Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupgtlem Structured version   Visualization version   GIF version

Theorem limsupgtlem 43318
Description: For any positive real, the superior limit of F is larger than any of its values at large enough arguments, up to that positive real. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
limsupgtlem.m (𝜑𝑀 ∈ ℤ)
limsupgtlem.z 𝑍 = (ℤ𝑀)
limsupgtlem.f (𝜑𝐹:𝑍⟶ℝ)
limsupgtlem.r (𝜑 → (lim sup‘𝐹) ∈ ℝ)
limsupgtlem.x (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
limsupgtlem (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
Distinct variable groups:   𝑗,𝐹,𝑘   𝑗,𝑋,𝑘   𝑗,𝑍,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝑀(𝑗,𝑘)

Proof of Theorem limsupgtlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nfv 1917 . . . 4 𝑗𝜑
2 limsupgtlem.m . . . . 5 (𝜑𝑀 ∈ ℤ)
3 limsupgtlem.z . . . . 5 𝑍 = (ℤ𝑀)
42, 3uzn0d 42965 . . . 4 (𝜑𝑍 ≠ ∅)
5 rnresss 5927 . . . . . . . 8 ran (𝐹 ↾ (ℤ𝑗)) ⊆ ran 𝐹
65a1i 11 . . . . . . 7 (𝜑 → ran (𝐹 ↾ (ℤ𝑗)) ⊆ ran 𝐹)
7 limsupgtlem.f . . . . . . . . 9 (𝜑𝐹:𝑍⟶ℝ)
87frexr 42924 . . . . . . . 8 (𝜑𝐹:𝑍⟶ℝ*)
98frnd 6608 . . . . . . 7 (𝜑 → ran 𝐹 ⊆ ℝ*)
106, 9sstrd 3931 . . . . . 6 (𝜑 → ran (𝐹 ↾ (ℤ𝑗)) ⊆ ℝ*)
1110supxrcld 42657 . . . . 5 (𝜑 → sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ∈ ℝ*)
1211adantr 481 . . . 4 ((𝜑𝑗𝑍) → sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ∈ ℝ*)
13 limsupgtlem.r . . . . . . 7 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
14 nfcv 2907 . . . . . . . 8 𝑘𝐹
1514, 2, 3, 7limsupreuz 43278 . . . . . . 7 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ∧ ∃𝑥 ∈ ℝ ∀𝑘𝑍 (𝐹𝑘) ≤ 𝑥)))
1613, 15mpbid 231 . . . . . 6 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ∧ ∃𝑥 ∈ ℝ ∀𝑘𝑍 (𝐹𝑘) ≤ 𝑥))
1716simpld 495 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
18 rexr 11021 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
1918ad4antlr 730 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 ≤ (𝐹𝑘)) → 𝑥 ∈ ℝ*)
207ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐹:𝑍⟶ℝ)
213uztrn2 12601 . . . . . . . . . . . . . 14 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2221adantll 711 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2320, 22ffvelrnd 6962 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ)
2423rexrd 11025 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ*)
25243impa 1109 . . . . . . . . . 10 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ*)
2625ad5ant134 1366 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 ≤ (𝐹𝑘)) → (𝐹𝑘) ∈ ℝ*)
2711ad4antr 729 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 ≤ (𝐹𝑘)) → sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ∈ ℝ*)
28 simpr 485 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 ≤ (𝐹𝑘)) → 𝑥 ≤ (𝐹𝑘))
2910ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ran (𝐹 ↾ (ℤ𝑗)) ⊆ ℝ*)
30 fvres 6793 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ𝑗) → ((𝐹 ↾ (ℤ𝑗))‘𝑘) = (𝐹𝑘))
3130eqcomd 2744 . . . . . . . . . . . . . 14 (𝑘 ∈ (ℤ𝑗) → (𝐹𝑘) = ((𝐹 ↾ (ℤ𝑗))‘𝑘))
3231adantl 482 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) = ((𝐹 ↾ (ℤ𝑗))‘𝑘))
337ffnd 6601 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 Fn 𝑍)
3433adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍) → 𝐹 Fn 𝑍)
3522ssd 42630 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍) → (ℤ𝑗) ⊆ 𝑍)
36 fnssres 6555 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝑍 ∧ (ℤ𝑗) ⊆ 𝑍) → (𝐹 ↾ (ℤ𝑗)) Fn (ℤ𝑗))
3734, 35, 36syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍) → (𝐹 ↾ (ℤ𝑗)) Fn (ℤ𝑗))
3837adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹 ↾ (ℤ𝑗)) Fn (ℤ𝑗))
39 simpr 485 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ (ℤ𝑗))
4038, 39fnfvelrnd 42808 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹 ↾ (ℤ𝑗))‘𝑘) ∈ ran (𝐹 ↾ (ℤ𝑗)))
4132, 40eqeltrd 2839 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ran (𝐹 ↾ (ℤ𝑗)))
42 eqid 2738 . . . . . . . . . . . 12 sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )
4329, 41, 42supxrubd 42663 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ≤ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ))
44433impa 1109 . . . . . . . . . 10 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ≤ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ))
4544ad5ant134 1366 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 ≤ (𝐹𝑘)) → (𝐹𝑘) ≤ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ))
4619, 26, 27, 28, 45xrletrd 12896 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 ≤ (𝐹𝑘)) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ))
4746rexlimdva2 3216 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) → (∃𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )))
4847ralimdva 3108 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (∀𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) → ∀𝑗𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )))
4948reximdva 3203 . . . . 5 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )))
5017, 49mpd 15 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ))
51 limsupgtlem.x . . . . 5 (𝜑𝑋 ∈ ℝ+)
5251rphalfcld 12784 . . . 4 (𝜑 → (𝑋 / 2) ∈ ℝ+)
531, 4, 12, 50, 52infrpgernmpt 43005 . . 3 (𝜑 → ∃𝑗𝑍 sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ (inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) +𝑒 (𝑋 / 2)))
54 simp3 1137 . . . . . . 7 ((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ (inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) +𝑒 (𝑋 / 2))) → sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ (inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) +𝑒 (𝑋 / 2)))
552, 3, 8limsupvaluz 43249 . . . . . . . . . 10 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ))
5655eqcomd 2744 . . . . . . . . 9 (𝜑 → inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) = (lim sup‘𝐹))
5756oveq1d 7290 . . . . . . . 8 (𝜑 → (inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) +𝑒 (𝑋 / 2)) = ((lim sup‘𝐹) +𝑒 (𝑋 / 2)))
58573ad2ant1 1132 . . . . . . 7 ((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ (inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) +𝑒 (𝑋 / 2))) → (inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) +𝑒 (𝑋 / 2)) = ((lim sup‘𝐹) +𝑒 (𝑋 / 2)))
5954, 58breqtrd 5100 . . . . . 6 ((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ (inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) +𝑒 (𝑋 / 2))) → sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2)))
60243adantl3 1167 . . . . . . . . . 10 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ*)
61 simpl1 1190 . . . . . . . . . . 11 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
6261, 11syl 17 . . . . . . . . . 10 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ∈ ℝ*)
633fvexi 6788 . . . . . . . . . . . . . . 15 𝑍 ∈ V
6463a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ V)
657, 64fexd 7103 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ V)
6665limsupcld 43231 . . . . . . . . . . . 12 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
6751rpred 12772 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ ℝ)
6867rehalfcld 12220 . . . . . . . . . . . . 13 (𝜑 → (𝑋 / 2) ∈ ℝ)
6968rexrd 11025 . . . . . . . . . . . 12 (𝜑 → (𝑋 / 2) ∈ ℝ*)
7066, 69xaddcld 13035 . . . . . . . . . . 11 (𝜑 → ((lim sup‘𝐹) +𝑒 (𝑋 / 2)) ∈ ℝ*)
7161, 70syl 17 . . . . . . . . . 10 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((lim sup‘𝐹) +𝑒 (𝑋 / 2)) ∈ ℝ*)
72433adantl3 1167 . . . . . . . . . 10 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ≤ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ))
73 simpl3 1192 . . . . . . . . . 10 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2)))
7460, 62, 71, 72, 73xrletrd 12896 . . . . . . . . 9 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2)))
7513, 68rexaddd 12968 . . . . . . . . . 10 (𝜑 → ((lim sup‘𝐹) +𝑒 (𝑋 / 2)) = ((lim sup‘𝐹) + (𝑋 / 2)))
7661, 75syl 17 . . . . . . . . 9 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((lim sup‘𝐹) +𝑒 (𝑋 / 2)) = ((lim sup‘𝐹) + (𝑋 / 2)))
7774, 76breqtrd 5100 . . . . . . . 8 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ≤ ((lim sup‘𝐹) + (𝑋 / 2)))
7868ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑋 / 2) ∈ ℝ)
7913ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (lim sup‘𝐹) ∈ ℝ)
8023, 78, 79lesubaddd 11572 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹) ↔ (𝐹𝑘) ≤ ((lim sup‘𝐹) + (𝑋 / 2))))
81803adantl3 1167 . . . . . . . 8 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹) ↔ (𝐹𝑘) ≤ ((lim sup‘𝐹) + (𝑋 / 2))))
8277, 81mpbird 256 . . . . . . 7 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹))
8382ralrimiva 3103 . . . . . 6 ((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹))
8459, 83syld3an3 1408 . . . . 5 ((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ (inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) +𝑒 (𝑋 / 2))) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹))
85843exp 1118 . . . 4 (𝜑 → (𝑗𝑍 → (sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ (inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) +𝑒 (𝑋 / 2)) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹))))
861, 85reximdai 3244 . . 3 (𝜑 → (∃𝑗𝑍 sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ (inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) +𝑒 (𝑋 / 2)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)))
8753, 86mpd 15 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹))
88 simpll 764 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
897ffvelrnda 6961 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
9067adantr 481 . . . . . . . . 9 ((𝜑𝑘𝑍) → 𝑋 ∈ ℝ)
9189, 90resubcld 11403 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝐹𝑘) − 𝑋) ∈ ℝ)
9291adantr 481 . . . . . . 7 (((𝜑𝑘𝑍) ∧ ((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)) → ((𝐹𝑘) − 𝑋) ∈ ℝ)
9368adantr 481 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝑋 / 2) ∈ ℝ)
9489, 93resubcld 11403 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝐹𝑘) − (𝑋 / 2)) ∈ ℝ)
9594adantr 481 . . . . . . 7 (((𝜑𝑘𝑍) ∧ ((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)) → ((𝐹𝑘) − (𝑋 / 2)) ∈ ℝ)
9613ad2antrr 723 . . . . . . 7 (((𝜑𝑘𝑍) ∧ ((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)) → (lim sup‘𝐹) ∈ ℝ)
9751rphalfltd 42995 . . . . . . . . . 10 (𝜑 → (𝑋 / 2) < 𝑋)
9897adantr 481 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝑋 / 2) < 𝑋)
9993, 90, 89, 98ltsub2dd 11588 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝐹𝑘) − 𝑋) < ((𝐹𝑘) − (𝑋 / 2)))
10099adantr 481 . . . . . . 7 (((𝜑𝑘𝑍) ∧ ((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)) → ((𝐹𝑘) − 𝑋) < ((𝐹𝑘) − (𝑋 / 2)))
101 simpr 485 . . . . . . 7 (((𝜑𝑘𝑍) ∧ ((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)) → ((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹))
10292, 95, 96, 100, 101ltletrd 11135 . . . . . 6 (((𝜑𝑘𝑍) ∧ ((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)) → ((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
103102ex 413 . . . . 5 ((𝜑𝑘𝑍) → (((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹) → ((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
10488, 22, 103syl2anc 584 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹) → ((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
105104ralimdva 3108 . . 3 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
106105reximdva 3203 . 2 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
10787, 106mpd 15 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  wss 3887   class class class wbr 5074  cmpt 5157  ran crn 5590  cres 5591   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  supcsup 9199  infcinf 9200  cr 10870   + caddc 10874  *cxr 11008   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  2c2 12028  cz 12319  cuz 12582  +crp 12730   +𝑒 cxad 12846  lim supclsp 15179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-xadd 12849  df-ico 13085  df-fz 13240  df-fzo 13383  df-fl 13512  df-ceil 13513  df-limsup 15180
This theorem is referenced by:  limsupgt  43319
  Copyright terms: Public domain W3C validator