Step | Hyp | Ref
| Expression |
1 | | fveq2 6774 |
. . . . 5
⊢ (𝐹 = ∅ →
(Σ^‘𝐹) =
(Σ^‘∅)) |
2 | | sge00 43914 |
. . . . . 6
⊢
(Σ^‘∅) = 0 |
3 | 2 | a1i 11 |
. . . . 5
⊢ (𝐹 = ∅ →
(Σ^‘∅) = 0) |
4 | 1, 3 | eqtrd 2778 |
. . . 4
⊢ (𝐹 = ∅ →
(Σ^‘𝐹) = 0) |
5 | | 0e0iccpnf 13191 |
. . . . 5
⊢ 0 ∈
(0[,]+∞) |
6 | 5 | a1i 11 |
. . . 4
⊢ (𝐹 = ∅ → 0 ∈
(0[,]+∞)) |
7 | 4, 6 | eqeltrd 2839 |
. . 3
⊢ (𝐹 = ∅ →
(Σ^‘𝐹) ∈ (0[,]+∞)) |
8 | 7 | adantl 482 |
. 2
⊢ ((𝜑 ∧ 𝐹 = ∅) →
(Σ^‘𝐹) ∈ (0[,]+∞)) |
9 | | sge0cl.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
10 | 9 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝑋 ∈ 𝑉) |
11 | | sge0cl.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
12 | 11 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,]+∞)) |
13 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran
𝐹) |
14 | 10, 12, 13 | sge0pnfval 43911 |
. . . . 5
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) →
(Σ^‘𝐹) = +∞) |
15 | | pnfel0pnf 43066 |
. . . . . 6
⊢ +∞
∈ (0[,]+∞) |
16 | 15 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈
(0[,]+∞)) |
17 | 14, 16 | eqeltrd 2839 |
. . . 4
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) →
(Σ^‘𝐹) ∈ (0[,]+∞)) |
18 | 17 | adantlr 712 |
. . 3
⊢ (((𝜑 ∧ ¬ 𝐹 = ∅) ∧ +∞ ∈ ran 𝐹) →
(Σ^‘𝐹) ∈ (0[,]+∞)) |
19 | | simpll 764 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐹 = ∅) ∧ ¬ +∞ ∈ ran
𝐹) → 𝜑) |
20 | | neqne 2951 |
. . . . 5
⊢ (¬
𝐹 = ∅ → 𝐹 ≠ ∅) |
21 | 20 | ad2antlr 724 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐹 = ∅) ∧ ¬ +∞ ∈ ran
𝐹) → 𝐹 ≠ ∅) |
22 | | simpr 485 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐹 = ∅) ∧ ¬ +∞ ∈ ran
𝐹) → ¬ +∞
∈ ran 𝐹) |
23 | | 0xr 11022 |
. . . . . 6
⊢ 0 ∈
ℝ* |
24 | 23 | a1i 11 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 ≠ ∅) ∧ ¬ +∞ ∈
ran 𝐹) → 0 ∈
ℝ*) |
25 | | pnfxr 11029 |
. . . . . 6
⊢ +∞
∈ ℝ* |
26 | 25 | a1i 11 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 ≠ ∅) ∧ ¬ +∞ ∈
ran 𝐹) → +∞
∈ ℝ*) |
27 | 9 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) → 𝑋 ∈ 𝑉) |
28 | 11 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) → 𝐹:𝑋⟶(0[,]+∞)) |
29 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) → ¬ +∞
∈ ran 𝐹) |
30 | 28, 29 | fge0iccico 43908 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) → 𝐹:𝑋⟶(0[,)+∞)) |
31 | 27, 30 | sge0reval 43910 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) →
(Σ^‘𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, <
)) |
32 | | elinel2 4130 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ Fin) |
33 | 32 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ Fin) |
34 | 11 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦 ∈ 𝑥) → 𝐹:𝑋⟶(0[,]+∞)) |
35 | | elinel1 4129 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ 𝒫 𝑋) |
36 | | elpwi 4542 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋) |
37 | 35, 36 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ⊆ 𝑋) |
38 | 37 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ⊆ 𝑋) |
39 | 38 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦 ∈ 𝑥) → 𝑥 ⊆ 𝑋) |
40 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑥) |
41 | 39, 40 | sseldd 3922 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑋) |
42 | 34, 41 | ffvelrnd 6962 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦 ∈ 𝑥) → (𝐹‘𝑦) ∈ (0[,]+∞)) |
43 | 42 | adantllr 716 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦 ∈ 𝑥) → (𝐹‘𝑦) ∈ (0[,]+∞)) |
44 | | nne 2947 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
(𝐹‘𝑦) ≠ +∞ ↔ (𝐹‘𝑦) = +∞) |
45 | 44 | biimpi 215 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝐹‘𝑦) ≠ +∞ → (𝐹‘𝑦) = +∞) |
46 | 45 | eqcomd 2744 |
. . . . . . . . . . . . . . . 16
⊢ (¬
(𝐹‘𝑦) ≠ +∞ → +∞ = (𝐹‘𝑦)) |
47 | 46 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ ¬
+∞ ∈ ran 𝐹)
∧ 𝑥 ∈ (𝒫
𝑋 ∩ Fin)) ∧ 𝑦 ∈ 𝑥) ∧ ¬ (𝐹‘𝑦) ≠ +∞) → +∞ = (𝐹‘𝑦)) |
48 | 11 | ffund 6604 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → Fun 𝐹) |
49 | 48 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦 ∈ 𝑥) → Fun 𝐹) |
50 | 41 | 3impa 1109 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑋) |
51 | 11 | fdmd 6611 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → dom 𝐹 = 𝑋) |
52 | 51 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑋 = dom 𝐹) |
53 | 52 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦 ∈ 𝑥) → 𝑋 = dom 𝐹) |
54 | 50, 53 | eleqtrd 2841 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ dom 𝐹) |
55 | | fvelrn 6954 |
. . . . . . . . . . . . . . . . 17
⊢ ((Fun
𝐹 ∧ 𝑦 ∈ dom 𝐹) → (𝐹‘𝑦) ∈ ran 𝐹) |
56 | 49, 54, 55 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦 ∈ 𝑥) → (𝐹‘𝑦) ∈ ran 𝐹) |
57 | 56 | ad5ant134 1366 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ ¬
+∞ ∈ ran 𝐹)
∧ 𝑥 ∈ (𝒫
𝑋 ∩ Fin)) ∧ 𝑦 ∈ 𝑥) ∧ ¬ (𝐹‘𝑦) ≠ +∞) → (𝐹‘𝑦) ∈ ran 𝐹) |
58 | 47, 57 | eqeltrd 2839 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ ¬
+∞ ∈ ran 𝐹)
∧ 𝑥 ∈ (𝒫
𝑋 ∩ Fin)) ∧ 𝑦 ∈ 𝑥) ∧ ¬ (𝐹‘𝑦) ≠ +∞) → +∞ ∈ ran
𝐹) |
59 | 29 | ad3antrrr 727 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ ¬
+∞ ∈ ran 𝐹)
∧ 𝑥 ∈ (𝒫
𝑋 ∩ Fin)) ∧ 𝑦 ∈ 𝑥) ∧ ¬ (𝐹‘𝑦) ≠ +∞) → ¬ +∞ ∈
ran 𝐹) |
60 | 58, 59 | condan 815 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦 ∈ 𝑥) → (𝐹‘𝑦) ≠ +∞) |
61 | | ge0xrre 43069 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑦) ∈ (0[,]+∞) ∧ (𝐹‘𝑦) ≠ +∞) → (𝐹‘𝑦) ∈ ℝ) |
62 | 43, 60, 61 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦 ∈ 𝑥) → (𝐹‘𝑦) ∈ ℝ) |
63 | 33, 62 | fsumrecl 15446 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ ℝ) |
64 | 63 | ralrimiva 3103 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) → ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ ℝ) |
65 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) |
66 | 65 | rnmptss 6996 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
(𝒫 𝑋 ∩
Fin)Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ ℝ → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ⊆ ℝ) |
67 | 64, 66 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ⊆ ℝ) |
68 | | ressxr 11019 |
. . . . . . . . . 10
⊢ ℝ
⊆ ℝ* |
69 | 68 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) → ℝ ⊆
ℝ*) |
70 | 67, 69 | sstrd 3931 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ⊆
ℝ*) |
71 | | supxrcl 13049 |
. . . . . . . 8
⊢ (ran
(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ⊆ ℝ* → sup(ran
(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, < ) ∈
ℝ*) |
72 | 70, 71 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, < ) ∈
ℝ*) |
73 | 31, 72 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) →
(Σ^‘𝐹) ∈
ℝ*) |
74 | 73 | adantlr 712 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 ≠ ∅) ∧ ¬ +∞ ∈
ran 𝐹) →
(Σ^‘𝐹) ∈
ℝ*) |
75 | 52 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐹 ≠ ∅) → 𝑋 = dom 𝐹) |
76 | | neneq 2949 |
. . . . . . . . . . . 12
⊢ (𝐹 ≠ ∅ → ¬ 𝐹 = ∅) |
77 | 76 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐹 ≠ ∅) → ¬ 𝐹 = ∅) |
78 | | frel 6605 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝑋⟶(0[,]+∞) → Rel 𝐹) |
79 | 11, 78 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → Rel 𝐹) |
80 | 79 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐹 ≠ ∅) → Rel 𝐹) |
81 | | reldm0 5837 |
. . . . . . . . . . . 12
⊢ (Rel
𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅)) |
82 | 80, 81 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐹 ≠ ∅) → (𝐹 = ∅ ↔ dom 𝐹 = ∅)) |
83 | 77, 82 | mtbid 324 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐹 ≠ ∅) → ¬ dom 𝐹 = ∅) |
84 | 83 | neqned 2950 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐹 ≠ ∅) → dom 𝐹 ≠ ∅) |
85 | 75, 84 | eqnetrd 3011 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹 ≠ ∅) → 𝑋 ≠ ∅) |
86 | | n0 4280 |
. . . . . . . 8
⊢ (𝑋 ≠ ∅ ↔
∃𝑧 𝑧 ∈ 𝑋) |
87 | 85, 86 | sylib 217 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹 ≠ ∅) → ∃𝑧 𝑧 ∈ 𝑋) |
88 | 87 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 ≠ ∅) ∧ ¬ +∞ ∈
ran 𝐹) → ∃𝑧 𝑧 ∈ 𝑋) |
89 | 23 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑧 ∈ 𝑋) → 0 ∈
ℝ*) |
90 | 11 | ffvelrnda 6961 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) ∈ (0[,]+∞)) |
91 | 90 | adantlr 712 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) ∈ (0[,]+∞)) |
92 | | nne 2947 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝐹‘𝑧) ≠ +∞ ↔ (𝐹‘𝑧) = +∞) |
93 | 92 | biimpi 215 |
. . . . . . . . . . . . . . . 16
⊢ (¬
(𝐹‘𝑧) ≠ +∞ → (𝐹‘𝑧) = +∞) |
94 | 93 | eqcomd 2744 |
. . . . . . . . . . . . . . 15
⊢ (¬
(𝐹‘𝑧) ≠ +∞ → +∞ = (𝐹‘𝑧)) |
95 | 94 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑧 ∈ 𝑋) ∧ ¬ (𝐹‘𝑧) ≠ +∞) → +∞ = (𝐹‘𝑧)) |
96 | 11 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
97 | 96 | ffund 6604 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → Fun 𝐹) |
98 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ 𝑋) |
99 | 52 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑋 = dom 𝐹) |
100 | 98, 99 | eleqtrd 2841 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ dom 𝐹) |
101 | | fvelrn 6954 |
. . . . . . . . . . . . . . . . 17
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ dom 𝐹) → (𝐹‘𝑧) ∈ ran 𝐹) |
102 | 97, 100, 101 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) ∈ ran 𝐹) |
103 | 102 | adantlr 712 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) ∈ ran 𝐹) |
104 | 103 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑧 ∈ 𝑋) ∧ ¬ (𝐹‘𝑧) ≠ +∞) → (𝐹‘𝑧) ∈ ran 𝐹) |
105 | 95, 104 | eqeltrd 2839 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑧 ∈ 𝑋) ∧ ¬ (𝐹‘𝑧) ≠ +∞) → +∞ ∈ ran
𝐹) |
106 | 29 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑧 ∈ 𝑋) ∧ ¬ (𝐹‘𝑧) ≠ +∞) → ¬ +∞ ∈
ran 𝐹) |
107 | 105, 106 | condan 815 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) ≠ +∞) |
108 | | ge0xrre 43069 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑧) ∈ (0[,]+∞) ∧ (𝐹‘𝑧) ≠ +∞) → (𝐹‘𝑧) ∈ ℝ) |
109 | 91, 107, 108 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) ∈ ℝ) |
110 | 109 | rexrd 11025 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) ∈
ℝ*) |
111 | 73 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑧 ∈ 𝑋) →
(Σ^‘𝐹) ∈
ℝ*) |
112 | 23 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 0 ∈
ℝ*) |
113 | 25 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → +∞ ∈
ℝ*) |
114 | | iccgelb 13135 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ* ∧
(𝐹‘𝑧) ∈ (0[,]+∞)) → 0 ≤ (𝐹‘𝑧)) |
115 | 112, 113,
90, 114 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 0 ≤ (𝐹‘𝑧)) |
116 | 115 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑧 ∈ 𝑋) → 0 ≤ (𝐹‘𝑧)) |
117 | 70 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑧 ∈ 𝑋) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ⊆
ℝ*) |
118 | | snelpwi 5360 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ 𝑋 → {𝑧} ∈ 𝒫 𝑋) |
119 | | snfi 8834 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑧} ∈ Fin |
120 | 119 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ 𝑋 → {𝑧} ∈ Fin) |
121 | 118, 120 | elind 4128 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝑋 → {𝑧} ∈ (𝒫 𝑋 ∩ Fin)) |
122 | 121 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑧 ∈ 𝑋) → {𝑧} ∈ (𝒫 𝑋 ∩ Fin)) |
123 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ 𝑋) |
124 | 109 | recnd 11003 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) ∈ ℂ) |
125 | | fveq2 6774 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑧 → (𝐹‘𝑦) = (𝐹‘𝑧)) |
126 | 125 | sumsn 15458 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ 𝑋 ∧ (𝐹‘𝑧) ∈ ℂ) → Σ𝑦 ∈ {𝑧} (𝐹‘𝑦) = (𝐹‘𝑧)) |
127 | 123, 124,
126 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑧 ∈ 𝑋) → Σ𝑦 ∈ {𝑧} (𝐹‘𝑦) = (𝐹‘𝑧)) |
128 | 127 | eqcomd 2744 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) = Σ𝑦 ∈ {𝑧} (𝐹‘𝑦)) |
129 | | sumeq1 15400 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = {𝑧} → Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) = Σ𝑦 ∈ {𝑧} (𝐹‘𝑦)) |
130 | 129 | rspceeqv 3575 |
. . . . . . . . . . . . . 14
⊢ (({𝑧} ∈ (𝒫 𝑋 ∩ Fin) ∧ (𝐹‘𝑧) = Σ𝑦 ∈ {𝑧} (𝐹‘𝑦)) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(𝐹‘𝑧) = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) |
131 | 122, 128,
130 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑧 ∈ 𝑋) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(𝐹‘𝑧) = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) |
132 | 65 | elrnmpt 5865 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑧) ∈ (0[,]+∞) → ((𝐹‘𝑧) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(𝐹‘𝑧) = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) |
133 | 91, 132 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑧 ∈ 𝑋) → ((𝐹‘𝑧) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(𝐹‘𝑧) = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) |
134 | 131, 133 | mpbird 256 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) |
135 | | supxrub 13058 |
. . . . . . . . . . . 12
⊢ ((ran
(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ⊆ ℝ* ∧ (𝐹‘𝑧) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) → (𝐹‘𝑧) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, <
)) |
136 | 117, 134,
135 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, <
)) |
137 | 31 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, < ) =
(Σ^‘𝐹)) |
138 | 137 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑧 ∈ 𝑋) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, < ) =
(Σ^‘𝐹)) |
139 | 136, 138 | breqtrd 5100 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) ≤
(Σ^‘𝐹)) |
140 | 89, 110, 111, 116, 139 | xrletrd 12896 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) ∧ 𝑧 ∈ 𝑋) → 0 ≤
(Σ^‘𝐹)) |
141 | 140 | ex 413 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) → (𝑧 ∈ 𝑋 → 0 ≤
(Σ^‘𝐹))) |
142 | 141 | adantlr 712 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹 ≠ ∅) ∧ ¬ +∞ ∈
ran 𝐹) → (𝑧 ∈ 𝑋 → 0 ≤
(Σ^‘𝐹))) |
143 | 142 | exlimdv 1936 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 ≠ ∅) ∧ ¬ +∞ ∈
ran 𝐹) → (∃𝑧 𝑧 ∈ 𝑋 → 0 ≤
(Σ^‘𝐹))) |
144 | 88, 143 | mpd 15 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 ≠ ∅) ∧ ¬ +∞ ∈
ran 𝐹) → 0 ≤
(Σ^‘𝐹)) |
145 | | pnfge 12866 |
. . . . . . 7
⊢
((Σ^‘𝐹) ∈ ℝ* →
(Σ^‘𝐹) ≤ +∞) |
146 | 73, 145 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ +∞ ∈ ran
𝐹) →
(Σ^‘𝐹) ≤ +∞) |
147 | 146 | adantlr 712 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 ≠ ∅) ∧ ¬ +∞ ∈
ran 𝐹) →
(Σ^‘𝐹) ≤ +∞) |
148 | 24, 26, 74, 144, 147 | eliccxrd 43065 |
. . . 4
⊢ (((𝜑 ∧ 𝐹 ≠ ∅) ∧ ¬ +∞ ∈
ran 𝐹) →
(Σ^‘𝐹) ∈ (0[,]+∞)) |
149 | 19, 21, 22, 148 | syl21anc 835 |
. . 3
⊢ (((𝜑 ∧ ¬ 𝐹 = ∅) ∧ ¬ +∞ ∈ ran
𝐹) →
(Σ^‘𝐹) ∈ (0[,]+∞)) |
150 | 18, 149 | pm2.61dan 810 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐹 = ∅) →
(Σ^‘𝐹) ∈ (0[,]+∞)) |
151 | 8, 150 | pm2.61dan 810 |
1
⊢ (𝜑 →
(Σ^‘𝐹) ∈ (0[,]+∞)) |