Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0cl Structured version   Visualization version   GIF version

Theorem sge0cl 45097
Description: The arbitrary sum of nonnegative extended reals is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0cl.x (𝜑𝑋𝑉)
sge0cl.f (𝜑𝐹:𝑋⟶(0[,]+∞))
Assertion
Ref Expression
sge0cl (𝜑 → (Σ^𝐹) ∈ (0[,]+∞))

Proof of Theorem sge0cl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6892 . . . . 5 (𝐹 = ∅ → (Σ^𝐹) = (Σ^‘∅))
2 sge00 45092 . . . . . 6 ^‘∅) = 0
32a1i 11 . . . . 5 (𝐹 = ∅ → (Σ^‘∅) = 0)
41, 3eqtrd 2773 . . . 4 (𝐹 = ∅ → (Σ^𝐹) = 0)
5 0e0iccpnf 13436 . . . . 5 0 ∈ (0[,]+∞)
65a1i 11 . . . 4 (𝐹 = ∅ → 0 ∈ (0[,]+∞))
74, 6eqeltrd 2834 . . 3 (𝐹 = ∅ → (Σ^𝐹) ∈ (0[,]+∞))
87adantl 483 . 2 ((𝜑𝐹 = ∅) → (Σ^𝐹) ∈ (0[,]+∞))
9 sge0cl.x . . . . . . 7 (𝜑𝑋𝑉)
109adantr 482 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝑋𝑉)
11 sge0cl.f . . . . . . 7 (𝜑𝐹:𝑋⟶(0[,]+∞))
1211adantr 482 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,]+∞))
13 simpr 486 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran 𝐹)
1410, 12, 13sge0pnfval 45089 . . . . 5 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (Σ^𝐹) = +∞)
15 pnfel0pnf 44241 . . . . . 6 +∞ ∈ (0[,]+∞)
1615a1i 11 . . . . 5 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ (0[,]+∞))
1714, 16eqeltrd 2834 . . . 4 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (Σ^𝐹) ∈ (0[,]+∞))
1817adantlr 714 . . 3 (((𝜑 ∧ ¬ 𝐹 = ∅) ∧ +∞ ∈ ran 𝐹) → (Σ^𝐹) ∈ (0[,]+∞))
19 simpll 766 . . . 4 (((𝜑 ∧ ¬ 𝐹 = ∅) ∧ ¬ +∞ ∈ ran 𝐹) → 𝜑)
20 neqne 2949 . . . . 5 𝐹 = ∅ → 𝐹 ≠ ∅)
2120ad2antlr 726 . . . 4 (((𝜑 ∧ ¬ 𝐹 = ∅) ∧ ¬ +∞ ∈ ran 𝐹) → 𝐹 ≠ ∅)
22 simpr 486 . . . 4 (((𝜑 ∧ ¬ 𝐹 = ∅) ∧ ¬ +∞ ∈ ran 𝐹) → ¬ +∞ ∈ ran 𝐹)
23 0xr 11261 . . . . . 6 0 ∈ ℝ*
2423a1i 11 . . . . 5 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → 0 ∈ ℝ*)
25 pnfxr 11268 . . . . . 6 +∞ ∈ ℝ*
2625a1i 11 . . . . 5 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → +∞ ∈ ℝ*)
279adantr 482 . . . . . . . 8 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → 𝑋𝑉)
2811adantr 482 . . . . . . . . 9 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,]+∞))
29 simpr 486 . . . . . . . . 9 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ¬ +∞ ∈ ran 𝐹)
3028, 29fge0iccico 45086 . . . . . . . 8 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,)+∞))
3127, 30sge0reval 45088 . . . . . . 7 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
32 elinel2 4197 . . . . . . . . . . . . 13 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ Fin)
3332adantl 483 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ Fin)
3411ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝐹:𝑋⟶(0[,]+∞))
35 elinel1 4196 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ 𝒫 𝑋)
36 elpwi 4610 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
3735, 36syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥𝑋)
3837adantl 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥𝑋)
3938adantr 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝑥𝑋)
40 simpr 486 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝑦𝑥)
4139, 40sseldd 3984 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → 𝑦𝑋)
4234, 41ffvelcdmd 7088 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (0[,]+∞))
4342adantllr 718 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (0[,]+∞))
44 nne 2945 . . . . . . . . . . . . . . . . . 18 (¬ (𝐹𝑦) ≠ +∞ ↔ (𝐹𝑦) = +∞)
4544biimpi 215 . . . . . . . . . . . . . . . . 17 (¬ (𝐹𝑦) ≠ +∞ → (𝐹𝑦) = +∞)
4645eqcomd 2739 . . . . . . . . . . . . . . . 16 (¬ (𝐹𝑦) ≠ +∞ → +∞ = (𝐹𝑦))
4746adantl 483 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) ∧ ¬ (𝐹𝑦) ≠ +∞) → +∞ = (𝐹𝑦))
4811ffund 6722 . . . . . . . . . . . . . . . . . 18 (𝜑 → Fun 𝐹)
49483ad2ant1 1134 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → Fun 𝐹)
50413impa 1111 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑋)
5111fdmd 6729 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → dom 𝐹 = 𝑋)
5251eqcomd 2739 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋 = dom 𝐹)
53523ad2ant1 1134 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → 𝑋 = dom 𝐹)
5450, 53eleqtrd 2836 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → 𝑦 ∈ dom 𝐹)
55 fvelrn 7079 . . . . . . . . . . . . . . . . 17 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝐹𝑦) ∈ ran 𝐹)
5649, 54, 55syl2anc 585 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ran 𝐹)
5756ad5ant134 1368 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) ∧ ¬ (𝐹𝑦) ≠ +∞) → (𝐹𝑦) ∈ ran 𝐹)
5847, 57eqeltrd 2834 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) ∧ ¬ (𝐹𝑦) ≠ +∞) → +∞ ∈ ran 𝐹)
5929ad3antrrr 729 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) ∧ ¬ (𝐹𝑦) ≠ +∞) → ¬ +∞ ∈ ran 𝐹)
6058, 59condan 817 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ≠ +∞)
61 ge0xrre 44244 . . . . . . . . . . . . 13 (((𝐹𝑦) ∈ (0[,]+∞) ∧ (𝐹𝑦) ≠ +∞) → (𝐹𝑦) ∈ ℝ)
6243, 60, 61syl2anc 585 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ℝ)
6333, 62fsumrecl 15680 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) ∈ ℝ)
6463ralrimiva 3147 . . . . . . . . . 10 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑦𝑥 (𝐹𝑦) ∈ ℝ)
65 eqid 2733 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
6665rnmptss 7122 . . . . . . . . . 10 (∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑦𝑥 (𝐹𝑦) ∈ ℝ → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ)
6764, 66syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ)
68 ressxr 11258 . . . . . . . . . 10 ℝ ⊆ ℝ*
6968a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ℝ ⊆ ℝ*)
7067, 69sstrd 3993 . . . . . . . 8 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ*)
71 supxrcl 13294 . . . . . . . 8 (ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ* → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) ∈ ℝ*)
7270, 71syl 17 . . . . . . 7 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) ∈ ℝ*)
7331, 72eqeltrd 2834 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) ∈ ℝ*)
7473adantlr 714 . . . . 5 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) ∈ ℝ*)
7552adantr 482 . . . . . . . . 9 ((𝜑𝐹 ≠ ∅) → 𝑋 = dom 𝐹)
76 neneq 2947 . . . . . . . . . . . 12 (𝐹 ≠ ∅ → ¬ 𝐹 = ∅)
7776adantl 483 . . . . . . . . . . 11 ((𝜑𝐹 ≠ ∅) → ¬ 𝐹 = ∅)
78 frel 6723 . . . . . . . . . . . . . 14 (𝐹:𝑋⟶(0[,]+∞) → Rel 𝐹)
7911, 78syl 17 . . . . . . . . . . . . 13 (𝜑 → Rel 𝐹)
8079adantr 482 . . . . . . . . . . . 12 ((𝜑𝐹 ≠ ∅) → Rel 𝐹)
81 reldm0 5928 . . . . . . . . . . . 12 (Rel 𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅))
8280, 81syl 17 . . . . . . . . . . 11 ((𝜑𝐹 ≠ ∅) → (𝐹 = ∅ ↔ dom 𝐹 = ∅))
8377, 82mtbid 324 . . . . . . . . . 10 ((𝜑𝐹 ≠ ∅) → ¬ dom 𝐹 = ∅)
8483neqned 2948 . . . . . . . . 9 ((𝜑𝐹 ≠ ∅) → dom 𝐹 ≠ ∅)
8575, 84eqnetrd 3009 . . . . . . . 8 ((𝜑𝐹 ≠ ∅) → 𝑋 ≠ ∅)
86 n0 4347 . . . . . . . 8 (𝑋 ≠ ∅ ↔ ∃𝑧 𝑧𝑋)
8785, 86sylib 217 . . . . . . 7 ((𝜑𝐹 ≠ ∅) → ∃𝑧 𝑧𝑋)
8887adantr 482 . . . . . 6 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → ∃𝑧 𝑧𝑋)
8923a1i 11 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → 0 ∈ ℝ*)
9011ffvelcdmda 7087 . . . . . . . . . . . . 13 ((𝜑𝑧𝑋) → (𝐹𝑧) ∈ (0[,]+∞))
9190adantlr 714 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ (0[,]+∞))
92 nne 2945 . . . . . . . . . . . . . . . . 17 (¬ (𝐹𝑧) ≠ +∞ ↔ (𝐹𝑧) = +∞)
9392biimpi 215 . . . . . . . . . . . . . . . 16 (¬ (𝐹𝑧) ≠ +∞ → (𝐹𝑧) = +∞)
9493eqcomd 2739 . . . . . . . . . . . . . . 15 (¬ (𝐹𝑧) ≠ +∞ → +∞ = (𝐹𝑧))
9594adantl 483 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) ∧ ¬ (𝐹𝑧) ≠ +∞) → +∞ = (𝐹𝑧))
9611adantr 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑋) → 𝐹:𝑋⟶(0[,]+∞))
9796ffund 6722 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑋) → Fun 𝐹)
98 simpr 486 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑋) → 𝑧𝑋)
9952adantr 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑋) → 𝑋 = dom 𝐹)
10098, 99eleqtrd 2836 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑋) → 𝑧 ∈ dom 𝐹)
101 fvelrn 7079 . . . . . . . . . . . . . . . . 17 ((Fun 𝐹𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ran 𝐹)
10297, 100, 101syl2anc 585 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑋) → (𝐹𝑧) ∈ ran 𝐹)
103102adantlr 714 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ran 𝐹)
104103adantr 482 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) ∧ ¬ (𝐹𝑧) ≠ +∞) → (𝐹𝑧) ∈ ran 𝐹)
10595, 104eqeltrd 2834 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) ∧ ¬ (𝐹𝑧) ≠ +∞) → +∞ ∈ ran 𝐹)
10629ad2antrr 725 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) ∧ ¬ (𝐹𝑧) ≠ +∞) → ¬ +∞ ∈ ran 𝐹)
107105, 106condan 817 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ≠ +∞)
108 ge0xrre 44244 . . . . . . . . . . . 12 (((𝐹𝑧) ∈ (0[,]+∞) ∧ (𝐹𝑧) ≠ +∞) → (𝐹𝑧) ∈ ℝ)
10991, 107, 108syl2anc 585 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℝ)
110109rexrd 11264 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℝ*)
11173adantr 482 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (Σ^𝐹) ∈ ℝ*)
11223a1i 11 . . . . . . . . . . . 12 ((𝜑𝑧𝑋) → 0 ∈ ℝ*)
11325a1i 11 . . . . . . . . . . . 12 ((𝜑𝑧𝑋) → +∞ ∈ ℝ*)
114 iccgelb 13380 . . . . . . . . . . . 12 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹𝑧) ∈ (0[,]+∞)) → 0 ≤ (𝐹𝑧))
115112, 113, 90, 114syl3anc 1372 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → 0 ≤ (𝐹𝑧))
116115adantlr 714 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → 0 ≤ (𝐹𝑧))
11770adantr 482 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ*)
118 snelpwi 5444 . . . . . . . . . . . . . . . 16 (𝑧𝑋 → {𝑧} ∈ 𝒫 𝑋)
119 snfi 9044 . . . . . . . . . . . . . . . . 17 {𝑧} ∈ Fin
120119a1i 11 . . . . . . . . . . . . . . . 16 (𝑧𝑋 → {𝑧} ∈ Fin)
121118, 120elind 4195 . . . . . . . . . . . . . . 15 (𝑧𝑋 → {𝑧} ∈ (𝒫 𝑋 ∩ Fin))
122121adantl 483 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → {𝑧} ∈ (𝒫 𝑋 ∩ Fin))
123 simpr 486 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → 𝑧𝑋)
124109recnd 11242 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℂ)
125 fveq2 6892 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
126125sumsn 15692 . . . . . . . . . . . . . . . 16 ((𝑧𝑋 ∧ (𝐹𝑧) ∈ ℂ) → Σ𝑦 ∈ {𝑧} (𝐹𝑦) = (𝐹𝑧))
127123, 124, 126syl2anc 585 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → Σ𝑦 ∈ {𝑧} (𝐹𝑦) = (𝐹𝑧))
128127eqcomd 2739 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) = Σ𝑦 ∈ {𝑧} (𝐹𝑦))
129 sumeq1 15635 . . . . . . . . . . . . . . 15 (𝑥 = {𝑧} → Σ𝑦𝑥 (𝐹𝑦) = Σ𝑦 ∈ {𝑧} (𝐹𝑦))
130129rspceeqv 3634 . . . . . . . . . . . . . 14 (({𝑧} ∈ (𝒫 𝑋 ∩ Fin) ∧ (𝐹𝑧) = Σ𝑦 ∈ {𝑧} (𝐹𝑦)) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑧) = Σ𝑦𝑥 (𝐹𝑦))
131122, 128, 130syl2anc 585 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑧) = Σ𝑦𝑥 (𝐹𝑦))
13265elrnmpt 5956 . . . . . . . . . . . . . 14 ((𝐹𝑧) ∈ (0[,]+∞) → ((𝐹𝑧) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑧) = Σ𝑦𝑥 (𝐹𝑦)))
13391, 132syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)(𝐹𝑧) = Σ𝑦𝑥 (𝐹𝑦)))
134131, 133mpbird 257 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
135 supxrub 13303 . . . . . . . . . . . 12 ((ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ* ∧ (𝐹𝑧) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → (𝐹𝑧) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
136117, 134, 135syl2anc 585 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
13731eqcomd 2739 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) = (Σ^𝐹))
138137adantr 482 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) = (Σ^𝐹))
139136, 138breqtrd 5175 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → (𝐹𝑧) ≤ (Σ^𝐹))
14089, 110, 111, 116, 139xrletrd 13141 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑧𝑋) → 0 ≤ (Σ^𝐹))
141140ex 414 . . . . . . . 8 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (𝑧𝑋 → 0 ≤ (Σ^𝐹)))
142141adantlr 714 . . . . . . 7 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → (𝑧𝑋 → 0 ≤ (Σ^𝐹)))
143142exlimdv 1937 . . . . . 6 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → (∃𝑧 𝑧𝑋 → 0 ≤ (Σ^𝐹)))
14488, 143mpd 15 . . . . 5 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → 0 ≤ (Σ^𝐹))
145 pnfge 13110 . . . . . . 7 ((Σ^𝐹) ∈ ℝ* → (Σ^𝐹) ≤ +∞)
14673, 145syl 17 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) ≤ +∞)
147146adantlr 714 . . . . 5 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) ≤ +∞)
14824, 26, 74, 144, 147eliccxrd 44240 . . . 4 (((𝜑𝐹 ≠ ∅) ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) ∈ (0[,]+∞))
14919, 21, 22, 148syl21anc 837 . . 3 (((𝜑 ∧ ¬ 𝐹 = ∅) ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) ∈ (0[,]+∞))
15018, 149pm2.61dan 812 . 2 ((𝜑 ∧ ¬ 𝐹 = ∅) → (Σ^𝐹) ∈ (0[,]+∞))
1518, 150pm2.61dan 812 1 (𝜑 → (Σ^𝐹) ∈ (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wex 1782  wcel 2107  wne 2941  wral 3062  wrex 3071  cin 3948  wss 3949  c0 4323  𝒫 cpw 4603  {csn 4629   class class class wbr 5149  cmpt 5232  dom cdm 5677  ran crn 5678  Rel wrel 5682  Fun wfun 6538  wf 6540  cfv 6544  (class class class)co 7409  Fincfn 8939  supcsup 9435  cc 11108  cr 11109  0cc0 11110  +∞cpnf 11245  *cxr 11247   < clt 11248  cle 11249  [,]cicc 13327  Σcsu 15632  Σ^csumge0 45078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-oi 9505  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-ico 13330  df-icc 13331  df-fz 13485  df-fzo 13628  df-seq 13967  df-exp 14028  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432  df-sum 15633  df-sumge0 45079
This theorem is referenced by:  sge0ge0  45100  sge0xrcl  45101  sge0split  45125  sge0iunmptlemre  45131  sge0iunmpt  45134  sge0nemnf  45136  sge0clmpt  45141  sge0isum  45143  psmeasure  45187  ovnsupge0  45273  ovnsubaddlem1  45286  sge0hsphoire  45305  hoidmvlelem1  45311  hspmbllem2  45343
  Copyright terms: Public domain W3C validator