Step | Hyp | Ref
| Expression |
1 | | nfv 1917 |
. . . 4
β’
β²ππ |
2 | | limsupgtlem.m |
. . . . 5
β’ (π β π β β€) |
3 | | limsupgtlem.z |
. . . . 5
β’ π =
(β€β₯βπ) |
4 | 2, 3 | uzn0d 44121 |
. . . 4
β’ (π β π β β
) |
5 | | rnresss 6015 |
. . . . . . . 8
β’ ran
(πΉ βΎ
(β€β₯βπ)) β ran πΉ |
6 | 5 | a1i 11 |
. . . . . . 7
β’ (π β ran (πΉ βΎ (β€β₯βπ)) β ran πΉ) |
7 | | limsupgtlem.f |
. . . . . . . . 9
β’ (π β πΉ:πβΆβ) |
8 | 7 | frexr 44081 |
. . . . . . . 8
β’ (π β πΉ:πβΆβ*) |
9 | 8 | frnd 6722 |
. . . . . . 7
β’ (π β ran πΉ β
β*) |
10 | 6, 9 | sstrd 3991 |
. . . . . 6
β’ (π β ran (πΉ βΎ (β€β₯βπ)) β
β*) |
11 | 10 | supxrcld 43781 |
. . . . 5
β’ (π β sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
β β*) |
12 | 11 | adantr 481 |
. . . 4
β’ ((π β§ π β π) β sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
β β*) |
13 | | limsupgtlem.r |
. . . . . . 7
β’ (π β (lim supβπΉ) β
β) |
14 | | nfcv 2903 |
. . . . . . . 8
β’
β²ππΉ |
15 | 14, 2, 3, 7 | limsupreuz 44439 |
. . . . . . 7
β’ (π β ((lim supβπΉ) β β β
(βπ₯ β β
βπ β π βπ β (β€β₯βπ)π₯ β€ (πΉβπ) β§ βπ₯ β β βπ β π (πΉβπ) β€ π₯))) |
16 | 13, 15 | mpbid 231 |
. . . . . 6
β’ (π β (βπ₯ β β βπ β π βπ β (β€β₯βπ)π₯ β€ (πΉβπ) β§ βπ₯ β β βπ β π (πΉβπ) β€ π₯)) |
17 | 16 | simpld 495 |
. . . . 5
β’ (π β βπ₯ β β βπ β π βπ β (β€β₯βπ)π₯ β€ (πΉβπ)) |
18 | | rexr 11256 |
. . . . . . . . . 10
β’ (π₯ β β β π₯ β
β*) |
19 | 18 | ad4antlr 731 |
. . . . . . . . 9
β’
(((((π β§ π₯ β β) β§ π β π) β§ π β (β€β₯βπ)) β§ π₯ β€ (πΉβπ)) β π₯ β β*) |
20 | 7 | ad2antrr 724 |
. . . . . . . . . . . . 13
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β πΉ:πβΆβ) |
21 | 3 | uztrn2 12837 |
. . . . . . . . . . . . . 14
β’ ((π β π β§ π β (β€β₯βπ)) β π β π) |
22 | 21 | adantll 712 |
. . . . . . . . . . . . 13
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β π β π) |
23 | 20, 22 | ffvelcdmd 7084 |
. . . . . . . . . . . 12
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β (πΉβπ) β β) |
24 | 23 | rexrd 11260 |
. . . . . . . . . . 11
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β (πΉβπ) β
β*) |
25 | 24 | 3impa 1110 |
. . . . . . . . . 10
β’ ((π β§ π β π β§ π β (β€β₯βπ)) β (πΉβπ) β
β*) |
26 | 25 | ad5ant134 1367 |
. . . . . . . . 9
β’
(((((π β§ π₯ β β) β§ π β π) β§ π β (β€β₯βπ)) β§ π₯ β€ (πΉβπ)) β (πΉβπ) β
β*) |
27 | 11 | ad4antr 730 |
. . . . . . . . 9
β’
(((((π β§ π₯ β β) β§ π β π) β§ π β (β€β₯βπ)) β§ π₯ β€ (πΉβπ)) β sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
β β*) |
28 | | simpr 485 |
. . . . . . . . 9
β’
(((((π β§ π₯ β β) β§ π β π) β§ π β (β€β₯βπ)) β§ π₯ β€ (πΉβπ)) β π₯ β€ (πΉβπ)) |
29 | 10 | ad2antrr 724 |
. . . . . . . . . . . 12
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β ran (πΉ βΎ (β€β₯βπ)) β
β*) |
30 | | fvres 6907 |
. . . . . . . . . . . . . . 15
β’ (π β
(β€β₯βπ) β ((πΉ βΎ (β€β₯βπ))βπ) = (πΉβπ)) |
31 | 30 | eqcomd 2738 |
. . . . . . . . . . . . . 14
β’ (π β
(β€β₯βπ) β (πΉβπ) = ((πΉ βΎ (β€β₯βπ))βπ)) |
32 | 31 | adantl 482 |
. . . . . . . . . . . . 13
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β (πΉβπ) = ((πΉ βΎ (β€β₯βπ))βπ)) |
33 | 7 | ffnd 6715 |
. . . . . . . . . . . . . . . . 17
β’ (π β πΉ Fn π) |
34 | 33 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β π) β πΉ Fn π) |
35 | 22 | ssd 43754 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β π) β (β€β₯βπ) β π) |
36 | | fnssres 6670 |
. . . . . . . . . . . . . . . 16
β’ ((πΉ Fn π β§ (β€β₯βπ) β π) β (πΉ βΎ (β€β₯βπ)) Fn
(β€β₯βπ)) |
37 | 34, 35, 36 | syl2anc 584 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π) β (πΉ βΎ (β€β₯βπ)) Fn
(β€β₯βπ)) |
38 | 37 | adantr 481 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β (πΉ βΎ (β€β₯βπ)) Fn
(β€β₯βπ)) |
39 | | simpr 485 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β π β (β€β₯βπ)) |
40 | 38, 39 | fnfvelrnd 7081 |
. . . . . . . . . . . . 13
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β ((πΉ βΎ (β€β₯βπ))βπ) β ran (πΉ βΎ (β€β₯βπ))) |
41 | 32, 40 | eqeltrd 2833 |
. . . . . . . . . . . 12
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β (πΉβπ) β ran (πΉ βΎ (β€β₯βπ))) |
42 | | eqid 2732 |
. . . . . . . . . . . 12
β’ sup(ran
(πΉ βΎ
(β€β₯βπ)), β*, < ) = sup(ran
(πΉ βΎ
(β€β₯βπ)), β*, <
) |
43 | 29, 41, 42 | supxrubd 43787 |
. . . . . . . . . . 11
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β (πΉβπ) β€ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
)) |
44 | 43 | 3impa 1110 |
. . . . . . . . . 10
β’ ((π β§ π β π β§ π β (β€β₯βπ)) β (πΉβπ) β€ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
)) |
45 | 44 | ad5ant134 1367 |
. . . . . . . . 9
β’
(((((π β§ π₯ β β) β§ π β π) β§ π β (β€β₯βπ)) β§ π₯ β€ (πΉβπ)) β (πΉβπ) β€ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
)) |
46 | 19, 26, 27, 28, 45 | xrletrd 13137 |
. . . . . . . 8
β’
(((((π β§ π₯ β β) β§ π β π) β§ π β (β€β₯βπ)) β§ π₯ β€ (πΉβπ)) β π₯ β€ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
)) |
47 | 46 | rexlimdva2 3157 |
. . . . . . 7
β’ (((π β§ π₯ β β) β§ π β π) β (βπ β (β€β₯βπ)π₯ β€ (πΉβπ) β π₯ β€ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
))) |
48 | 47 | ralimdva 3167 |
. . . . . 6
β’ ((π β§ π₯ β β) β (βπ β π βπ β (β€β₯βπ)π₯ β€ (πΉβπ) β βπ β π π₯ β€ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
))) |
49 | 48 | reximdva 3168 |
. . . . 5
β’ (π β (βπ₯ β β βπ β π βπ β (β€β₯βπ)π₯ β€ (πΉβπ) β βπ₯ β β βπ β π π₯ β€ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
))) |
50 | 17, 49 | mpd 15 |
. . . 4
β’ (π β βπ₯ β β βπ β π π₯ β€ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
)) |
51 | | limsupgtlem.x |
. . . . 5
β’ (π β π β
β+) |
52 | 51 | rphalfcld 13024 |
. . . 4
β’ (π β (π / 2) β
β+) |
53 | 1, 4, 12, 50, 52 | infrpgernmpt 44161 |
. . 3
β’ (π β βπ β π sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
β€ (inf(ran (π β
π β¦ sup(ran (πΉ βΎ
(β€β₯βπ)), β*, < )),
β*, < ) +π (π / 2))) |
54 | | simp3 1138 |
. . . . . . 7
β’ ((π β§ π β π β§ sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
β€ (inf(ran (π β
π β¦ sup(ran (πΉ βΎ
(β€β₯βπ)), β*, < )),
β*, < ) +π (π / 2))) β sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
β€ (inf(ran (π β
π β¦ sup(ran (πΉ βΎ
(β€β₯βπ)), β*, < )),
β*, < ) +π (π / 2))) |
55 | 2, 3, 8 | limsupvaluz 44410 |
. . . . . . . . . 10
β’ (π β (lim supβπΉ) = inf(ran (π β π β¦ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
)), β*, < )) |
56 | 55 | eqcomd 2738 |
. . . . . . . . 9
β’ (π β inf(ran (π β π β¦ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
)), β*, < ) = (lim supβπΉ)) |
57 | 56 | oveq1d 7420 |
. . . . . . . 8
β’ (π β (inf(ran (π β π β¦ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
)), β*, < ) +π (π / 2)) = ((lim supβπΉ) +π (π / 2))) |
58 | 57 | 3ad2ant1 1133 |
. . . . . . 7
β’ ((π β§ π β π β§ sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
β€ (inf(ran (π β
π β¦ sup(ran (πΉ βΎ
(β€β₯βπ)), β*, < )),
β*, < ) +π (π / 2))) β (inf(ran (π β π β¦ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
)), β*, < ) +π (π / 2)) = ((lim supβπΉ) +π (π / 2))) |
59 | 54, 58 | breqtrd 5173 |
. . . . . 6
β’ ((π β§ π β π β§ sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
β€ (inf(ran (π β
π β¦ sup(ran (πΉ βΎ
(β€β₯βπ)), β*, < )),
β*, < ) +π (π / 2))) β sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
β€ ((lim supβπΉ)
+π (π /
2))) |
60 | 24 | 3adantl3 1168 |
. . . . . . . . . 10
β’ (((π β§ π β π β§ sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
β€ ((lim supβπΉ)
+π (π /
2))) β§ π β
(β€β₯βπ)) β (πΉβπ) β
β*) |
61 | | simpl1 1191 |
. . . . . . . . . . 11
β’ (((π β§ π β π β§ sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
β€ ((lim supβπΉ)
+π (π /
2))) β§ π β
(β€β₯βπ)) β π) |
62 | 61, 11 | syl 17 |
. . . . . . . . . 10
β’ (((π β§ π β π β§ sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
β€ ((lim supβπΉ)
+π (π /
2))) β§ π β
(β€β₯βπ)) β sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
β β*) |
63 | 3 | fvexi 6902 |
. . . . . . . . . . . . . . 15
β’ π β V |
64 | 63 | a1i 11 |
. . . . . . . . . . . . . 14
β’ (π β π β V) |
65 | 7, 64 | fexd 7225 |
. . . . . . . . . . . . 13
β’ (π β πΉ β V) |
66 | 65 | limsupcld 44392 |
. . . . . . . . . . . 12
β’ (π β (lim supβπΉ) β
β*) |
67 | 51 | rpred 13012 |
. . . . . . . . . . . . . 14
β’ (π β π β β) |
68 | 67 | rehalfcld 12455 |
. . . . . . . . . . . . 13
β’ (π β (π / 2) β β) |
69 | 68 | rexrd 11260 |
. . . . . . . . . . . 12
β’ (π β (π / 2) β
β*) |
70 | 66, 69 | xaddcld 13276 |
. . . . . . . . . . 11
β’ (π β ((lim supβπΉ) +π (π / 2)) β
β*) |
71 | 61, 70 | syl 17 |
. . . . . . . . . 10
β’ (((π β§ π β π β§ sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
β€ ((lim supβπΉ)
+π (π /
2))) β§ π β
(β€β₯βπ)) β ((lim supβπΉ) +π (π / 2)) β
β*) |
72 | 43 | 3adantl3 1168 |
. . . . . . . . . 10
β’ (((π β§ π β π β§ sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
β€ ((lim supβπΉ)
+π (π /
2))) β§ π β
(β€β₯βπ)) β (πΉβπ) β€ sup(ran (πΉ βΎ (β€β₯βπ)), β*, <
)) |
73 | | simpl3 1193 |
. . . . . . . . . 10
β’ (((π β§ π β π β§ sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
β€ ((lim supβπΉ)
+π (π /
2))) β§ π β
(β€β₯βπ)) β sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
β€ ((lim supβπΉ)
+π (π /
2))) |
74 | 60, 62, 71, 72, 73 | xrletrd 13137 |
. . . . . . . . 9
β’ (((π β§ π β π β§ sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
β€ ((lim supβπΉ)
+π (π /
2))) β§ π β
(β€β₯βπ)) β (πΉβπ) β€ ((lim supβπΉ) +π (π / 2))) |
75 | 13, 68 | rexaddd 13209 |
. . . . . . . . . 10
β’ (π β ((lim supβπΉ) +π (π / 2)) = ((lim supβπΉ) + (π / 2))) |
76 | 61, 75 | syl 17 |
. . . . . . . . 9
β’ (((π β§ π β π β§ sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
β€ ((lim supβπΉ)
+π (π /
2))) β§ π β
(β€β₯βπ)) β ((lim supβπΉ) +π (π / 2)) = ((lim supβπΉ) + (π / 2))) |
77 | 74, 76 | breqtrd 5173 |
. . . . . . . 8
β’ (((π β§ π β π β§ sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
β€ ((lim supβπΉ)
+π (π /
2))) β§ π β
(β€β₯βπ)) β (πΉβπ) β€ ((lim supβπΉ) + (π / 2))) |
78 | 68 | ad2antrr 724 |
. . . . . . . . . 10
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β (π / 2) β β) |
79 | 13 | ad2antrr 724 |
. . . . . . . . . 10
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β (lim supβπΉ) β
β) |
80 | 23, 78, 79 | lesubaddd 11807 |
. . . . . . . . 9
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β (((πΉβπ) β (π / 2)) β€ (lim supβπΉ) β (πΉβπ) β€ ((lim supβπΉ) + (π / 2)))) |
81 | 80 | 3adantl3 1168 |
. . . . . . . 8
β’ (((π β§ π β π β§ sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
β€ ((lim supβπΉ)
+π (π /
2))) β§ π β
(β€β₯βπ)) β (((πΉβπ) β (π / 2)) β€ (lim supβπΉ) β (πΉβπ) β€ ((lim supβπΉ) + (π / 2)))) |
82 | 77, 81 | mpbird 256 |
. . . . . . 7
β’ (((π β§ π β π β§ sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
β€ ((lim supβπΉ)
+π (π /
2))) β§ π β
(β€β₯βπ)) β ((πΉβπ) β (π / 2)) β€ (lim supβπΉ)) |
83 | 82 | ralrimiva 3146 |
. . . . . 6
β’ ((π β§ π β π β§ sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
β€ ((lim supβπΉ)
+π (π /
2))) β βπ
β (β€β₯βπ)((πΉβπ) β (π / 2)) β€ (lim supβπΉ)) |
84 | 59, 83 | syld3an3 1409 |
. . . . 5
β’ ((π β§ π β π β§ sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
β€ (inf(ran (π β
π β¦ sup(ran (πΉ βΎ
(β€β₯βπ)), β*, < )),
β*, < ) +π (π / 2))) β βπ β (β€β₯βπ)((πΉβπ) β (π / 2)) β€ (lim supβπΉ)) |
85 | 84 | 3exp 1119 |
. . . 4
β’ (π β (π β π β (sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
β€ (inf(ran (π β
π β¦ sup(ran (πΉ βΎ
(β€β₯βπ)), β*, < )),
β*, < ) +π (π / 2)) β βπ β (β€β₯βπ)((πΉβπ) β (π / 2)) β€ (lim supβπΉ)))) |
86 | 1, 85 | reximdai 3258 |
. . 3
β’ (π β (βπ β π sup(ran (πΉ βΎ (β€β₯βπ)), β*, < )
β€ (inf(ran (π β
π β¦ sup(ran (πΉ βΎ
(β€β₯βπ)), β*, < )),
β*, < ) +π (π / 2)) β βπ β π βπ β (β€β₯βπ)((πΉβπ) β (π / 2)) β€ (lim supβπΉ))) |
87 | 53, 86 | mpd 15 |
. 2
β’ (π β βπ β π βπ β (β€β₯βπ)((πΉβπ) β (π / 2)) β€ (lim supβπΉ)) |
88 | | simpll 765 |
. . . . 5
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β π) |
89 | 7 | ffvelcdmda 7083 |
. . . . . . . . 9
β’ ((π β§ π β π) β (πΉβπ) β β) |
90 | 67 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π β π) β π β β) |
91 | 89, 90 | resubcld 11638 |
. . . . . . . 8
β’ ((π β§ π β π) β ((πΉβπ) β π) β β) |
92 | 91 | adantr 481 |
. . . . . . 7
β’ (((π β§ π β π) β§ ((πΉβπ) β (π / 2)) β€ (lim supβπΉ)) β ((πΉβπ) β π) β β) |
93 | 68 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π β π) β (π / 2) β β) |
94 | 89, 93 | resubcld 11638 |
. . . . . . . 8
β’ ((π β§ π β π) β ((πΉβπ) β (π / 2)) β β) |
95 | 94 | adantr 481 |
. . . . . . 7
β’ (((π β§ π β π) β§ ((πΉβπ) β (π / 2)) β€ (lim supβπΉ)) β ((πΉβπ) β (π / 2)) β β) |
96 | 13 | ad2antrr 724 |
. . . . . . 7
β’ (((π β§ π β π) β§ ((πΉβπ) β (π / 2)) β€ (lim supβπΉ)) β (lim supβπΉ) β β) |
97 | 51 | rphalfltd 44151 |
. . . . . . . . . 10
β’ (π β (π / 2) < π) |
98 | 97 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π β π) β (π / 2) < π) |
99 | 93, 90, 89, 98 | ltsub2dd 11823 |
. . . . . . . 8
β’ ((π β§ π β π) β ((πΉβπ) β π) < ((πΉβπ) β (π / 2))) |
100 | 99 | adantr 481 |
. . . . . . 7
β’ (((π β§ π β π) β§ ((πΉβπ) β (π / 2)) β€ (lim supβπΉ)) β ((πΉβπ) β π) < ((πΉβπ) β (π / 2))) |
101 | | simpr 485 |
. . . . . . 7
β’ (((π β§ π β π) β§ ((πΉβπ) β (π / 2)) β€ (lim supβπΉ)) β ((πΉβπ) β (π / 2)) β€ (lim supβπΉ)) |
102 | 92, 95, 96, 100, 101 | ltletrd 11370 |
. . . . . 6
β’ (((π β§ π β π) β§ ((πΉβπ) β (π / 2)) β€ (lim supβπΉ)) β ((πΉβπ) β π) < (lim supβπΉ)) |
103 | 102 | ex 413 |
. . . . 5
β’ ((π β§ π β π) β (((πΉβπ) β (π / 2)) β€ (lim supβπΉ) β ((πΉβπ) β π) < (lim supβπΉ))) |
104 | 88, 22, 103 | syl2anc 584 |
. . . 4
β’ (((π β§ π β π) β§ π β (β€β₯βπ)) β (((πΉβπ) β (π / 2)) β€ (lim supβπΉ) β ((πΉβπ) β π) < (lim supβπΉ))) |
105 | 104 | ralimdva 3167 |
. . 3
β’ ((π β§ π β π) β (βπ β (β€β₯βπ)((πΉβπ) β (π / 2)) β€ (lim supβπΉ) β βπ β (β€β₯βπ)((πΉβπ) β π) < (lim supβπΉ))) |
106 | 105 | reximdva 3168 |
. 2
β’ (π β (βπ β π βπ β (β€β₯βπ)((πΉβπ) β (π / 2)) β€ (lim supβπΉ) β βπ β π βπ β (β€β₯βπ)((πΉβπ) β π) < (lim supβπΉ))) |
107 | 87, 106 | mpd 15 |
1
β’ (π β βπ β π βπ β (β€β₯βπ)((πΉβπ) β π) < (lim supβπΉ)) |