Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupgtlem Structured version   Visualization version   GIF version

Theorem limsupgtlem 43208
Description: For any positive real, the superior limit of F is larger than any of its values at large enough arguments, up to that positive real. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
limsupgtlem.m (𝜑𝑀 ∈ ℤ)
limsupgtlem.z 𝑍 = (ℤ𝑀)
limsupgtlem.f (𝜑𝐹:𝑍⟶ℝ)
limsupgtlem.r (𝜑 → (lim sup‘𝐹) ∈ ℝ)
limsupgtlem.x (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
limsupgtlem (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
Distinct variable groups:   𝑗,𝐹,𝑘   𝑗,𝑋,𝑘   𝑗,𝑍,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝑀(𝑗,𝑘)

Proof of Theorem limsupgtlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nfv 1918 . . . 4 𝑗𝜑
2 limsupgtlem.m . . . . 5 (𝜑𝑀 ∈ ℤ)
3 limsupgtlem.z . . . . 5 𝑍 = (ℤ𝑀)
42, 3uzn0d 42855 . . . 4 (𝜑𝑍 ≠ ∅)
5 rnresss 5916 . . . . . . . 8 ran (𝐹 ↾ (ℤ𝑗)) ⊆ ran 𝐹
65a1i 11 . . . . . . 7 (𝜑 → ran (𝐹 ↾ (ℤ𝑗)) ⊆ ran 𝐹)
7 limsupgtlem.f . . . . . . . . 9 (𝜑𝐹:𝑍⟶ℝ)
87frexr 42814 . . . . . . . 8 (𝜑𝐹:𝑍⟶ℝ*)
98frnd 6592 . . . . . . 7 (𝜑 → ran 𝐹 ⊆ ℝ*)
106, 9sstrd 3927 . . . . . 6 (𝜑 → ran (𝐹 ↾ (ℤ𝑗)) ⊆ ℝ*)
1110supxrcld 42546 . . . . 5 (𝜑 → sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ∈ ℝ*)
1211adantr 480 . . . 4 ((𝜑𝑗𝑍) → sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ∈ ℝ*)
13 limsupgtlem.r . . . . . . 7 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
14 nfcv 2906 . . . . . . . 8 𝑘𝐹
1514, 2, 3, 7limsupreuz 43168 . . . . . . 7 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ∧ ∃𝑥 ∈ ℝ ∀𝑘𝑍 (𝐹𝑘) ≤ 𝑥)))
1613, 15mpbid 231 . . . . . 6 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) ∧ ∃𝑥 ∈ ℝ ∀𝑘𝑍 (𝐹𝑘) ≤ 𝑥))
1716simpld 494 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
18 rexr 10952 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
1918ad4antlr 729 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 ≤ (𝐹𝑘)) → 𝑥 ∈ ℝ*)
207ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐹:𝑍⟶ℝ)
213uztrn2 12530 . . . . . . . . . . . . . 14 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2221adantll 710 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2320, 22ffvelrnd 6944 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ)
2423rexrd 10956 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ*)
25243impa 1108 . . . . . . . . . 10 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ*)
2625ad5ant134 1365 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 ≤ (𝐹𝑘)) → (𝐹𝑘) ∈ ℝ*)
2711ad4antr 728 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 ≤ (𝐹𝑘)) → sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ∈ ℝ*)
28 simpr 484 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 ≤ (𝐹𝑘)) → 𝑥 ≤ (𝐹𝑘))
2910ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ran (𝐹 ↾ (ℤ𝑗)) ⊆ ℝ*)
30 fvres 6775 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ𝑗) → ((𝐹 ↾ (ℤ𝑗))‘𝑘) = (𝐹𝑘))
3130eqcomd 2744 . . . . . . . . . . . . . 14 (𝑘 ∈ (ℤ𝑗) → (𝐹𝑘) = ((𝐹 ↾ (ℤ𝑗))‘𝑘))
3231adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) = ((𝐹 ↾ (ℤ𝑗))‘𝑘))
337ffnd 6585 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 Fn 𝑍)
3433adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍) → 𝐹 Fn 𝑍)
3522ssd 42519 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑍) → (ℤ𝑗) ⊆ 𝑍)
36 fnssres 6539 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝑍 ∧ (ℤ𝑗) ⊆ 𝑍) → (𝐹 ↾ (ℤ𝑗)) Fn (ℤ𝑗))
3734, 35, 36syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍) → (𝐹 ↾ (ℤ𝑗)) Fn (ℤ𝑗))
3837adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹 ↾ (ℤ𝑗)) Fn (ℤ𝑗))
39 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ (ℤ𝑗))
4038, 39fnfvelrnd 42697 . . . . . . . . . . . . 13 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹 ↾ (ℤ𝑗))‘𝑘) ∈ ran (𝐹 ↾ (ℤ𝑗)))
4132, 40eqeltrd 2839 . . . . . . . . . . . 12 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ran (𝐹 ↾ (ℤ𝑗)))
42 eqid 2738 . . . . . . . . . . . 12 sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) = sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )
4329, 41, 42supxrubd 42552 . . . . . . . . . . 11 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ≤ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ))
44433impa 1108 . . . . . . . . . 10 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ≤ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ))
4544ad5ant134 1365 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 ≤ (𝐹𝑘)) → (𝐹𝑘) ≤ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ))
4619, 26, 27, 28, 45xrletrd 12825 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑥 ≤ (𝐹𝑘)) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ))
4746rexlimdva2 3215 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝑍) → (∃𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) → 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )))
4847ralimdva 3102 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (∀𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) → ∀𝑗𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )))
4948reximdva 3202 . . . . 5 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘) → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )))
5017, 49mpd 15 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 𝑥 ≤ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ))
51 limsupgtlem.x . . . . 5 (𝜑𝑋 ∈ ℝ+)
5251rphalfcld 12713 . . . 4 (𝜑 → (𝑋 / 2) ∈ ℝ+)
531, 4, 12, 50, 52infrpgernmpt 42895 . . 3 (𝜑 → ∃𝑗𝑍 sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ (inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) +𝑒 (𝑋 / 2)))
54 simp3 1136 . . . . . . 7 ((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ (inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) +𝑒 (𝑋 / 2))) → sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ (inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) +𝑒 (𝑋 / 2)))
552, 3, 8limsupvaluz 43139 . . . . . . . . . 10 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ))
5655eqcomd 2744 . . . . . . . . 9 (𝜑 → inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) = (lim sup‘𝐹))
5756oveq1d 7270 . . . . . . . 8 (𝜑 → (inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) +𝑒 (𝑋 / 2)) = ((lim sup‘𝐹) +𝑒 (𝑋 / 2)))
58573ad2ant1 1131 . . . . . . 7 ((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ (inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) +𝑒 (𝑋 / 2))) → (inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) +𝑒 (𝑋 / 2)) = ((lim sup‘𝐹) +𝑒 (𝑋 / 2)))
5954, 58breqtrd 5096 . . . . . 6 ((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ (inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) +𝑒 (𝑋 / 2))) → sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2)))
60243adantl3 1166 . . . . . . . . . 10 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ*)
61 simpl1 1189 . . . . . . . . . . 11 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
6261, 11syl 17 . . . . . . . . . 10 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ∈ ℝ*)
633fvexi 6770 . . . . . . . . . . . . . . 15 𝑍 ∈ V
6463a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ V)
657, 64fexd 7085 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ V)
6665limsupcld 43121 . . . . . . . . . . . 12 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
6751rpred 12701 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ ℝ)
6867rehalfcld 12150 . . . . . . . . . . . . 13 (𝜑 → (𝑋 / 2) ∈ ℝ)
6968rexrd 10956 . . . . . . . . . . . 12 (𝜑 → (𝑋 / 2) ∈ ℝ*)
7066, 69xaddcld 12964 . . . . . . . . . . 11 (𝜑 → ((lim sup‘𝐹) +𝑒 (𝑋 / 2)) ∈ ℝ*)
7161, 70syl 17 . . . . . . . . . 10 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((lim sup‘𝐹) +𝑒 (𝑋 / 2)) ∈ ℝ*)
72433adantl3 1166 . . . . . . . . . 10 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ≤ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ))
73 simpl3 1191 . . . . . . . . . 10 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2)))
7460, 62, 71, 72, 73xrletrd 12825 . . . . . . . . 9 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2)))
7513, 68rexaddd 12897 . . . . . . . . . 10 (𝜑 → ((lim sup‘𝐹) +𝑒 (𝑋 / 2)) = ((lim sup‘𝐹) + (𝑋 / 2)))
7661, 75syl 17 . . . . . . . . 9 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((lim sup‘𝐹) +𝑒 (𝑋 / 2)) = ((lim sup‘𝐹) + (𝑋 / 2)))
7774, 76breqtrd 5096 . . . . . . . 8 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ≤ ((lim sup‘𝐹) + (𝑋 / 2)))
7868ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑋 / 2) ∈ ℝ)
7913ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (lim sup‘𝐹) ∈ ℝ)
8023, 78, 79lesubaddd 11502 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹) ↔ (𝐹𝑘) ≤ ((lim sup‘𝐹) + (𝑋 / 2))))
81803adantl3 1166 . . . . . . . 8 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹) ↔ (𝐹𝑘) ≤ ((lim sup‘𝐹) + (𝑋 / 2))))
8277, 81mpbird 256 . . . . . . 7 (((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹))
8382ralrimiva 3107 . . . . . 6 ((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ ((lim sup‘𝐹) +𝑒 (𝑋 / 2))) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹))
8459, 83syld3an3 1407 . . . . 5 ((𝜑𝑗𝑍 ∧ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ (inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) +𝑒 (𝑋 / 2))) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹))
85843exp 1117 . . . 4 (𝜑 → (𝑗𝑍 → (sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ (inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) +𝑒 (𝑋 / 2)) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹))))
861, 85reximdai 3239 . . 3 (𝜑 → (∃𝑗𝑍 sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < ) ≤ (inf(ran (𝑗𝑍 ↦ sup(ran (𝐹 ↾ (ℤ𝑗)), ℝ*, < )), ℝ*, < ) +𝑒 (𝑋 / 2)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)))
8753, 86mpd 15 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹))
88 simpll 763 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
897ffvelrnda 6943 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
9067adantr 480 . . . . . . . . 9 ((𝜑𝑘𝑍) → 𝑋 ∈ ℝ)
9189, 90resubcld 11333 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝐹𝑘) − 𝑋) ∈ ℝ)
9291adantr 480 . . . . . . 7 (((𝜑𝑘𝑍) ∧ ((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)) → ((𝐹𝑘) − 𝑋) ∈ ℝ)
9368adantr 480 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝑋 / 2) ∈ ℝ)
9489, 93resubcld 11333 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝐹𝑘) − (𝑋 / 2)) ∈ ℝ)
9594adantr 480 . . . . . . 7 (((𝜑𝑘𝑍) ∧ ((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)) → ((𝐹𝑘) − (𝑋 / 2)) ∈ ℝ)
9613ad2antrr 722 . . . . . . 7 (((𝜑𝑘𝑍) ∧ ((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)) → (lim sup‘𝐹) ∈ ℝ)
9751rphalfltd 42885 . . . . . . . . . 10 (𝜑 → (𝑋 / 2) < 𝑋)
9897adantr 480 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝑋 / 2) < 𝑋)
9993, 90, 89, 98ltsub2dd 11518 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝐹𝑘) − 𝑋) < ((𝐹𝑘) − (𝑋 / 2)))
10099adantr 480 . . . . . . 7 (((𝜑𝑘𝑍) ∧ ((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)) → ((𝐹𝑘) − 𝑋) < ((𝐹𝑘) − (𝑋 / 2)))
101 simpr 484 . . . . . . 7 (((𝜑𝑘𝑍) ∧ ((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)) → ((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹))
10292, 95, 96, 100, 101ltletrd 11065 . . . . . 6 (((𝜑𝑘𝑍) ∧ ((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹)) → ((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
103102ex 412 . . . . 5 ((𝜑𝑘𝑍) → (((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹) → ((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
10488, 22, 103syl2anc 583 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹) → ((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
105104ralimdva 3102 . . 3 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
106105reximdva 3202 . 2 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − (𝑋 / 2)) ≤ (lim sup‘𝐹) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹)))
10787, 106mpd 15 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) − 𝑋) < (lim sup‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  wss 3883   class class class wbr 5070  cmpt 5153  ran crn 5581  cres 5582   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  supcsup 9129  infcinf 9130  cr 10801   + caddc 10805  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  2c2 11958  cz 12249  cuz 12511  +crp 12659   +𝑒 cxad 12775  lim supclsp 15107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-xadd 12778  df-ico 13014  df-fz 13169  df-fzo 13312  df-fl 13440  df-ceil 13441  df-limsup 15108
This theorem is referenced by:  limsupgt  43209
  Copyright terms: Public domain W3C validator