Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0cl Structured version   Visualization version   GIF version

Theorem sge0cl 43919
Description: The arbitrary sum of nonnegative extended reals is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0cl.x (𝜑𝑋𝑉)
sge0cl.f (𝜑𝐹:𝑋⟶(0[,]+∞))
Assertion
Ref Expression
sge0cl (𝜑 → (Σ^𝐹) ∈ (0[,]+∞))

Proof of Theorem sge0cl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6774 . . . . 5 (𝐹 = ∅ → (Σ^𝐹) = (Σ^‘∅))
2 sge00 43914 . . . . . 6 ^‘∅) = 0
32a1i 11 . . . . 5 (𝐹 = ∅ → (Σ^‘∅) = 0)
41, 3eqtrd 2778 . . . 4 (𝐹 = ∅ → (Σ^𝐹) = 0)
5 0e0iccpnf 13191 . . . . 5 0 ∈ (0[,]+∞)
65a1i 11 . . . 4 (𝐹 = ∅ → 0 ∈ (0[,]+∞))
74, 6eqeltrd 2839 . . 3 (𝐹 = ∅ → (Σ^𝐹) ∈ (0[,]+∞))
87adantl 482 . 2 ((𝜑𝐹 = ∅) → (Σ^𝐹) ∈ (0[,]+∞))
9 sge0cl.x . . . . . . 7 (𝜑𝑋𝑉)
109adantr 481 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝑋𝑉)
11 sge0cl.f . . . . . . 7 (𝜑𝐹:𝑋⟶(0[,]+∞))
1211adantr 481 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,]+∞))
13 simpr 485 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran 𝐹)
1410, 12, 13sge0pnfval 43911 . . . . 5 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (Σ^𝐹) = +∞)
15 pnfel0pnf 43066 . . . . . 6 +∞ ∈ (0[,]+∞)
1615a1i 11 . . . . 5 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ (0[,]+∞))
1714, 16eqeltrd 2839 . . . 4 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (Σ^𝐹) ∈ (0[,]+∞))
1817adantlr 712 . . 3 (((𝜑 ∧ ¬ 𝐹 = ∅) ∧ +∞ ∈ ran 𝐹) → (Σ^𝐹) ∈ (0[,]+∞))
19 simpll 764 . . . 4 (((𝜑 ∧ ¬ 𝐹 = ∅) ∧ ¬ +∞ ∈ ran 𝐹) → 𝜑)
20 neqne 2951 . . . . 5 𝐹 = ∅ → 𝐹 ≠ ∅)
2120ad2antlr 724 . . . 4 (((𝜑 ∧ ¬ 𝐹 = ∅) ∧ ¬ +∞ ∈ ran 𝐹) → 𝐹 ≠ ∅)
22 simpr 485 . . . 4 (((𝜑 ∧ ¬ 𝐹 = ∅) ∧ ¬ +∞ ∈ ran 𝐹) → ¬ +∞ ∈ ran 𝐹)
23 0xr 11022 . . . . . 6 0 ∈ ℝ*
2423a1i 11 . . . . 5 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → 0 ∈ ℝ*)
25 pnfxr 11029 . . . . . 6 +∞ ∈ ℝ*
2625a1i 11 . . . . 5 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → +∞ ∈ ℝ*)
279adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → 𝑋𝑉)
2811adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,]+∞))
29 simpr 485 . . . . . . . . 9 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ¬ +∞ ∈ ran 𝐹)
3028, 29fge0iccico 43908 . . . . . . . 8 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,)+∞))
3127, 30sge0reval 43910 . . . . . . 7 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
32 elinel2 4130 . . . . . . . . . . . . 13 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ Fin)
3332adantl 482 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ Fin)
3411ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝐹:𝑋⟶(0[,]+∞))
35 elinel1 4129 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ 𝒫 𝑋)
36 elpwi 4542 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
3735, 36syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥𝑋)
3837adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥𝑋)
3938adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝑥𝑋)
40 simpr 485 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝑦𝑥)
4139, 40sseldd 3922 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝑦𝑋)
4234, 41ffvelrnd 6962 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (0[,]+∞))
4342adantllr 716 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (0[,]+∞))
44 nne 2947 . . . . . . . . . . . . . . . . . 18 (¬ (𝐹𝑦) ≠ +∞ ↔ (𝐹𝑦) = +∞)
4544biimpi 215 . . . . . . . . . . . . . . . . 17 (¬ (𝐹𝑦) ≠ +∞ → (𝐹𝑦) = +∞)
4645eqcomd 2744 . . . . . . . . . . . . . . . 16 (¬ (𝐹𝑦) ≠ +∞ → +∞ = (𝐹𝑦))
4746adantl 482 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) ∧ ¬ (𝐹𝑦) ≠ +∞) → +∞ = (𝐹𝑦))
4811ffund 6604 . . . . . . . . . . . . . . . . . 18 (𝜑 → Fun 𝐹)
49483ad2ant1 1132 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → Fun 𝐹)
50413impa 1109 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑋)
5111fdmd 6611 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom 𝐹 = 𝑋)
5251eqcomd 2744 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋 = dom 𝐹)
53523ad2ant1 1132 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → 𝑋 = dom 𝐹)
5450, 53eleqtrd 2841 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → 𝑦 ∈ dom 𝐹)
55 fvelrn 6954 . . . . . . . . . . . . . . . . 17 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝐹𝑦) ∈ ran 𝐹)
5649, 54, 55syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ran 𝐹)
5756ad5ant134 1366 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) ∧ ¬ (𝐹𝑦) ≠ +∞) → (𝐹𝑦) ∈ ran 𝐹)
5847, 57eqeltrd 2839 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) ∧ ¬ (𝐹𝑦) ≠ +∞) → +∞ ∈ ran 𝐹)
5929ad3antrrr 727 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) ∧ ¬ (𝐹𝑦) ≠ +∞) → ¬ +∞ ∈ ran 𝐹)
6058, 59condan 815 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ≠ +∞)
61 ge0xrre 43069 . . . . . . . . . . . . 13 (((𝐹𝑦) ∈ (0[,]+∞) ∧ (𝐹𝑦) ≠ +∞) → (𝐹𝑦) ∈ ℝ)
6243, 60, 61syl2anc 584 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ℝ)
6333, 62fsumrecl 15446 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) ∈ ℝ)
6463ralrimiva 3103 . . . . . . . . . 10 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑦𝑥 (𝐹𝑦) ∈ ℝ)
65 eqid 2738 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
6665rnmptss 6996 . . . . . . . . . 10 (∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑦𝑥 (𝐹𝑦) ∈ ℝ → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ)
6764, 66syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ)
68 ressxr 11019 . . . . . . . . . 10 ℝ ⊆ ℝ*
6968a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ℝ ⊆ ℝ*)
7067, 69sstrd 3931 . . . . . . . 8 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ*)
71 supxrcl 13049 . . . . . . . 8 (ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ* → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) ∈ ℝ*)
7270, 71syl 17 . . . . . . 7 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) ∈ ℝ*)
7331, 72eqeltrd 2839 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) ∈ ℝ*)
7473adantlr 712 . . . . 5 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) ∈ ℝ*)
7552adantr 481 . . . . . . . . 9 ((𝜑𝐹 ≠ ∅) → 𝑋 = dom 𝐹)
76 neneq 2949 . . . . . . . . . . . 12 (𝐹 ≠ ∅ → ¬ 𝐹 = ∅)
7776adantl 482 . . . . . . . . . . 11 ((𝜑𝐹 ≠ ∅) → ¬ 𝐹 = ∅)
78 frel 6605 . . . . . . . . . . . . . 14 (𝐹:𝑋⟶(0[,]+∞) → Rel 𝐹)
7911, 78syl 17 . . . . . . . . . . . . 13 (𝜑 → Rel 𝐹)
8079adantr 481 . . . . . . . . . . . 12 ((𝜑𝐹 ≠ ∅) → Rel 𝐹)
81 reldm0 5837 . . . . . . . . . . . 12 (Rel 𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅))
8280, 81syl 17 . . . . . . . . . . 11 ((𝜑𝐹 ≠ ∅) → (𝐹 = ∅ ↔ dom 𝐹 = ∅))
8377, 82mtbid 324 . . . . . . . . . 10 ((𝜑𝐹 ≠ ∅) → ¬ dom 𝐹 = ∅)
8483neqned 2950 . . . . . . . . 9 ((𝜑𝐹 ≠ ∅) → dom 𝐹 ≠ ∅)
8575, 84eqnetrd 3011 . . . . . . . 8 ((𝜑𝐹 ≠ ∅) → 𝑋 ≠ ∅)
86 n0 4280 . . . . . . . 8 (𝑋 ≠ ∅ ↔ ∃𝑧 𝑧𝑋)
8785, 86sylib 217 . . . . . . 7 ((𝜑𝐹 ≠ ∅) → ∃𝑧 𝑧𝑋)
8887adantr 481 . . . . . 6 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → ∃𝑧 𝑧𝑋)
8923a1i 11 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → 0 ∈ ℝ*)
9011ffvelrnda 6961 . . . . . . . . . . . . 13 ((𝜑𝑧𝑋) → (𝐹𝑧) ∈ (0[,]+∞))
9190adantlr 712 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ (0[,]+∞))
92 nne 2947 . . . . . . . . . . . . . . . . 17 (¬ (𝐹𝑧) ≠ +∞ ↔ (𝐹𝑧) = +∞)
9392biimpi 215 . . . . . . . . . . . . . . . 16 (¬ (𝐹𝑧) ≠ +∞ → (𝐹𝑧) = +∞)
9493eqcomd 2744 . . . . . . . . . . . . . . 15 (¬ (𝐹𝑧) ≠ +∞ → +∞ = (𝐹𝑧))
9594adantl 482 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) ∧ ¬ (𝐹𝑧) ≠ +∞) → +∞ = (𝐹𝑧))
9611adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑋) → 𝐹:𝑋⟶(0[,]+∞))
9796ffund 6604 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑋) → Fun 𝐹)
98 simpr 485 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑋) → 𝑧𝑋)
9952adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑋) → 𝑋 = dom 𝐹)
10098, 99eleqtrd 2841 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑋) → 𝑧 ∈ dom 𝐹)
101 fvelrn 6954 . . . . . . . . . . . . . . . . 17 ((Fun 𝐹𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ran 𝐹)
10297, 100, 101syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑋) → (𝐹𝑧) ∈ ran 𝐹)
103102adantlr 712 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ran 𝐹)
104103adantr 481 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) ∧ ¬ (𝐹𝑧) ≠ +∞) → (𝐹𝑧) ∈ ran 𝐹)
10595, 104eqeltrd 2839 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) ∧ ¬ (𝐹𝑧) ≠ +∞) → +∞ ∈ ran 𝐹)
10629ad2antrr 723 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) ∧ ¬ (𝐹𝑧) ≠ +∞) → ¬ +∞ ∈ ran 𝐹)
107105, 106condan 815 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ≠ +∞)
108 ge0xrre 43069 . . . . . . . . . . . 12 (((𝐹𝑧) ∈ (0[,]+∞) ∧ (𝐹𝑧) ≠ +∞) → (𝐹𝑧) ∈ ℝ)
10991, 107, 108syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℝ)
110109rexrd 11025 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℝ*)
11173adantr 481 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (Σ^𝐹) ∈ ℝ*)
11223a1i 11 . . . . . . . . . . . 12 ((𝜑𝑧𝑋) → 0 ∈ ℝ*)
11325a1i 11 . . . . . . . . . . . 12 ((𝜑𝑧𝑋) → +∞ ∈ ℝ*)
114 iccgelb 13135 . . . . . . . . . . . 12 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹𝑧) ∈ (0[,]+∞)) → 0 ≤ (𝐹𝑧))
115112, 113, 90, 114syl3anc 1370 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → 0 ≤ (𝐹𝑧))
116115adantlr 712 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → 0 ≤ (𝐹𝑧))
11770adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ*)
118 snelpwi 5360 . . . . . . . . . . . . . . . 16 (𝑧𝑋 → {𝑧} ∈ 𝒫 𝑋)
119 snfi 8834 . . . . . . . . . . . . . . . . 17 {𝑧} ∈ Fin
120119a1i 11 . . . . . . . . . . . . . . . 16 (𝑧𝑋 → {𝑧} ∈ Fin)
121118, 120elind 4128 . . . . . . . . . . . . . . 15 (𝑧𝑋 → {𝑧} ∈ (𝒫 𝑋 ∩ Fin))
122121adantl 482 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → {𝑧} ∈ (𝒫 𝑋 ∩ Fin))
123 simpr 485 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → 𝑧𝑋)
124109recnd 11003 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℂ)
125 fveq2 6774 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
126125sumsn 15458 . . . . . . . . . . . . . . . 16 ((𝑧𝑋 ∧ (𝐹𝑧) ∈ ℂ) → Σ𝑦 ∈ {𝑧} (𝐹𝑦) = (𝐹𝑧))
127123, 124, 126syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → Σ𝑦 ∈ {𝑧} (𝐹𝑦) = (𝐹𝑧))
128127eqcomd 2744 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) = Σ𝑦 ∈ {𝑧} (𝐹𝑦))
129 sumeq1 15400 . . . . . . . . . . . . . . 15 (𝑥 = {𝑧} → Σ𝑦𝑥 (𝐹𝑦) = Σ𝑦 ∈ {𝑧} (𝐹𝑦))
130129rspceeqv 3575 . . . . . . . . . . . . . 14 (({𝑧} ∈ (𝒫 𝑋 ∩ Fin) ∧ (𝐹𝑧) = Σ𝑦 ∈ {𝑧} (𝐹𝑦)) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑧) = Σ𝑦𝑥 (𝐹𝑦))
131122, 128, 130syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑧) = Σ𝑦𝑥 (𝐹𝑦))
13265elrnmpt 5865 . . . . . . . . . . . . . 14 ((𝐹𝑧) ∈ (0[,]+∞) → ((𝐹𝑧) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑧) = Σ𝑦𝑥 (𝐹𝑦)))
13391, 132syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑧) = Σ𝑦𝑥 (𝐹𝑦)))
134131, 133mpbird 256 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
135 supxrub 13058 . . . . . . . . . . . 12 ((ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ* ∧ (𝐹𝑧) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → (𝐹𝑧) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
136117, 134, 135syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
13731eqcomd 2744 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) = (Σ^𝐹))
138137adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) = (Σ^𝐹))
139136, 138breqtrd 5100 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ≤ (Σ^𝐹))
14089, 110, 111, 116, 139xrletrd 12896 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → 0 ≤ (Σ^𝐹))
141140ex 413 . . . . . . . 8 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (𝑧𝑋 → 0 ≤ (Σ^𝐹)))
142141adantlr 712 . . . . . . 7 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → (𝑧𝑋 → 0 ≤ (Σ^𝐹)))
143142exlimdv 1936 . . . . . 6 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → (∃𝑧 𝑧𝑋 → 0 ≤ (Σ^𝐹)))
14488, 143mpd 15 . . . . 5 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → 0 ≤ (Σ^𝐹))
145 pnfge 12866 . . . . . . 7 ((Σ^𝐹) ∈ ℝ* → (Σ^𝐹) ≤ +∞)
14673, 145syl 17 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) ≤ +∞)
147146adantlr 712 . . . . 5 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) ≤ +∞)
14824, 26, 74, 144, 147eliccxrd 43065 . . . 4 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) ∈ (0[,]+∞))
14919, 21, 22, 148syl21anc 835 . . 3 (((𝜑 ∧ ¬ 𝐹 = ∅) ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) ∈ (0[,]+∞))
15018, 149pm2.61dan 810 . 2 ((𝜑 ∧ ¬ 𝐹 = ∅) → (Σ^𝐹) ∈ (0[,]+∞))
1518, 150pm2.61dan 810 1 (𝜑 → (Σ^𝐹) ∈ (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561   class class class wbr 5074  cmpt 5157  dom cdm 5589  ran crn 5590  Rel wrel 5594  Fun wfun 6427  wf 6429  cfv 6433  (class class class)co 7275  Fincfn 8733  supcsup 9199  cc 10869  cr 10870  0cc0 10871  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010  [,]cicc 13082  Σcsu 15397  Σ^csumge0 43900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-sumge0 43901
This theorem is referenced by:  sge0ge0  43922  sge0xrcl  43923  sge0split  43947  sge0iunmptlemre  43953  sge0iunmpt  43956  sge0nemnf  43958  sge0clmpt  43963  sge0isum  43965  psmeasure  44009  ovnsupge0  44095  ovnsubaddlem1  44108  sge0hsphoire  44127  hoidmvlelem1  44133  hspmbllem2  44165
  Copyright terms: Public domain W3C validator