| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nfv 1914 | . . . 4
⊢
Ⅎ𝑗𝜑 | 
| 2 |  | limsupgtlem.m | . . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 3 |  | limsupgtlem.z | . . . . 5
⊢ 𝑍 =
(ℤ≥‘𝑀) | 
| 4 | 2, 3 | uzn0d 45436 | . . . 4
⊢ (𝜑 → 𝑍 ≠ ∅) | 
| 5 |  | rnresss 6035 | . . . . . . . 8
⊢ ran
(𝐹 ↾
(ℤ≥‘𝑗)) ⊆ ran 𝐹 | 
| 6 | 5 | a1i 11 | . . . . . . 7
⊢ (𝜑 → ran (𝐹 ↾ (ℤ≥‘𝑗)) ⊆ ran 𝐹) | 
| 7 |  | limsupgtlem.f | . . . . . . . . 9
⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | 
| 8 | 7 | frexr 45396 | . . . . . . . 8
⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | 
| 9 | 8 | frnd 6744 | . . . . . . 7
⊢ (𝜑 → ran 𝐹 ⊆
ℝ*) | 
| 10 | 6, 9 | sstrd 3994 | . . . . . 6
⊢ (𝜑 → ran (𝐹 ↾ (ℤ≥‘𝑗)) ⊆
ℝ*) | 
| 11 | 10 | supxrcld 45112 | . . . . 5
⊢ (𝜑 → sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, < )
∈ ℝ*) | 
| 12 | 11 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, < )
∈ ℝ*) | 
| 13 |  | limsupgtlem.r | . . . . . . 7
⊢ (𝜑 → (lim sup‘𝐹) ∈
ℝ) | 
| 14 |  | nfcv 2905 | . . . . . . . 8
⊢
Ⅎ𝑘𝐹 | 
| 15 | 14, 2, 3, 7 | limsupreuz 45752 | . . . . . . 7
⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔
(∃𝑥 ∈ ℝ
∀𝑗 ∈ 𝑍 ∃𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘) ∧ ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ≤ 𝑥))) | 
| 16 | 13, 15 | mpbid 232 | . . . . . 6
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 ∃𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘) ∧ ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ≤ 𝑥)) | 
| 17 | 16 | simpld 494 | . . . . 5
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 ∃𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘)) | 
| 18 |  | rexr 11307 | . . . . . . . . . 10
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℝ*) | 
| 19 | 18 | ad4antlr 733 | . . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑥 ≤ (𝐹‘𝑘)) → 𝑥 ∈ ℝ*) | 
| 20 | 7 | ad2antrr 726 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝐹:𝑍⟶ℝ) | 
| 21 | 3 | uztrn2 12897 | . . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) | 
| 22 | 21 | adantll 714 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) | 
| 23 | 20, 22 | ffvelcdmd 7105 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ ℝ) | 
| 24 | 23 | rexrd 11311 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈
ℝ*) | 
| 25 | 24 | 3impa 1110 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈
ℝ*) | 
| 26 | 25 | ad5ant134 1369 | . . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑥 ≤ (𝐹‘𝑘)) → (𝐹‘𝑘) ∈
ℝ*) | 
| 27 | 11 | ad4antr 732 | . . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑥 ≤ (𝐹‘𝑘)) → sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, < )
∈ ℝ*) | 
| 28 |  | simpr 484 | . . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑥 ≤ (𝐹‘𝑘)) → 𝑥 ≤ (𝐹‘𝑘)) | 
| 29 | 10 | ad2antrr 726 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ran (𝐹 ↾ (ℤ≥‘𝑗)) ⊆
ℝ*) | 
| 30 |  | fvres 6925 | . . . . . . . . . . . . . . 15
⊢ (𝑘 ∈
(ℤ≥‘𝑗) → ((𝐹 ↾ (ℤ≥‘𝑗))‘𝑘) = (𝐹‘𝑘)) | 
| 31 | 30 | eqcomd 2743 | . . . . . . . . . . . . . 14
⊢ (𝑘 ∈
(ℤ≥‘𝑗) → (𝐹‘𝑘) = ((𝐹 ↾ (ℤ≥‘𝑗))‘𝑘)) | 
| 32 | 31 | adantl 481 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) = ((𝐹 ↾ (ℤ≥‘𝑗))‘𝑘)) | 
| 33 | 7 | ffnd 6737 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐹 Fn 𝑍) | 
| 34 | 33 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐹 Fn 𝑍) | 
| 35 | 22 | ssd 45085 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (ℤ≥‘𝑗) ⊆ 𝑍) | 
| 36 |  | fnssres 6691 | . . . . . . . . . . . . . . . 16
⊢ ((𝐹 Fn 𝑍 ∧ (ℤ≥‘𝑗) ⊆ 𝑍) → (𝐹 ↾ (ℤ≥‘𝑗)) Fn
(ℤ≥‘𝑗)) | 
| 37 | 34, 35, 36 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹 ↾ (ℤ≥‘𝑗)) Fn
(ℤ≥‘𝑗)) | 
| 38 | 37 | adantr 480 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹 ↾ (ℤ≥‘𝑗)) Fn
(ℤ≥‘𝑗)) | 
| 39 |  | simpr 484 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ (ℤ≥‘𝑗)) | 
| 40 | 38, 39 | fnfvelrnd 7102 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹 ↾ (ℤ≥‘𝑗))‘𝑘) ∈ ran (𝐹 ↾ (ℤ≥‘𝑗))) | 
| 41 | 32, 40 | eqeltrd 2841 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ ran (𝐹 ↾ (ℤ≥‘𝑗))) | 
| 42 |  | eqid 2737 | . . . . . . . . . . . 12
⊢ sup(ran
(𝐹 ↾
(ℤ≥‘𝑗)), ℝ*, < ) = sup(ran
(𝐹 ↾
(ℤ≥‘𝑗)), ℝ*, <
) | 
| 43 | 29, 41, 42 | supxrubd 45118 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, <
)) | 
| 44 | 43 | 3impa 1110 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, <
)) | 
| 45 | 44 | ad5ant134 1369 | . . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑥 ≤ (𝐹‘𝑘)) → (𝐹‘𝑘) ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, <
)) | 
| 46 | 19, 26, 27, 28, 45 | xrletrd 13204 | . . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) ∧ 𝑥 ≤ (𝐹‘𝑘)) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, <
)) | 
| 47 | 46 | rexlimdva2 3157 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝑍) → (∃𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, <
))) | 
| 48 | 47 | ralimdva 3167 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑗 ∈ 𝑍 ∃𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘) → ∀𝑗 ∈ 𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, <
))) | 
| 49 | 48 | reximdva 3168 | . . . . 5
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 ∃𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, <
))) | 
| 50 | 17, 49 | mpd 15 | . . . 4
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, <
)) | 
| 51 |  | limsupgtlem.x | . . . . 5
⊢ (𝜑 → 𝑋 ∈
ℝ+) | 
| 52 | 51 | rphalfcld 13089 | . . . 4
⊢ (𝜑 → (𝑋 / 2) ∈
ℝ+) | 
| 53 | 1, 4, 12, 50, 52 | infrpgernmpt 45476 | . . 3
⊢ (𝜑 → ∃𝑗 ∈ 𝑍 sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, < )
≤ (inf(ran (𝑗 ∈
𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑗)), ℝ*, < )),
ℝ*, < ) +𝑒 (𝑋 / 2))) | 
| 54 |  | simp3 1139 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, < )
≤ (inf(ran (𝑗 ∈
𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑗)), ℝ*, < )),
ℝ*, < ) +𝑒 (𝑋 / 2))) → sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, < )
≤ (inf(ran (𝑗 ∈
𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑗)), ℝ*, < )),
ℝ*, < ) +𝑒 (𝑋 / 2))) | 
| 55 | 2, 3, 8 | limsupvaluz 45723 | . . . . . . . . . 10
⊢ (𝜑 → (lim sup‘𝐹) = inf(ran (𝑗 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, <
)), ℝ*, < )) | 
| 56 | 55 | eqcomd 2743 | . . . . . . . . 9
⊢ (𝜑 → inf(ran (𝑗 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, <
)), ℝ*, < ) = (lim sup‘𝐹)) | 
| 57 | 56 | oveq1d 7446 | . . . . . . . 8
⊢ (𝜑 → (inf(ran (𝑗 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, <
)), ℝ*, < ) +𝑒 (𝑋 / 2)) = ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) | 
| 58 | 57 | 3ad2ant1 1134 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, < )
≤ (inf(ran (𝑗 ∈
𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑗)), ℝ*, < )),
ℝ*, < ) +𝑒 (𝑋 / 2))) → (inf(ran (𝑗 ∈ 𝑍 ↦ sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, <
)), ℝ*, < ) +𝑒 (𝑋 / 2)) = ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) | 
| 59 | 54, 58 | breqtrd 5169 | . . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, < )
≤ (inf(ran (𝑗 ∈
𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑗)), ℝ*, < )),
ℝ*, < ) +𝑒 (𝑋 / 2))) → sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, < )
≤ ((lim sup‘𝐹)
+𝑒 (𝑋 /
2))) | 
| 60 | 24 | 3adantl3 1169 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, < )
≤ ((lim sup‘𝐹)
+𝑒 (𝑋 /
2))) ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈
ℝ*) | 
| 61 |  | simpl1 1192 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, < )
≤ ((lim sup‘𝐹)
+𝑒 (𝑋 /
2))) ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → 𝜑) | 
| 62 | 61, 11 | syl 17 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, < )
≤ ((lim sup‘𝐹)
+𝑒 (𝑋 /
2))) ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, < )
∈ ℝ*) | 
| 63 | 3 | fvexi 6920 | . . . . . . . . . . . . . . 15
⊢ 𝑍 ∈ V | 
| 64 | 63 | a1i 11 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑍 ∈ V) | 
| 65 | 7, 64 | fexd 7247 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 ∈ V) | 
| 66 | 65 | limsupcld 45705 | . . . . . . . . . . . 12
⊢ (𝜑 → (lim sup‘𝐹) ∈
ℝ*) | 
| 67 | 51 | rpred 13077 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 ∈ ℝ) | 
| 68 | 67 | rehalfcld 12513 | . . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋 / 2) ∈ ℝ) | 
| 69 | 68 | rexrd 11311 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝑋 / 2) ∈
ℝ*) | 
| 70 | 66, 69 | xaddcld 13343 | . . . . . . . . . . 11
⊢ (𝜑 → ((lim sup‘𝐹) +𝑒 (𝑋 / 2)) ∈
ℝ*) | 
| 71 | 61, 70 | syl 17 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, < )
≤ ((lim sup‘𝐹)
+𝑒 (𝑋 /
2))) ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → ((lim sup‘𝐹) +𝑒 (𝑋 / 2)) ∈
ℝ*) | 
| 72 | 43 | 3adantl3 1169 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, < )
≤ ((lim sup‘𝐹)
+𝑒 (𝑋 /
2))) ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → (𝐹‘𝑘) ≤ sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, <
)) | 
| 73 |  | simpl3 1194 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, < )
≤ ((lim sup‘𝐹)
+𝑒 (𝑋 /
2))) ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, < )
≤ ((lim sup‘𝐹)
+𝑒 (𝑋 /
2))) | 
| 74 | 60, 62, 71, 72, 73 | xrletrd 13204 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, < )
≤ ((lim sup‘𝐹)
+𝑒 (𝑋 /
2))) ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → (𝐹‘𝑘) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) | 
| 75 | 13, 68 | rexaddd 13276 | . . . . . . . . . 10
⊢ (𝜑 → ((lim sup‘𝐹) +𝑒 (𝑋 / 2)) = ((lim sup‘𝐹) + (𝑋 / 2))) | 
| 76 | 61, 75 | syl 17 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, < )
≤ ((lim sup‘𝐹)
+𝑒 (𝑋 /
2))) ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → ((lim sup‘𝐹) +𝑒 (𝑋 / 2)) = ((lim sup‘𝐹) + (𝑋 / 2))) | 
| 77 | 74, 76 | breqtrd 5169 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, < )
≤ ((lim sup‘𝐹)
+𝑒 (𝑋 /
2))) ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → (𝐹‘𝑘) ≤ ((lim sup‘𝐹) + (𝑋 / 2))) | 
| 78 | 68 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝑋 / 2) ∈ ℝ) | 
| 79 | 13 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (lim sup‘𝐹) ∈
ℝ) | 
| 80 | 23, 78, 79 | lesubaddd 11860 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((𝐹‘𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹) ↔ (𝐹‘𝑘) ≤ ((lim sup‘𝐹) + (𝑋 / 2)))) | 
| 81 | 80 | 3adantl3 1169 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, < )
≤ ((lim sup‘𝐹)
+𝑒 (𝑋 /
2))) ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → (((𝐹‘𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹) ↔ (𝐹‘𝑘) ≤ ((lim sup‘𝐹) + (𝑋 / 2)))) | 
| 82 | 77, 81 | mpbird 257 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, < )
≤ ((lim sup‘𝐹)
+𝑒 (𝑋 /
2))) ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → ((𝐹‘𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)) | 
| 83 | 82 | ralrimiva 3146 | . . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, < )
≤ ((lim sup‘𝐹)
+𝑒 (𝑋 /
2))) → ∀𝑘
∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)) | 
| 84 | 59, 83 | syld3an3 1411 | . . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍 ∧ sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, < )
≤ (inf(ran (𝑗 ∈
𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑗)), ℝ*, < )),
ℝ*, < ) +𝑒 (𝑋 / 2))) → ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)) | 
| 85 | 84 | 3exp 1120 | . . . 4
⊢ (𝜑 → (𝑗 ∈ 𝑍 → (sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, < )
≤ (inf(ran (𝑗 ∈
𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑗)), ℝ*, < )),
ℝ*, < ) +𝑒 (𝑋 / 2)) → ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)))) | 
| 86 | 1, 85 | reximdai 3261 | . . 3
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 sup(ran (𝐹 ↾ (ℤ≥‘𝑗)), ℝ*, < )
≤ (inf(ran (𝑗 ∈
𝑍 ↦ sup(ran (𝐹 ↾
(ℤ≥‘𝑗)), ℝ*, < )),
ℝ*, < ) +𝑒 (𝑋 / 2)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹))) | 
| 87 | 53, 86 | mpd 15 | . 2
⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)) | 
| 88 |  | simpll 767 | . . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝜑) | 
| 89 | 7 | ffvelcdmda 7104 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) | 
| 90 | 67 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑋 ∈ ℝ) | 
| 91 | 89, 90 | resubcld 11691 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) − 𝑋) ∈ ℝ) | 
| 92 | 91 | adantr 480 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ ((𝐹‘𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)) → ((𝐹‘𝑘) − 𝑋) ∈ ℝ) | 
| 93 | 68 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑋 / 2) ∈ ℝ) | 
| 94 | 89, 93 | resubcld 11691 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) − (𝑋 / 2)) ∈ ℝ) | 
| 95 | 94 | adantr 480 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ ((𝐹‘𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)) → ((𝐹‘𝑘) − (𝑋 / 2)) ∈ ℝ) | 
| 96 | 13 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ ((𝐹‘𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)) → (lim sup‘𝐹) ∈ ℝ) | 
| 97 | 51 | rphalfltd 45466 | . . . . . . . . . 10
⊢ (𝜑 → (𝑋 / 2) < 𝑋) | 
| 98 | 97 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑋 / 2) < 𝑋) | 
| 99 | 93, 90, 89, 98 | ltsub2dd 11876 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) − 𝑋) < ((𝐹‘𝑘) − (𝑋 / 2))) | 
| 100 | 99 | adantr 480 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ ((𝐹‘𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)) → ((𝐹‘𝑘) − 𝑋) < ((𝐹‘𝑘) − (𝑋 / 2))) | 
| 101 |  | simpr 484 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ ((𝐹‘𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)) → ((𝐹‘𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)) | 
| 102 | 92, 95, 96, 100, 101 | ltletrd 11421 | . . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ ((𝐹‘𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)) → ((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹)) | 
| 103 | 102 | ex 412 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((𝐹‘𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹) → ((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹))) | 
| 104 | 88, 22, 103 | syl2anc 584 | . . . 4
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((𝐹‘𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹) → ((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹))) | 
| 105 | 104 | ralimdva 3167 | . . 3
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹) → ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹))) | 
| 106 | 105 | reximdva 3168 | . 2
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹))) | 
| 107 | 87, 106 | mpd 15 | 1
⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) − 𝑋) < (lim sup‘𝐹)) |