| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad8antr | Structured version Visualization version GIF version | ||
| Description: Deduction adding 8 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad2ant.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ad8antr | ⊢ (((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| 3 | 2 | ad7antr 738 | 1 ⊢ (((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ad9antr 742 ad9antlr 743 simp-8l 790 legso 28526 miriso 28597 midexlem 28619 opphl 28681 trgcopy 28731 inaghl 28772 cyc3conja 33114 elrgspnlem4 33196 rloccring 33221 ssdifidlprm 33429 mxidlirred 33443 qsdrngi 33466 1arithidom 33508 1arithufdlem3 33517 lbsdiflsp0 33622 dimkerim 33623 fedgmul 33627 constrelextdg2 33737 qtophaus 33826 zarcmplem 33871 afsval 34662 dffltz 42622 hoidmvle 46598 smfmullem3 46791 |
| Copyright terms: Public domain | W3C validator |