Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimmnfv Structured version   Visualization version   GIF version

Theorem xlimmnfv 45251
Description: A function converges to minus infinity if it eventually becomes (and stays) smaller than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimmnfv.m (𝜑𝑀 ∈ ℤ)
xlimmnfv.z 𝑍 = (ℤ𝑀)
xlimmnfv.f (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
xlimmnfv (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥))
Distinct variable groups:   𝑗,𝐹,𝑘,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝑀(𝑥,𝑘)

Proof of Theorem xlimmnfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 xlimmnfv.m . . . . 5 (𝜑𝑀 ∈ ℤ)
21ad2antrr 724 . . . 4 (((𝜑𝐹~~>*-∞) ∧ 𝑥 ∈ ℝ) → 𝑀 ∈ ℤ)
3 xlimmnfv.z . . . 4 𝑍 = (ℤ𝑀)
4 xlimmnfv.f . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
54ad2antrr 724 . . . 4 (((𝜑𝐹~~>*-∞) ∧ 𝑥 ∈ ℝ) → 𝐹:𝑍⟶ℝ*)
6 simplr 767 . . . 4 (((𝜑𝐹~~>*-∞) ∧ 𝑥 ∈ ℝ) → 𝐹~~>*-∞)
7 simpr 483 . . . 4 (((𝜑𝐹~~>*-∞) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
82, 3, 5, 6, 7xlimmnfvlem1 45249 . . 3 (((𝜑𝐹~~>*-∞) ∧ 𝑥 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)
98ralrimiva 3143 . 2 ((𝜑𝐹~~>*-∞) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)
10 nfv 1909 . . . 4 𝑘𝜑
11 nfcv 2899 . . . . 5 𝑘
12 nfcv 2899 . . . . . 6 𝑘𝑍
13 nfra1 3279 . . . . . 6 𝑘𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥
1412, 13nfrexw 3308 . . . . 5 𝑘𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥
1511, 14nfralw 3306 . . . 4 𝑘𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥
1610, 15nfan 1894 . . 3 𝑘(𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)
17 nfv 1909 . . . 4 𝑗𝜑
18 nfcv 2899 . . . . 5 𝑗
19 nfre1 3280 . . . . 5 𝑗𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥
2018, 19nfralw 3306 . . . 4 𝑗𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥
2117, 20nfan 1894 . . 3 𝑗(𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)
221adantr 479 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) → 𝑀 ∈ ℤ)
234adantr 479 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) → 𝐹:𝑍⟶ℝ*)
24 nfv 1909 . . . . . 6 𝑗 𝑦 ∈ ℝ
2521, 24nfan 1894 . . . . 5 𝑗((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∧ 𝑦 ∈ ℝ)
2643ad2ant1 1130 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝐹:𝑍⟶ℝ*)
273uztrn2 12879 . . . . . . . . . . . . . 14 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
28273adant1 1127 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2926, 28ffvelcdmd 7100 . . . . . . . . . . . 12 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ*)
3029ad5ant134 1364 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) ≤ (𝑦 − 1)) → (𝐹𝑘) ∈ ℝ*)
31 simp-4r 782 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) ≤ (𝑦 − 1)) → 𝑦 ∈ ℝ)
32 peano2rem 11565 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → (𝑦 − 1) ∈ ℝ)
3332rexrd 11302 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (𝑦 − 1) ∈ ℝ*)
3431, 33syl 17 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) ≤ (𝑦 − 1)) → (𝑦 − 1) ∈ ℝ*)
35 rexr 11298 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
3635ad4antlr 731 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) ≤ (𝑦 − 1)) → 𝑦 ∈ ℝ*)
37 simpr 483 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) ≤ (𝑦 − 1)) → (𝐹𝑘) ≤ (𝑦 − 1))
3831ltm1d 12184 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) ≤ (𝑦 − 1)) → (𝑦 − 1) < 𝑦)
3930, 34, 36, 37, 38xrlelttrd 13179 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) ≤ (𝑦 − 1)) → (𝐹𝑘) < 𝑦)
4039ex 411 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ≤ (𝑦 − 1) → (𝐹𝑘) < 𝑦))
4140ralimdva 3164 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ (𝑦 − 1) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑦))
4241imp 405 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ (𝑦 − 1)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑦)
4342adantl3r 748 . . . . . 6 (((((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ (𝑦 − 1)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑦)
44433impa 1107 . . . . 5 ((((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ (𝑦 − 1)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑦)
4532adantl 480 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥𝑦 ∈ ℝ) → (𝑦 − 1) ∈ ℝ)
46 simpl 481 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥𝑦 ∈ ℝ) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)
47 breq2 5156 . . . . . . . . . 10 (𝑥 = (𝑦 − 1) → ((𝐹𝑘) ≤ 𝑥 ↔ (𝐹𝑘) ≤ (𝑦 − 1)))
4847ralbidv 3175 . . . . . . . . 9 (𝑥 = (𝑦 − 1) → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ (𝑦 − 1)))
4948rexbidv 3176 . . . . . . . 8 (𝑥 = (𝑦 − 1) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ (𝑦 − 1)))
5049rspcva 3609 . . . . . . 7 (((𝑦 − 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ (𝑦 − 1))
5145, 46, 50syl2anc 582 . . . . . 6 ((∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥𝑦 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ (𝑦 − 1))
5251adantll 712 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∧ 𝑦 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ (𝑦 − 1))
5325, 44, 52reximdd 44548 . . . 4 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∧ 𝑦 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑦)
5453ralrimiva 3143 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) → ∀𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑦)
5516, 21, 22, 3, 23, 54xlimmnfvlem2 45250 . 2 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) → 𝐹~~>*-∞)
569, 55impbida 799 1 (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3058  wrex 3067   class class class wbr 5152  wf 6549  cfv 6553  (class class class)co 7426  cr 11145  1c1 11147  -∞cmnf 11284  *cxr 11285   < clt 11286  cle 11287  cmin 11482  cz 12596  cuz 12860  ~~>*clsxlim 45235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-1o 8493  df-er 8731  df-pm 8854  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fi 9442  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-z 12597  df-uz 12861  df-ioo 13368  df-ioc 13369  df-ico 13370  df-icc 13371  df-topgen 17432  df-ordt 17490  df-ps 18565  df-tsr 18566  df-top 22816  df-topon 22833  df-bases 22869  df-lm 23153  df-xlim 45236
This theorem is referenced by:  xlimmnf  45258  xlimmnflimsup2  45269  xlimmnflimsup  45273
  Copyright terms: Public domain W3C validator