| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad8antr | Structured version Visualization version GIF version | ||
| Description: Deduction adding 8 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad2ant.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ad8antr | ⊢ (((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| 3 | 2 | ad7antr 738 | 1 ⊢ (((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ad9antr 742 ad9antlr 743 simp-8l 790 legso 28533 miriso 28604 midexlem 28626 opphl 28688 trgcopy 28738 inaghl 28779 cyc3conja 33121 elrgspnlem4 33203 rloccring 33228 ssdifidlprm 33436 mxidlirred 33450 qsdrngi 33473 1arithidom 33515 1arithufdlem3 33524 lbsdiflsp0 33629 dimkerim 33630 fedgmul 33634 constrelextdg2 33744 qtophaus 33833 zarcmplem 33878 afsval 34669 dffltz 42629 hoidmvle 46605 smfmullem3 46798 |
| Copyright terms: Public domain | W3C validator |