Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmimaidl Structured version   Visualization version   GIF version

Theorem rhmimaidl 33395
Description: The image of an ideal 𝐼 by a surjective ring homomorphism 𝐹 is an ideal. (Contributed by Thierry Arnoux, 6-Jul-2024.)
Hypotheses
Ref Expression
rhmimaidl.b 𝐵 = (Base‘𝑆)
rhmimaidl.t 𝑇 = (LIdeal‘𝑅)
rhmimaidl.u 𝑈 = (LIdeal‘𝑆)
Assertion
Ref Expression
rhmimaidl ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵𝐼𝑇) → (𝐹𝐼) ∈ 𝑈)

Proof of Theorem rhmimaidl
Dummy variables 𝑎 𝑏 𝑖 𝑗 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
2 rhmimaidl.b . . . . . 6 𝐵 = (Base‘𝑆)
31, 2rhmf 20403 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶𝐵)
4 fimass 6671 . . . . 5 (𝐹:(Base‘𝑅)⟶𝐵 → (𝐹𝐼) ⊆ 𝐵)
53, 4syl 17 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹𝐼) ⊆ 𝐵)
65ad2antrr 726 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → (𝐹𝐼) ⊆ 𝐵)
73ffnd 6652 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 Fn (Base‘𝑅))
87ad2antrr 726 . . . . 5 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → 𝐹 Fn (Base‘𝑅))
9 rhmrcl1 20395 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
109ad2antrr 726 . . . . . 6 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → 𝑅 ∈ Ring)
11 eqid 2731 . . . . . . 7 (0g𝑅) = (0g𝑅)
121, 11ring0cl 20186 . . . . . 6 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
1310, 12syl 17 . . . . 5 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → (0g𝑅) ∈ (Base‘𝑅))
14 simpr 484 . . . . . 6 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → 𝐼𝑇)
15 rhmimaidl.t . . . . . . 7 𝑇 = (LIdeal‘𝑅)
1615, 11lidl0cl 21158 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑇) → (0g𝑅) ∈ 𝐼)
1710, 14, 16syl2anc 584 . . . . 5 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → (0g𝑅) ∈ 𝐼)
188, 13, 17fnfvimad 7168 . . . 4 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → (𝐹‘(0g𝑅)) ∈ (𝐹𝐼))
1918ne0d 4292 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → (𝐹𝐼) ≠ ∅)
20 rhmghm 20402 . . . . . . . . . . . . . . . . . . . 20 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
2120ad4antr 732 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
229ad4antr 732 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
23 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → 𝑧 ∈ (Base‘𝑅))
241, 15lidlss 21150 . . . . . . . . . . . . . . . . . . . . . 22 (𝐼𝑇𝐼 ⊆ (Base‘𝑅))
2524ad4antlr 733 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → 𝐼 ⊆ (Base‘𝑅))
26 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → 𝑖𝐼)
2725, 26sseldd 3935 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → 𝑖 ∈ (Base‘𝑅))
28 eqid 2731 . . . . . . . . . . . . . . . . . . . . 21 (.r𝑅) = (.r𝑅)
291, 28ringcl 20169 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑖 ∈ (Base‘𝑅)) → (𝑧(.r𝑅)𝑖) ∈ (Base‘𝑅))
3022, 23, 27, 29syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝑧(.r𝑅)𝑖) ∈ (Base‘𝑅))
31 simpllr 775 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → 𝑗𝐼)
3225, 31sseldd 3935 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → 𝑗 ∈ (Base‘𝑅))
33 eqid 2731 . . . . . . . . . . . . . . . . . . . 20 (+g𝑅) = (+g𝑅)
34 eqid 2731 . . . . . . . . . . . . . . . . . . . 20 (+g𝑆) = (+g𝑆)
351, 33, 34ghmlin 19134 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝑧(.r𝑅)𝑖) ∈ (Base‘𝑅) ∧ 𝑗 ∈ (Base‘𝑅)) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) = ((𝐹‘(𝑧(.r𝑅)𝑖))(+g𝑆)(𝐹𝑗)))
3621, 30, 32, 35syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) = ((𝐹‘(𝑧(.r𝑅)𝑖))(+g𝑆)(𝐹𝑗)))
37 simp-4l 782 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → 𝐹 ∈ (𝑅 RingHom 𝑆))
38 eqid 2731 . . . . . . . . . . . . . . . . . . . . 21 (.r𝑆) = (.r𝑆)
391, 28, 38rhmmul 20404 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑖 ∈ (Base‘𝑅)) → (𝐹‘(𝑧(.r𝑅)𝑖)) = ((𝐹𝑧)(.r𝑆)(𝐹𝑖)))
4037, 23, 27, 39syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝐹‘(𝑧(.r𝑅)𝑖)) = ((𝐹𝑧)(.r𝑆)(𝐹𝑖)))
4140oveq1d 7361 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝐹‘(𝑧(.r𝑅)𝑖))(+g𝑆)(𝐹𝑗)) = (((𝐹𝑧)(.r𝑆)(𝐹𝑖))(+g𝑆)(𝐹𝑗)))
4236, 41eqtrd 2766 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) = (((𝐹𝑧)(.r𝑆)(𝐹𝑖))(+g𝑆)(𝐹𝑗)))
4342adantl4r 755 . . . . . . . . . . . . . . . 16 ((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) = (((𝐹𝑧)(.r𝑆)(𝐹𝑖))(+g𝑆)(𝐹𝑗)))
4443adantl3r 750 . . . . . . . . . . . . . . 15 (((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) = (((𝐹𝑧)(.r𝑆)(𝐹𝑖))(+g𝑆)(𝐹𝑗)))
4544adantl3r 750 . . . . . . . . . . . . . 14 ((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) = (((𝐹𝑧)(.r𝑆)(𝐹𝑖))(+g𝑆)(𝐹𝑗)))
4645adantl3r 750 . . . . . . . . . . . . 13 (((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) = (((𝐹𝑧)(.r𝑆)(𝐹𝑖))(+g𝑆)(𝐹𝑗)))
4746adantllr 719 . . . . . . . . . . . 12 ((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) = (((𝐹𝑧)(.r𝑆)(𝐹𝑖))(+g𝑆)(𝐹𝑗)))
4847ad4ant13 751 . . . . . . . . . . 11 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) = (((𝐹𝑧)(.r𝑆)(𝐹𝑖))(+g𝑆)(𝐹𝑗)))
49 simpr 484 . . . . . . . . . . . . 13 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → (𝐹𝑧) = 𝑥)
50 simpllr 775 . . . . . . . . . . . . 13 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → (𝐹𝑖) = 𝑎)
5149, 50oveq12d 7364 . . . . . . . . . . . 12 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → ((𝐹𝑧)(.r𝑆)(𝐹𝑖)) = (𝑥(.r𝑆)𝑎))
52 simp-5r 785 . . . . . . . . . . . 12 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → (𝐹𝑗) = 𝑏)
5351, 52oveq12d 7364 . . . . . . . . . . 11 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → (((𝐹𝑧)(.r𝑆)(𝐹𝑖))(+g𝑆)(𝐹𝑗)) = ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏))
5448, 53eqtrd 2766 . . . . . . . . . 10 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) = ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏))
558ad9antr 742 . . . . . . . . . . 11 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → 𝐹 Fn (Base‘𝑅))
5614, 24syl 17 . . . . . . . . . . . . 13 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → 𝐼 ⊆ (Base‘𝑅))
5756ad9antr 742 . . . . . . . . . . . 12 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → 𝐼 ⊆ (Base‘𝑅))
5814ad9antr 742 . . . . . . . . . . . . 13 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → 𝐼𝑇)
59 simplr 768 . . . . . . . . . . . . 13 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → 𝑧 ∈ (Base‘𝑅))
60 simp-4r 783 . . . . . . . . . . . . 13 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → 𝑖𝐼)
61 simp-6r 787 . . . . . . . . . . . . 13 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → 𝑗𝐼)
6215, 1, 33, 28islidl 21153 . . . . . . . . . . . . . . . . 17 (𝐼𝑇 ↔ (𝐼 ⊆ (Base‘𝑅) ∧ 𝐼 ≠ ∅ ∧ ∀𝑧 ∈ (Base‘𝑅)∀𝑖𝐼𝑗𝐼 ((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗) ∈ 𝐼))
6362simp3bi 1147 . . . . . . . . . . . . . . . 16 (𝐼𝑇 → ∀𝑧 ∈ (Base‘𝑅)∀𝑖𝐼𝑗𝐼 ((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗) ∈ 𝐼)
6463r19.21bi 3224 . . . . . . . . . . . . . . 15 ((𝐼𝑇𝑧 ∈ (Base‘𝑅)) → ∀𝑖𝐼𝑗𝐼 ((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗) ∈ 𝐼)
6564r19.21bi 3224 . . . . . . . . . . . . . 14 (((𝐼𝑇𝑧 ∈ (Base‘𝑅)) ∧ 𝑖𝐼) → ∀𝑗𝐼 ((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗) ∈ 𝐼)
6665r19.21bi 3224 . . . . . . . . . . . . 13 ((((𝐼𝑇𝑧 ∈ (Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → ((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗) ∈ 𝐼)
6758, 59, 60, 61, 66syl1111anc 840 . . . . . . . . . . . 12 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → ((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗) ∈ 𝐼)
6857, 67sseldd 3935 . . . . . . . . . . 11 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → ((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗) ∈ (Base‘𝑅))
6955, 68, 67fnfvimad 7168 . . . . . . . . . 10 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) ∈ (𝐹𝐼))
7054, 69eqeltrrd 2832 . . . . . . . . 9 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐹𝐼))
713ad2antrr 726 . . . . . . . . . . . 12 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → 𝐹:(Base‘𝑅)⟶𝐵)
7271ffund 6655 . . . . . . . . . . 11 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → Fun 𝐹)
7372ad7antr 738 . . . . . . . . . 10 ((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) → Fun 𝐹)
743fdmd 6661 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (𝑅 RingHom 𝑆) → dom 𝐹 = (Base‘𝑅))
7574imaeq2d 6009 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹 “ dom 𝐹) = (𝐹 “ (Base‘𝑅)))
76 imadmrn 6019 . . . . . . . . . . . . . . . . 17 (𝐹 “ dom 𝐹) = ran 𝐹
7775, 76eqtr3di 2781 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹 “ (Base‘𝑅)) = ran 𝐹)
7877eqeq1d 2733 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹 “ (Base‘𝑅)) = 𝐵 ↔ ran 𝐹 = 𝐵))
7978biimpar 477 . . . . . . . . . . . . . 14 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) → (𝐹 “ (Base‘𝑅)) = 𝐵)
8079eleq2d 2817 . . . . . . . . . . . . 13 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) → (𝑥 ∈ (𝐹 “ (Base‘𝑅)) ↔ 𝑥𝐵))
8180biimpar 477 . . . . . . . . . . . 12 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐹 “ (Base‘𝑅)))
8281adantlr 715 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐹 “ (Base‘𝑅)))
8382ad6antr 736 . . . . . . . . . 10 ((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) → 𝑥 ∈ (𝐹 “ (Base‘𝑅)))
84 fvelima 6887 . . . . . . . . . 10 ((Fun 𝐹𝑥 ∈ (𝐹 “ (Base‘𝑅))) → ∃𝑧 ∈ (Base‘𝑅)(𝐹𝑧) = 𝑥)
8573, 83, 84syl2anc 584 . . . . . . . . 9 ((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) → ∃𝑧 ∈ (Base‘𝑅)(𝐹𝑧) = 𝑥)
8670, 85r19.29a 3140 . . . . . . . 8 ((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) → ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐹𝐼))
8772ad5antr 734 . . . . . . . . 9 ((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) → Fun 𝐹)
88 simp-4r 783 . . . . . . . . 9 ((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) → 𝑎 ∈ (𝐹𝐼))
89 fvelima 6887 . . . . . . . . 9 ((Fun 𝐹𝑎 ∈ (𝐹𝐼)) → ∃𝑖𝐼 (𝐹𝑖) = 𝑎)
9087, 88, 89syl2anc 584 . . . . . . . 8 ((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) → ∃𝑖𝐼 (𝐹𝑖) = 𝑎)
9186, 90r19.29a 3140 . . . . . . 7 ((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) → ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐹𝐼))
9272ad3antrrr 730 . . . . . . . 8 ((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) → Fun 𝐹)
93 simpr 484 . . . . . . . 8 ((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) → 𝑏 ∈ (𝐹𝐼))
94 fvelima 6887 . . . . . . . 8 ((Fun 𝐹𝑏 ∈ (𝐹𝐼)) → ∃𝑗𝐼 (𝐹𝑗) = 𝑏)
9592, 93, 94syl2anc 584 . . . . . . 7 ((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) → ∃𝑗𝐼 (𝐹𝑗) = 𝑏)
9691, 95r19.29a 3140 . . . . . 6 ((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) → ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐹𝐼))
9796anasss 466 . . . . 5 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ (𝑎 ∈ (𝐹𝐼) ∧ 𝑏 ∈ (𝐹𝐼))) → ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐹𝐼))
9897ralrimivva 3175 . . . 4 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) → ∀𝑎 ∈ (𝐹𝐼)∀𝑏 ∈ (𝐹𝐼)((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐹𝐼))
9998ralrimiva 3124 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → ∀𝑥𝐵𝑎 ∈ (𝐹𝐼)∀𝑏 ∈ (𝐹𝐼)((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐹𝐼))
100 rhmimaidl.u . . . 4 𝑈 = (LIdeal‘𝑆)
101100, 2, 34, 38islidl 21153 . . 3 ((𝐹𝐼) ∈ 𝑈 ↔ ((𝐹𝐼) ⊆ 𝐵 ∧ (𝐹𝐼) ≠ ∅ ∧ ∀𝑥𝐵𝑎 ∈ (𝐹𝐼)∀𝑏 ∈ (𝐹𝐼)((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐹𝐼)))
1026, 19, 99, 101syl3anbrc 1344 . 2 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → (𝐹𝐼) ∈ 𝑈)
1031023impa 1109 1 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵𝐼𝑇) → (𝐹𝐼) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  wss 3902  c0 4283  dom cdm 5616  ran crn 5617  cima 5619  Fun wfun 6475   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  0gc0g 17343   GrpHom cghm 19125  Ringcrg 20152   RingHom crh 20388  LIdealclidl 21144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-ghm 19126  df-mgp 20060  df-ur 20101  df-ring 20154  df-rhm 20391  df-subrg 20486  df-lmod 20796  df-lss 20866  df-sra 21108  df-rgmod 21109  df-lidl 21146
This theorem is referenced by:  rhmpreimacnlem  33895  rhmpreimacn  33896
  Copyright terms: Public domain W3C validator