Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupgtlem Structured version   Visualization version   GIF version

Theorem limsupgtlem 45815
Description: For any positive real, the superior limit of F is larger than any of its values at large enough arguments, up to that positive real. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
limsupgtlem.m (𝜑𝑀 ∈ ℤ)
limsupgtlem.z 𝑍 = (ℤ𝑀)
limsupgtlem.f (𝜑𝐹:𝑍⟶ℝ)
limsupgtlem.r (𝜑 → (lim sup‘𝐹) ∈ ℝ)
limsupgtlem.x (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
limsupgtlem (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
Distinct variable groups:   𝑗,𝐹,𝑘   𝑗,𝑋,𝑘   𝑗,𝑍,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝑀(𝑗,𝑘)

Proof of Theorem limsupgtlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . . 4 𝑗𝜑
2 limsupgtlem.m . . . . 5 (𝜑𝑀 ∈ ℤ)
3 limsupgtlem.z . . . . 5 𝑍 = (ℤ𝑀)
42, 3uzn0d 45463 . . . 4 (𝜑𝑍 ≠ ∅)
5 rnresss 5961 . . . . . . . 8 ran (𝐹 ↾ (ℤ𝑗)) ⊆ ran 𝐹
65a1i 11 . . . . . . 7 (𝜑 → ran (𝐹 ↾ (ℤ𝑗)) ⊆ ran 𝐹)
7 limsupgtlem.f . . . . . . . . 9 (𝜑𝐹:𝑍⟶ℝ)
87frexr 45423 . . . . . . . 8 (𝜑𝐹:𝑍⟶ℝ*)
98frnd 6654 . . . . . . 7 (𝜑 → ran 𝐹 ⊆ ℝ*)
106, 9sstrd 3940 . . . . . 6 (𝜑 → ran (𝐹 ↾ (ℤ𝑗)) ⊆ ℝ*)
1110supxrcld 45144 . . . . 5 (𝜑 → sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ∈ ℝ*)
1211adantr 480 . . . 4 ((𝜑𝑗𝑍) → sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ∈ ℝ*)
13 limsupgtlem.r . . . . . . 7 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
14 nfcv 2894 . . . . . . . 8 𝑘𝐹
1514, 2, 3, 7limsupreuz 45775 . . . . . . 7 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ∧ ∃𝑥 ∈ ℝ ∀𝑘𝑍 (𝐹𝑘) ≤ 𝑥)))
1613, 15mpbid 232 . . . . . 6 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ∧ ∃𝑥 ∈ ℝ ∀𝑘𝑍 (𝐹𝑘) ≤ 𝑥))
1716simpld 494 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
18 rexr 11153 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
1918ad4antlr 733 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 ≤ (𝐹𝑘)) → 𝑥 ∈ ℝ*)
207ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐹:𝑍⟶ℝ)
213uztrn2 12746 . . . . . . . . . . . . . 14 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2221adantll 714 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2320, 22ffvelcdmd 7013 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ)
2423rexrd 11157 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ*)
25243impa 1109 . . . . . . . . . 10 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ*)
2625ad5ant134 1369 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 ≤ (𝐹𝑘)) → (𝐹𝑘) ∈ ℝ*)
2711ad4antr 732 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 ≤ (𝐹𝑘)) → sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ∈ ℝ*)
28 simpr 484 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 ≤ (𝐹𝑘)) → 𝑥 ≤ (𝐹𝑘))
2910ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ran (𝐹 ↾ (ℤ𝑗)) ⊆ ℝ*)
30 fvres 6836 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ𝑗) → ((𝐹 ↾ (ℤ𝑗))‘𝑘) = (𝐹𝑘))
3130eqcomd 2737 . . . . . . . . . . . . . 14 (𝑘 ∈ (ℤ𝑗) → (𝐹𝑘) = ((𝐹 ↾ (ℤ𝑗))‘𝑘))
3231adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) = ((𝐹 ↾ (ℤ𝑗))‘𝑘))
337ffnd 6647 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 Fn 𝑍)
3433adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍) → 𝐹 Fn 𝑍)
3522ssd 45117 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍) → (ℤ𝑗) ⊆ 𝑍)
36 fnssres 6599 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝑍 ∧ (ℤ𝑗) ⊆ 𝑍) → (𝐹 ↾ (ℤ𝑗)) Fn (ℤ𝑗))
3734, 35, 36syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍) → (𝐹 ↾ (ℤ𝑗)) Fn (ℤ𝑗))
3837adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹 ↾ (ℤ𝑗)) Fn (ℤ𝑗))
39 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ (ℤ𝑗))
4038, 39fnfvelrnd 7010 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹 ↾ (ℤ𝑗))‘𝑘) ∈ ran (𝐹 ↾ (ℤ𝑗)))
4132, 40eqeltrd 2831 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ran (𝐹 ↾ (ℤ𝑗)))
42 eqid 2731 . . . . . . . . . . . 12 sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )
4329, 41, 42supxrubd 45150 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ≤ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ))
44433impa 1109 . . . . . . . . . 10 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ≤ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ))
4544ad5ant134 1369 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 ≤ (𝐹𝑘)) → (𝐹𝑘) ≤ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ))
4619, 26, 27, 28, 45xrletrd 13056 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 ≤ (𝐹𝑘)) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ))
4746rexlimdva2 3135 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) → (∃𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )))
4847ralimdva 3144 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (∀𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) → ∀𝑗𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )))
4948reximdva 3145 . . . . 5 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )))
5017, 49mpd 15 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ))
51 limsupgtlem.x . . . . 5 (𝜑𝑋 ∈ ℝ+)
5251rphalfcld 12941 . . . 4 (𝜑 → (𝑋 / 2) ∈ ℝ+)
531, 4, 12, 50, 52infrpgernmpt 45503 . . 3 (𝜑 → ∃𝑗𝑍 sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ (inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) +𝑒 (𝑋 / 2)))
54 simp3 1138 . . . . . . 7 ((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ (inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) +𝑒 (𝑋 / 2))) → sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ (inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) +𝑒 (𝑋 / 2)))
552, 3, 8limsupvaluz 45746 . . . . . . . . . 10 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ))
5655eqcomd 2737 . . . . . . . . 9 (𝜑 → inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) = (lim sup‘𝐹))
5756oveq1d 7356 . . . . . . . 8 (𝜑 → (inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) +𝑒 (𝑋 / 2)) = ((lim sup‘𝐹) +𝑒 (𝑋 / 2)))
58573ad2ant1 1133 . . . . . . 7 ((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ (inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) +𝑒 (𝑋 / 2))) → (inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) +𝑒 (𝑋 / 2)) = ((lim sup‘𝐹) +𝑒 (𝑋 / 2)))
5954, 58breqtrd 5112 . . . . . 6 ((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ (inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) +𝑒 (𝑋 / 2))) → sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2)))
60243adantl3 1169 . . . . . . . . . 10 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ*)
61 simpl1 1192 . . . . . . . . . . 11 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
6261, 11syl 17 . . . . . . . . . 10 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ∈ ℝ*)
633fvexi 6831 . . . . . . . . . . . . . . 15 𝑍 ∈ V
6463a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ V)
657, 64fexd 7156 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ V)
6665limsupcld 45728 . . . . . . . . . . . 12 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
6751rpred 12929 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ ℝ)
6867rehalfcld 12363 . . . . . . . . . . . . 13 (𝜑 → (𝑋 / 2) ∈ ℝ)
6968rexrd 11157 . . . . . . . . . . . 12 (𝜑 → (𝑋 / 2) ∈ ℝ*)
7066, 69xaddcld 13195 . . . . . . . . . . 11 (𝜑 → ((lim sup‘𝐹) +𝑒 (𝑋 / 2)) ∈ ℝ*)
7161, 70syl 17 . . . . . . . . . 10 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((lim sup‘𝐹) +𝑒 (𝑋 / 2)) ∈ ℝ*)
72433adantl3 1169 . . . . . . . . . 10 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ≤ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ))
73 simpl3 1194 . . . . . . . . . 10 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2)))
7460, 62, 71, 72, 73xrletrd 13056 . . . . . . . . 9 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2)))
7513, 68rexaddd 13128 . . . . . . . . . 10 (𝜑 → ((lim sup‘𝐹) +𝑒 (𝑋 / 2)) = ((lim sup‘𝐹) + (𝑋 / 2)))
7661, 75syl 17 . . . . . . . . 9 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((lim sup‘𝐹) +𝑒 (𝑋 / 2)) = ((lim sup‘𝐹) + (𝑋 / 2)))
7774, 76breqtrd 5112 . . . . . . . 8 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ≤ ((lim sup‘𝐹) + (𝑋 / 2)))
7868ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑋 / 2) ∈ ℝ)
7913ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (lim sup‘𝐹) ∈ ℝ)
8023, 78, 79lesubaddd 11709 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹) ↔ (𝐹𝑘) ≤ ((lim sup‘𝐹) + (𝑋 / 2))))
81803adantl3 1169 . . . . . . . 8 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹) ↔ (𝐹𝑘) ≤ ((lim sup‘𝐹) + (𝑋 / 2))))
8277, 81mpbird 257 . . . . . . 7 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹))
8382ralrimiva 3124 . . . . . 6 ((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹))
8459, 83syld3an3 1411 . . . . 5 ((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ (inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) +𝑒 (𝑋 / 2))) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹))
85843exp 1119 . . . 4 (𝜑 → (𝑗𝑍 → (sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ (inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) +𝑒 (𝑋 / 2)) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹))))
861, 85reximdai 3234 . . 3 (𝜑 → (∃𝑗𝑍 sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ (inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) +𝑒 (𝑋 / 2)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)))
8753, 86mpd 15 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹))
88 simpll 766 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
897ffvelcdmda 7012 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
9067adantr 480 . . . . . . . . 9 ((𝜑𝑘𝑍) → 𝑋 ∈ ℝ)
9189, 90resubcld 11540 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝐹𝑘) − 𝑋) ∈ ℝ)
9291adantr 480 . . . . . . 7 (((𝜑𝑘𝑍) ∧ ((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)) → ((𝐹𝑘) − 𝑋) ∈ ℝ)
9368adantr 480 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝑋 / 2) ∈ ℝ)
9489, 93resubcld 11540 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝐹𝑘) − (𝑋 / 2)) ∈ ℝ)
9594adantr 480 . . . . . . 7 (((𝜑𝑘𝑍) ∧ ((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)) → ((𝐹𝑘) − (𝑋 / 2)) ∈ ℝ)
9613ad2antrr 726 . . . . . . 7 (((𝜑𝑘𝑍) ∧ ((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)) → (lim sup‘𝐹) ∈ ℝ)
9751rphalfltd 45493 . . . . . . . . . 10 (𝜑 → (𝑋 / 2) < 𝑋)
9897adantr 480 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝑋 / 2) < 𝑋)
9993, 90, 89, 98ltsub2dd 11725 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝐹𝑘) − 𝑋) < ((𝐹𝑘) − (𝑋 / 2)))
10099adantr 480 . . . . . . 7 (((𝜑𝑘𝑍) ∧ ((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)) → ((𝐹𝑘) − 𝑋) < ((𝐹𝑘) − (𝑋 / 2)))
101 simpr 484 . . . . . . 7 (((𝜑𝑘𝑍) ∧ ((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)) → ((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹))
10292, 95, 96, 100, 101ltletrd 11268 . . . . . 6 (((𝜑𝑘𝑍) ∧ ((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)) → ((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
103102ex 412 . . . . 5 ((𝜑𝑘𝑍) → (((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹) → ((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
10488, 22, 103syl2anc 584 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹) → ((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
105104ralimdva 3144 . . 3 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
106105reximdva 3145 . 2 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
10787, 106mpd 15 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  wss 3897   class class class wbr 5086  cmpt 5167  ran crn 5612  cres 5613   Fn wfn 6471  wf 6472  cfv 6476  (class class class)co 7341  supcsup 9319  infcinf 9320  cr 11000   + caddc 11004  *cxr 11140   < clt 11141  cle 11142  cmin 11339   / cdiv 11769  2c2 12175  cz 12463  cuz 12727  +crp 12885   +𝑒 cxad 13004  lim supclsp 15372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-xadd 13007  df-ico 13246  df-fz 13403  df-fzo 13550  df-fl 13691  df-ceil 13692  df-limsup 15373
This theorem is referenced by:  limsupgt  45816
  Copyright terms: Public domain W3C validator