Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0cl Structured version   Visualization version   GIF version

Theorem sge0cl 46379
Description: The arbitrary sum of nonnegative extended reals is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0cl.x (𝜑𝑋𝑉)
sge0cl.f (𝜑𝐹:𝑋⟶(0[,]+∞))
Assertion
Ref Expression
sge0cl (𝜑 → (Σ^𝐹) ∈ (0[,]+∞))

Proof of Theorem sge0cl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . . . 5 (𝐹 = ∅ → (Σ^𝐹) = (Σ^‘∅))
2 sge00 46374 . . . . . 6 ^‘∅) = 0
32a1i 11 . . . . 5 (𝐹 = ∅ → (Σ^‘∅) = 0)
41, 3eqtrd 2764 . . . 4 (𝐹 = ∅ → (Σ^𝐹) = 0)
5 0e0iccpnf 13420 . . . . 5 0 ∈ (0[,]+∞)
65a1i 11 . . . 4 (𝐹 = ∅ → 0 ∈ (0[,]+∞))
74, 6eqeltrd 2828 . . 3 (𝐹 = ∅ → (Σ^𝐹) ∈ (0[,]+∞))
87adantl 481 . 2 ((𝜑𝐹 = ∅) → (Σ^𝐹) ∈ (0[,]+∞))
9 sge0cl.x . . . . . . 7 (𝜑𝑋𝑉)
109adantr 480 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝑋𝑉)
11 sge0cl.f . . . . . . 7 (𝜑𝐹:𝑋⟶(0[,]+∞))
1211adantr 480 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,]+∞))
13 simpr 484 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran 𝐹)
1410, 12, 13sge0pnfval 46371 . . . . 5 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (Σ^𝐹) = +∞)
15 pnfel0pnf 45526 . . . . . 6 +∞ ∈ (0[,]+∞)
1615a1i 11 . . . . 5 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ (0[,]+∞))
1714, 16eqeltrd 2828 . . . 4 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (Σ^𝐹) ∈ (0[,]+∞))
1817adantlr 715 . . 3 (((𝜑 ∧ ¬ 𝐹 = ∅) ∧ +∞ ∈ ran 𝐹) → (Σ^𝐹) ∈ (0[,]+∞))
19 simpll 766 . . . 4 (((𝜑 ∧ ¬ 𝐹 = ∅) ∧ ¬ +∞ ∈ ran 𝐹) → 𝜑)
20 neqne 2933 . . . . 5 𝐹 = ∅ → 𝐹 ≠ ∅)
2120ad2antlr 727 . . . 4 (((𝜑 ∧ ¬ 𝐹 = ∅) ∧ ¬ +∞ ∈ ran 𝐹) → 𝐹 ≠ ∅)
22 simpr 484 . . . 4 (((𝜑 ∧ ¬ 𝐹 = ∅) ∧ ¬ +∞ ∈ ran 𝐹) → ¬ +∞ ∈ ran 𝐹)
23 0xr 11221 . . . . . 6 0 ∈ ℝ*
2423a1i 11 . . . . 5 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → 0 ∈ ℝ*)
25 pnfxr 11228 . . . . . 6 +∞ ∈ ℝ*
2625a1i 11 . . . . 5 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → +∞ ∈ ℝ*)
279adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → 𝑋𝑉)
2811adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,]+∞))
29 simpr 484 . . . . . . . . 9 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ¬ +∞ ∈ ran 𝐹)
3028, 29fge0iccico 46368 . . . . . . . 8 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,)+∞))
3127, 30sge0reval 46370 . . . . . . 7 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
32 elinel2 4165 . . . . . . . . . . . . 13 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ Fin)
3332adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ Fin)
3411ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝐹:𝑋⟶(0[,]+∞))
35 elinel1 4164 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ 𝒫 𝑋)
36 elpwi 4570 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
3735, 36syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥𝑋)
3837adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥𝑋)
3938adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝑥𝑋)
40 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝑦𝑥)
4139, 40sseldd 3947 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝑦𝑋)
4234, 41ffvelcdmd 7057 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (0[,]+∞))
4342adantllr 719 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (0[,]+∞))
44 nne 2929 . . . . . . . . . . . . . . . . . 18 (¬ (𝐹𝑦) ≠ +∞ ↔ (𝐹𝑦) = +∞)
4544biimpi 216 . . . . . . . . . . . . . . . . 17 (¬ (𝐹𝑦) ≠ +∞ → (𝐹𝑦) = +∞)
4645eqcomd 2735 . . . . . . . . . . . . . . . 16 (¬ (𝐹𝑦) ≠ +∞ → +∞ = (𝐹𝑦))
4746adantl 481 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) ∧ ¬ (𝐹𝑦) ≠ +∞) → +∞ = (𝐹𝑦))
4811ffund 6692 . . . . . . . . . . . . . . . . . 18 (𝜑 → Fun 𝐹)
49483ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → Fun 𝐹)
50413impa 1109 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑋)
5111fdmd 6698 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom 𝐹 = 𝑋)
5251eqcomd 2735 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋 = dom 𝐹)
53523ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → 𝑋 = dom 𝐹)
5450, 53eleqtrd 2830 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → 𝑦 ∈ dom 𝐹)
55 fvelrn 7048 . . . . . . . . . . . . . . . . 17 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝐹𝑦) ∈ ran 𝐹)
5649, 54, 55syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ran 𝐹)
5756ad5ant134 1369 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) ∧ ¬ (𝐹𝑦) ≠ +∞) → (𝐹𝑦) ∈ ran 𝐹)
5847, 57eqeltrd 2828 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) ∧ ¬ (𝐹𝑦) ≠ +∞) → +∞ ∈ ran 𝐹)
5929ad3antrrr 730 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) ∧ ¬ (𝐹𝑦) ≠ +∞) → ¬ +∞ ∈ ran 𝐹)
6058, 59condan 817 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ≠ +∞)
61 ge0xrre 45529 . . . . . . . . . . . . 13 (((𝐹𝑦) ∈ (0[,]+∞) ∧ (𝐹𝑦) ≠ +∞) → (𝐹𝑦) ∈ ℝ)
6243, 60, 61syl2anc 584 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ℝ)
6333, 62fsumrecl 15700 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) ∈ ℝ)
6463ralrimiva 3125 . . . . . . . . . 10 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑦𝑥 (𝐹𝑦) ∈ ℝ)
65 eqid 2729 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
6665rnmptss 7095 . . . . . . . . . 10 (∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑦𝑥 (𝐹𝑦) ∈ ℝ → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ)
6764, 66syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ)
68 ressxr 11218 . . . . . . . . . 10 ℝ ⊆ ℝ*
6968a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ℝ ⊆ ℝ*)
7067, 69sstrd 3957 . . . . . . . 8 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ*)
71 supxrcl 13275 . . . . . . . 8 (ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ* → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) ∈ ℝ*)
7270, 71syl 17 . . . . . . 7 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) ∈ ℝ*)
7331, 72eqeltrd 2828 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) ∈ ℝ*)
7473adantlr 715 . . . . 5 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) ∈ ℝ*)
7552adantr 480 . . . . . . . . 9 ((𝜑𝐹 ≠ ∅) → 𝑋 = dom 𝐹)
76 neneq 2931 . . . . . . . . . . . 12 (𝐹 ≠ ∅ → ¬ 𝐹 = ∅)
7776adantl 481 . . . . . . . . . . 11 ((𝜑𝐹 ≠ ∅) → ¬ 𝐹 = ∅)
78 frel 6693 . . . . . . . . . . . . . 14 (𝐹:𝑋⟶(0[,]+∞) → Rel 𝐹)
7911, 78syl 17 . . . . . . . . . . . . 13 (𝜑 → Rel 𝐹)
8079adantr 480 . . . . . . . . . . . 12 ((𝜑𝐹 ≠ ∅) → Rel 𝐹)
81 reldm0 5891 . . . . . . . . . . . 12 (Rel 𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅))
8280, 81syl 17 . . . . . . . . . . 11 ((𝜑𝐹 ≠ ∅) → (𝐹 = ∅ ↔ dom 𝐹 = ∅))
8377, 82mtbid 324 . . . . . . . . . 10 ((𝜑𝐹 ≠ ∅) → ¬ dom 𝐹 = ∅)
8483neqned 2932 . . . . . . . . 9 ((𝜑𝐹 ≠ ∅) → dom 𝐹 ≠ ∅)
8575, 84eqnetrd 2992 . . . . . . . 8 ((𝜑𝐹 ≠ ∅) → 𝑋 ≠ ∅)
86 n0 4316 . . . . . . . 8 (𝑋 ≠ ∅ ↔ ∃𝑧 𝑧𝑋)
8785, 86sylib 218 . . . . . . 7 ((𝜑𝐹 ≠ ∅) → ∃𝑧 𝑧𝑋)
8887adantr 480 . . . . . 6 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → ∃𝑧 𝑧𝑋)
8923a1i 11 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → 0 ∈ ℝ*)
9011ffvelcdmda 7056 . . . . . . . . . . . . 13 ((𝜑𝑧𝑋) → (𝐹𝑧) ∈ (0[,]+∞))
9190adantlr 715 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ (0[,]+∞))
92 nne 2929 . . . . . . . . . . . . . . . . 17 (¬ (𝐹𝑧) ≠ +∞ ↔ (𝐹𝑧) = +∞)
9392biimpi 216 . . . . . . . . . . . . . . . 16 (¬ (𝐹𝑧) ≠ +∞ → (𝐹𝑧) = +∞)
9493eqcomd 2735 . . . . . . . . . . . . . . 15 (¬ (𝐹𝑧) ≠ +∞ → +∞ = (𝐹𝑧))
9594adantl 481 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) ∧ ¬ (𝐹𝑧) ≠ +∞) → +∞ = (𝐹𝑧))
9611adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑋) → 𝐹:𝑋⟶(0[,]+∞))
9796ffund 6692 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑋) → Fun 𝐹)
98 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑋) → 𝑧𝑋)
9952adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑋) → 𝑋 = dom 𝐹)
10098, 99eleqtrd 2830 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑋) → 𝑧 ∈ dom 𝐹)
101 fvelrn 7048 . . . . . . . . . . . . . . . . 17 ((Fun 𝐹𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ran 𝐹)
10297, 100, 101syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑋) → (𝐹𝑧) ∈ ran 𝐹)
103102adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ran 𝐹)
104103adantr 480 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) ∧ ¬ (𝐹𝑧) ≠ +∞) → (𝐹𝑧) ∈ ran 𝐹)
10595, 104eqeltrd 2828 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) ∧ ¬ (𝐹𝑧) ≠ +∞) → +∞ ∈ ran 𝐹)
10629ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) ∧ ¬ (𝐹𝑧) ≠ +∞) → ¬ +∞ ∈ ran 𝐹)
107105, 106condan 817 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ≠ +∞)
108 ge0xrre 45529 . . . . . . . . . . . 12 (((𝐹𝑧) ∈ (0[,]+∞) ∧ (𝐹𝑧) ≠ +∞) → (𝐹𝑧) ∈ ℝ)
10991, 107, 108syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℝ)
110109rexrd 11224 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℝ*)
11173adantr 480 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (Σ^𝐹) ∈ ℝ*)
11223a1i 11 . . . . . . . . . . . 12 ((𝜑𝑧𝑋) → 0 ∈ ℝ*)
11325a1i 11 . . . . . . . . . . . 12 ((𝜑𝑧𝑋) → +∞ ∈ ℝ*)
114 iccgelb 13363 . . . . . . . . . . . 12 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹𝑧) ∈ (0[,]+∞)) → 0 ≤ (𝐹𝑧))
115112, 113, 90, 114syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → 0 ≤ (𝐹𝑧))
116115adantlr 715 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → 0 ≤ (𝐹𝑧))
11770adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ*)
118 snelpwi 5403 . . . . . . . . . . . . . . . 16 (𝑧𝑋 → {𝑧} ∈ 𝒫 𝑋)
119 snfi 9014 . . . . . . . . . . . . . . . . 17 {𝑧} ∈ Fin
120119a1i 11 . . . . . . . . . . . . . . . 16 (𝑧𝑋 → {𝑧} ∈ Fin)
121118, 120elind 4163 . . . . . . . . . . . . . . 15 (𝑧𝑋 → {𝑧} ∈ (𝒫 𝑋 ∩ Fin))
122121adantl 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → {𝑧} ∈ (𝒫 𝑋 ∩ Fin))
123 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → 𝑧𝑋)
124109recnd 11202 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℂ)
125 fveq2 6858 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
126125sumsn 15712 . . . . . . . . . . . . . . . 16 ((𝑧𝑋 ∧ (𝐹𝑧) ∈ ℂ) → Σ𝑦 ∈ {𝑧} (𝐹𝑦) = (𝐹𝑧))
127123, 124, 126syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → Σ𝑦 ∈ {𝑧} (𝐹𝑦) = (𝐹𝑧))
128127eqcomd 2735 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) = Σ𝑦 ∈ {𝑧} (𝐹𝑦))
129 sumeq1 15655 . . . . . . . . . . . . . . 15 (𝑥 = {𝑧} → Σ𝑦𝑥 (𝐹𝑦) = Σ𝑦 ∈ {𝑧} (𝐹𝑦))
130129rspceeqv 3611 . . . . . . . . . . . . . 14 (({𝑧} ∈ (𝒫 𝑋 ∩ Fin) ∧ (𝐹𝑧) = Σ𝑦 ∈ {𝑧} (𝐹𝑦)) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑧) = Σ𝑦𝑥 (𝐹𝑦))
131122, 128, 130syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑧) = Σ𝑦𝑥 (𝐹𝑦))
13265elrnmpt 5922 . . . . . . . . . . . . . 14 ((𝐹𝑧) ∈ (0[,]+∞) → ((𝐹𝑧) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑧) = Σ𝑦𝑥 (𝐹𝑦)))
13391, 132syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑧) = Σ𝑦𝑥 (𝐹𝑦)))
134131, 133mpbird 257 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
135 supxrub 13284 . . . . . . . . . . . 12 ((ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ* ∧ (𝐹𝑧) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → (𝐹𝑧) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
136117, 134, 135syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
13731eqcomd 2735 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) = (Σ^𝐹))
138137adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) = (Σ^𝐹))
139136, 138breqtrd 5133 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ≤ (Σ^𝐹))
14089, 110, 111, 116, 139xrletrd 13122 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → 0 ≤ (Σ^𝐹))
141140ex 412 . . . . . . . 8 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (𝑧𝑋 → 0 ≤ (Σ^𝐹)))
142141adantlr 715 . . . . . . 7 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → (𝑧𝑋 → 0 ≤ (Σ^𝐹)))
143142exlimdv 1933 . . . . . 6 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → (∃𝑧 𝑧𝑋 → 0 ≤ (Σ^𝐹)))
14488, 143mpd 15 . . . . 5 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → 0 ≤ (Σ^𝐹))
145 pnfge 13090 . . . . . . 7 ((Σ^𝐹) ∈ ℝ* → (Σ^𝐹) ≤ +∞)
14673, 145syl 17 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) ≤ +∞)
147146adantlr 715 . . . . 5 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) ≤ +∞)
14824, 26, 74, 144, 147eliccxrd 45525 . . . 4 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) ∈ (0[,]+∞))
14919, 21, 22, 148syl21anc 837 . . 3 (((𝜑 ∧ ¬ 𝐹 = ∅) ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) ∈ (0[,]+∞))
15018, 149pm2.61dan 812 . 2 ((𝜑 ∧ ¬ 𝐹 = ∅) → (Σ^𝐹) ∈ (0[,]+∞))
1518, 150pm2.61dan 812 1 (𝜑 → (Σ^𝐹) ∈ (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589   class class class wbr 5107  cmpt 5188  dom cdm 5638  ran crn 5639  Rel wrel 5643  Fun wfun 6505  wf 6507  cfv 6511  (class class class)co 7387  Fincfn 8918  supcsup 9391  cc 11066  cr 11067  0cc0 11068  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  [,]cicc 13309  Σcsu 15652  Σ^csumge0 46360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-sumge0 46361
This theorem is referenced by:  sge0ge0  46382  sge0xrcl  46383  sge0split  46407  sge0iunmptlemre  46413  sge0iunmpt  46416  sge0nemnf  46418  sge0clmpt  46423  sge0isum  46425  psmeasure  46469  ovnsupge0  46555  ovnsubaddlem1  46568  sge0hsphoire  46587  hoidmvlelem1  46593  hspmbllem2  46625
  Copyright terms: Public domain W3C validator