| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad8antr | Structured version Visualization version GIF version | ||
| Description: Deduction adding 8 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad2ant.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ad8antr | ⊢ (((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| 3 | 2 | ad7antr 738 | 1 ⊢ (((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ad9antr 742 ad9antlr 743 simp-8l 790 legso 28578 miriso 28649 midexlem 28671 opphl 28733 trgcopy 28783 inaghl 28824 cyc3conja 33124 elrgspnlem4 33210 rloccring 33235 ssdifidlprm 33421 mxidlirred 33435 qsdrngi 33458 1arithidom 33500 1arithufdlem3 33509 lbsdiflsp0 33637 dimkerim 33638 fedgmul 33642 constrelextdg2 33758 qtophaus 33847 zarcmplem 33892 afsval 34682 dffltz 42673 hoidmvle 46644 smfmullem3 46837 |
| Copyright terms: Public domain | W3C validator |