| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad8antr | Structured version Visualization version GIF version | ||
| Description: Deduction adding 8 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad2ant.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ad8antr | ⊢ (((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| 3 | 2 | ad7antr 738 | 1 ⊢ (((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ad9antr 742 ad9antlr 743 simp-8l 790 legso 28578 miriso 28649 midexlem 28671 opphl 28733 trgcopy 28783 inaghl 28824 cyc3conja 33168 elrgspnlem4 33240 rloccring 33265 ssdifidlprm 33473 mxidlirred 33487 qsdrngi 33510 1arithidom 33552 1arithufdlem3 33561 lbsdiflsp0 33666 dimkerim 33667 fedgmul 33671 constrelextdg2 33781 qtophaus 33867 zarcmplem 33912 afsval 34703 dffltz 42657 hoidmvle 46629 smfmullem3 46822 |
| Copyright terms: Public domain | W3C validator |