MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad8antr Structured version   Visualization version   GIF version

Theorem ad8antr 740
Description: Deduction adding 8 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.)
Hypothesis
Ref Expression
ad2ant.1 (𝜑𝜓)
Assertion
Ref Expression
ad8antr (((((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → 𝜓)

Proof of Theorem ad8antr
StepHypRef Expression
1 ad2ant.1 . . 3 (𝜑𝜓)
21adantr 480 . 2 ((𝜑𝜒) → 𝜓)
32ad7antr 738 1 (((((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  ad9antr  742  ad9antlr  743  simp-8l  790  legso  28578  miriso  28649  midexlem  28671  opphl  28733  trgcopy  28783  inaghl  28824  cyc3conja  33133  elrgspnlem4  33219  rloccring  33244  ssdifidlprm  33430  mxidlirred  33444  qsdrngi  33467  1arithidom  33509  1arithufdlem3  33518  lbsdiflsp0  33660  dimkerim  33661  fedgmul  33665  constrelextdg2  33781  qtophaus  33870  zarcmplem  33915  afsval  34705  dffltz  42753  hoidmvle  46723  smfmullem3  46916
  Copyright terms: Public domain W3C validator