Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0cl Structured version   Visualization version   GIF version

Theorem sge0cl 46352
Description: The arbitrary sum of nonnegative extended reals is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0cl.x (𝜑𝑋𝑉)
sge0cl.f (𝜑𝐹:𝑋⟶(0[,]+∞))
Assertion
Ref Expression
sge0cl (𝜑 → (Σ^𝐹) ∈ (0[,]+∞))

Proof of Theorem sge0cl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6840 . . . . 5 (𝐹 = ∅ → (Σ^𝐹) = (Σ^‘∅))
2 sge00 46347 . . . . . 6 ^‘∅) = 0
32a1i 11 . . . . 5 (𝐹 = ∅ → (Σ^‘∅) = 0)
41, 3eqtrd 2764 . . . 4 (𝐹 = ∅ → (Σ^𝐹) = 0)
5 0e0iccpnf 13396 . . . . 5 0 ∈ (0[,]+∞)
65a1i 11 . . . 4 (𝐹 = ∅ → 0 ∈ (0[,]+∞))
74, 6eqeltrd 2828 . . 3 (𝐹 = ∅ → (Σ^𝐹) ∈ (0[,]+∞))
87adantl 481 . 2 ((𝜑𝐹 = ∅) → (Σ^𝐹) ∈ (0[,]+∞))
9 sge0cl.x . . . . . . 7 (𝜑𝑋𝑉)
109adantr 480 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝑋𝑉)
11 sge0cl.f . . . . . . 7 (𝜑𝐹:𝑋⟶(0[,]+∞))
1211adantr 480 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,]+∞))
13 simpr 484 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran 𝐹)
1410, 12, 13sge0pnfval 46344 . . . . 5 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (Σ^𝐹) = +∞)
15 pnfel0pnf 45499 . . . . . 6 +∞ ∈ (0[,]+∞)
1615a1i 11 . . . . 5 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ (0[,]+∞))
1714, 16eqeltrd 2828 . . . 4 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (Σ^𝐹) ∈ (0[,]+∞))
1817adantlr 715 . . 3 (((𝜑 ∧ ¬ 𝐹 = ∅) ∧ +∞ ∈ ran 𝐹) → (Σ^𝐹) ∈ (0[,]+∞))
19 simpll 766 . . . 4 (((𝜑 ∧ ¬ 𝐹 = ∅) ∧ ¬ +∞ ∈ ran 𝐹) → 𝜑)
20 neqne 2933 . . . . 5 𝐹 = ∅ → 𝐹 ≠ ∅)
2120ad2antlr 727 . . . 4 (((𝜑 ∧ ¬ 𝐹 = ∅) ∧ ¬ +∞ ∈ ran 𝐹) → 𝐹 ≠ ∅)
22 simpr 484 . . . 4 (((𝜑 ∧ ¬ 𝐹 = ∅) ∧ ¬ +∞ ∈ ran 𝐹) → ¬ +∞ ∈ ran 𝐹)
23 0xr 11197 . . . . . 6 0 ∈ ℝ*
2423a1i 11 . . . . 5 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → 0 ∈ ℝ*)
25 pnfxr 11204 . . . . . 6 +∞ ∈ ℝ*
2625a1i 11 . . . . 5 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → +∞ ∈ ℝ*)
279adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → 𝑋𝑉)
2811adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,]+∞))
29 simpr 484 . . . . . . . . 9 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ¬ +∞ ∈ ran 𝐹)
3028, 29fge0iccico 46341 . . . . . . . 8 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,)+∞))
3127, 30sge0reval 46343 . . . . . . 7 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
32 elinel2 4161 . . . . . . . . . . . . 13 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ Fin)
3332adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ Fin)
3411ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝐹:𝑋⟶(0[,]+∞))
35 elinel1 4160 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ 𝒫 𝑋)
36 elpwi 4566 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
3735, 36syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥𝑋)
3837adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥𝑋)
3938adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝑥𝑋)
40 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝑦𝑥)
4139, 40sseldd 3944 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝑦𝑋)
4234, 41ffvelcdmd 7039 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (0[,]+∞))
4342adantllr 719 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (0[,]+∞))
44 nne 2929 . . . . . . . . . . . . . . . . . 18 (¬ (𝐹𝑦) ≠ +∞ ↔ (𝐹𝑦) = +∞)
4544biimpi 216 . . . . . . . . . . . . . . . . 17 (¬ (𝐹𝑦) ≠ +∞ → (𝐹𝑦) = +∞)
4645eqcomd 2735 . . . . . . . . . . . . . . . 16 (¬ (𝐹𝑦) ≠ +∞ → +∞ = (𝐹𝑦))
4746adantl 481 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) ∧ ¬ (𝐹𝑦) ≠ +∞) → +∞ = (𝐹𝑦))
4811ffund 6674 . . . . . . . . . . . . . . . . . 18 (𝜑 → Fun 𝐹)
49483ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → Fun 𝐹)
50413impa 1109 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑋)
5111fdmd 6680 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom 𝐹 = 𝑋)
5251eqcomd 2735 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋 = dom 𝐹)
53523ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → 𝑋 = dom 𝐹)
5450, 53eleqtrd 2830 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → 𝑦 ∈ dom 𝐹)
55 fvelrn 7030 . . . . . . . . . . . . . . . . 17 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝐹𝑦) ∈ ran 𝐹)
5649, 54, 55syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ran 𝐹)
5756ad5ant134 1369 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) ∧ ¬ (𝐹𝑦) ≠ +∞) → (𝐹𝑦) ∈ ran 𝐹)
5847, 57eqeltrd 2828 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) ∧ ¬ (𝐹𝑦) ≠ +∞) → +∞ ∈ ran 𝐹)
5929ad3antrrr 730 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) ∧ ¬ (𝐹𝑦) ≠ +∞) → ¬ +∞ ∈ ran 𝐹)
6058, 59condan 817 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ≠ +∞)
61 ge0xrre 45502 . . . . . . . . . . . . 13 (((𝐹𝑦) ∈ (0[,]+∞) ∧ (𝐹𝑦) ≠ +∞) → (𝐹𝑦) ∈ ℝ)
6243, 60, 61syl2anc 584 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ℝ)
6333, 62fsumrecl 15676 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) ∈ ℝ)
6463ralrimiva 3125 . . . . . . . . . 10 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑦𝑥 (𝐹𝑦) ∈ ℝ)
65 eqid 2729 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
6665rnmptss 7077 . . . . . . . . . 10 (∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑦𝑥 (𝐹𝑦) ∈ ℝ → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ)
6764, 66syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ)
68 ressxr 11194 . . . . . . . . . 10 ℝ ⊆ ℝ*
6968a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ℝ ⊆ ℝ*)
7067, 69sstrd 3954 . . . . . . . 8 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ*)
71 supxrcl 13251 . . . . . . . 8 (ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ* → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) ∈ ℝ*)
7270, 71syl 17 . . . . . . 7 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) ∈ ℝ*)
7331, 72eqeltrd 2828 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) ∈ ℝ*)
7473adantlr 715 . . . . 5 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) ∈ ℝ*)
7552adantr 480 . . . . . . . . 9 ((𝜑𝐹 ≠ ∅) → 𝑋 = dom 𝐹)
76 neneq 2931 . . . . . . . . . . . 12 (𝐹 ≠ ∅ → ¬ 𝐹 = ∅)
7776adantl 481 . . . . . . . . . . 11 ((𝜑𝐹 ≠ ∅) → ¬ 𝐹 = ∅)
78 frel 6675 . . . . . . . . . . . . . 14 (𝐹:𝑋⟶(0[,]+∞) → Rel 𝐹)
7911, 78syl 17 . . . . . . . . . . . . 13 (𝜑 → Rel 𝐹)
8079adantr 480 . . . . . . . . . . . 12 ((𝜑𝐹 ≠ ∅) → Rel 𝐹)
81 reldm0 5881 . . . . . . . . . . . 12 (Rel 𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅))
8280, 81syl 17 . . . . . . . . . . 11 ((𝜑𝐹 ≠ ∅) → (𝐹 = ∅ ↔ dom 𝐹 = ∅))
8377, 82mtbid 324 . . . . . . . . . 10 ((𝜑𝐹 ≠ ∅) → ¬ dom 𝐹 = ∅)
8483neqned 2932 . . . . . . . . 9 ((𝜑𝐹 ≠ ∅) → dom 𝐹 ≠ ∅)
8575, 84eqnetrd 2992 . . . . . . . 8 ((𝜑𝐹 ≠ ∅) → 𝑋 ≠ ∅)
86 n0 4312 . . . . . . . 8 (𝑋 ≠ ∅ ↔ ∃𝑧 𝑧𝑋)
8785, 86sylib 218 . . . . . . 7 ((𝜑𝐹 ≠ ∅) → ∃𝑧 𝑧𝑋)
8887adantr 480 . . . . . 6 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → ∃𝑧 𝑧𝑋)
8923a1i 11 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → 0 ∈ ℝ*)
9011ffvelcdmda 7038 . . . . . . . . . . . . 13 ((𝜑𝑧𝑋) → (𝐹𝑧) ∈ (0[,]+∞))
9190adantlr 715 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ (0[,]+∞))
92 nne 2929 . . . . . . . . . . . . . . . . 17 (¬ (𝐹𝑧) ≠ +∞ ↔ (𝐹𝑧) = +∞)
9392biimpi 216 . . . . . . . . . . . . . . . 16 (¬ (𝐹𝑧) ≠ +∞ → (𝐹𝑧) = +∞)
9493eqcomd 2735 . . . . . . . . . . . . . . 15 (¬ (𝐹𝑧) ≠ +∞ → +∞ = (𝐹𝑧))
9594adantl 481 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) ∧ ¬ (𝐹𝑧) ≠ +∞) → +∞ = (𝐹𝑧))
9611adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑋) → 𝐹:𝑋⟶(0[,]+∞))
9796ffund 6674 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑋) → Fun 𝐹)
98 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑋) → 𝑧𝑋)
9952adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑋) → 𝑋 = dom 𝐹)
10098, 99eleqtrd 2830 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑋) → 𝑧 ∈ dom 𝐹)
101 fvelrn 7030 . . . . . . . . . . . . . . . . 17 ((Fun 𝐹𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ran 𝐹)
10297, 100, 101syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑋) → (𝐹𝑧) ∈ ran 𝐹)
103102adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ran 𝐹)
104103adantr 480 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) ∧ ¬ (𝐹𝑧) ≠ +∞) → (𝐹𝑧) ∈ ran 𝐹)
10595, 104eqeltrd 2828 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) ∧ ¬ (𝐹𝑧) ≠ +∞) → +∞ ∈ ran 𝐹)
10629ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) ∧ ¬ (𝐹𝑧) ≠ +∞) → ¬ +∞ ∈ ran 𝐹)
107105, 106condan 817 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ≠ +∞)
108 ge0xrre 45502 . . . . . . . . . . . 12 (((𝐹𝑧) ∈ (0[,]+∞) ∧ (𝐹𝑧) ≠ +∞) → (𝐹𝑧) ∈ ℝ)
10991, 107, 108syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℝ)
110109rexrd 11200 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℝ*)
11173adantr 480 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (Σ^𝐹) ∈ ℝ*)
11223a1i 11 . . . . . . . . . . . 12 ((𝜑𝑧𝑋) → 0 ∈ ℝ*)
11325a1i 11 . . . . . . . . . . . 12 ((𝜑𝑧𝑋) → +∞ ∈ ℝ*)
114 iccgelb 13339 . . . . . . . . . . . 12 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹𝑧) ∈ (0[,]+∞)) → 0 ≤ (𝐹𝑧))
115112, 113, 90, 114syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → 0 ≤ (𝐹𝑧))
116115adantlr 715 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → 0 ≤ (𝐹𝑧))
11770adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ*)
118 snelpwi 5398 . . . . . . . . . . . . . . . 16 (𝑧𝑋 → {𝑧} ∈ 𝒫 𝑋)
119 snfi 8991 . . . . . . . . . . . . . . . . 17 {𝑧} ∈ Fin
120119a1i 11 . . . . . . . . . . . . . . . 16 (𝑧𝑋 → {𝑧} ∈ Fin)
121118, 120elind 4159 . . . . . . . . . . . . . . 15 (𝑧𝑋 → {𝑧} ∈ (𝒫 𝑋 ∩ Fin))
122121adantl 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → {𝑧} ∈ (𝒫 𝑋 ∩ Fin))
123 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → 𝑧𝑋)
124109recnd 11178 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℂ)
125 fveq2 6840 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
126125sumsn 15688 . . . . . . . . . . . . . . . 16 ((𝑧𝑋 ∧ (𝐹𝑧) ∈ ℂ) → Σ𝑦 ∈ {𝑧} (𝐹𝑦) = (𝐹𝑧))
127123, 124, 126syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → Σ𝑦 ∈ {𝑧} (𝐹𝑦) = (𝐹𝑧))
128127eqcomd 2735 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) = Σ𝑦 ∈ {𝑧} (𝐹𝑦))
129 sumeq1 15631 . . . . . . . . . . . . . . 15 (𝑥 = {𝑧} → Σ𝑦𝑥 (𝐹𝑦) = Σ𝑦 ∈ {𝑧} (𝐹𝑦))
130129rspceeqv 3608 . . . . . . . . . . . . . 14 (({𝑧} ∈ (𝒫 𝑋 ∩ Fin) ∧ (𝐹𝑧) = Σ𝑦 ∈ {𝑧} (𝐹𝑦)) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑧) = Σ𝑦𝑥 (𝐹𝑦))
131122, 128, 130syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑧) = Σ𝑦𝑥 (𝐹𝑦))
13265elrnmpt 5911 . . . . . . . . . . . . . 14 ((𝐹𝑧) ∈ (0[,]+∞) → ((𝐹𝑧) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑧) = Σ𝑦𝑥 (𝐹𝑦)))
13391, 132syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑧) = Σ𝑦𝑥 (𝐹𝑦)))
134131, 133mpbird 257 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
135 supxrub 13260 . . . . . . . . . . . 12 ((ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ* ∧ (𝐹𝑧) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → (𝐹𝑧) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
136117, 134, 135syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
13731eqcomd 2735 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) = (Σ^𝐹))
138137adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) = (Σ^𝐹))
139136, 138breqtrd 5128 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ≤ (Σ^𝐹))
14089, 110, 111, 116, 139xrletrd 13098 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → 0 ≤ (Σ^𝐹))
141140ex 412 . . . . . . . 8 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (𝑧𝑋 → 0 ≤ (Σ^𝐹)))
142141adantlr 715 . . . . . . 7 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → (𝑧𝑋 → 0 ≤ (Σ^𝐹)))
143142exlimdv 1933 . . . . . 6 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → (∃𝑧 𝑧𝑋 → 0 ≤ (Σ^𝐹)))
14488, 143mpd 15 . . . . 5 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → 0 ≤ (Σ^𝐹))
145 pnfge 13066 . . . . . . 7 ((Σ^𝐹) ∈ ℝ* → (Σ^𝐹) ≤ +∞)
14673, 145syl 17 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) ≤ +∞)
147146adantlr 715 . . . . 5 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) ≤ +∞)
14824, 26, 74, 144, 147eliccxrd 45498 . . . 4 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) ∈ (0[,]+∞))
14919, 21, 22, 148syl21anc 837 . . 3 (((𝜑 ∧ ¬ 𝐹 = ∅) ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) ∈ (0[,]+∞))
15018, 149pm2.61dan 812 . 2 ((𝜑 ∧ ¬ 𝐹 = ∅) → (Σ^𝐹) ∈ (0[,]+∞))
1518, 150pm2.61dan 812 1 (𝜑 → (Σ^𝐹) ∈ (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  cin 3910  wss 3911  c0 4292  𝒫 cpw 4559  {csn 4585   class class class wbr 5102  cmpt 5183  dom cdm 5631  ran crn 5632  Rel wrel 5636  Fun wfun 6493  wf 6495  cfv 6499  (class class class)co 7369  Fincfn 8895  supcsup 9367  cc 11042  cr 11043  0cc0 11044  +∞cpnf 11181  *cxr 11183   < clt 11184  cle 11185  [,]cicc 13285  Σcsu 15628  Σ^csumge0 46333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-sumge0 46334
This theorem is referenced by:  sge0ge0  46355  sge0xrcl  46356  sge0split  46380  sge0iunmptlemre  46386  sge0iunmpt  46389  sge0nemnf  46391  sge0clmpt  46396  sge0isum  46398  psmeasure  46442  ovnsupge0  46528  ovnsubaddlem1  46541  sge0hsphoire  46560  hoidmvlelem1  46566  hspmbllem2  46598
  Copyright terms: Public domain W3C validator