11976  df-uz 12238  df-ioo 12736  df-ioc 12737  df-ico 12738  df-icc 12739  df-topgen 16711  df-ordt 16768  df-ps 17804  df-tsr 17805  df-top 21496  df-topon 21513  df-bases 21548  df-lm 21831  df-xlim 42092
This theorem is referenced by:  xlimmnf  42114  xlimmnflimsup2  42125  xlimmnflimsup  42129
  Copyright terms: Public domain W3C validator