Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmimaidl Structured version   Visualization version   GIF version

Theorem rhmimaidl 31906
Description: The image of an ideal 𝐼 by a surjective ring homomorphism 𝐹 is an ideal. (Contributed by Thierry Arnoux, 6-Jul-2024.)
Hypotheses
Ref Expression
rhmimaidl.b 𝐵 = (Base‘𝑆)
rhmimaidl.t 𝑇 = (LIdeal‘𝑅)
rhmimaidl.u 𝑈 = (LIdeal‘𝑆)
Assertion
Ref Expression
rhmimaidl ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵𝐼𝑇) → (𝐹𝐼) ∈ 𝑈)

Proof of Theorem rhmimaidl
Dummy variables 𝑎 𝑏 𝑖 𝑗 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
2 rhmimaidl.b . . . . . 6 𝐵 = (Base‘𝑆)
31, 2rhmf 20066 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶𝐵)
4 fimass 6672 . . . . 5 (𝐹:(Base‘𝑅)⟶𝐵 → (𝐹𝐼) ⊆ 𝐵)
53, 4syl 17 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹𝐼) ⊆ 𝐵)
65ad2antrr 723 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → (𝐹𝐼) ⊆ 𝐵)
73ffnd 6652 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 Fn (Base‘𝑅))
87ad2antrr 723 . . . . 5 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → 𝐹 Fn (Base‘𝑅))
9 rhmrcl1 20058 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
109ad2antrr 723 . . . . . 6 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → 𝑅 ∈ Ring)
11 eqid 2736 . . . . . . 7 (0g𝑅) = (0g𝑅)
121, 11ring0cl 19903 . . . . . 6 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
1310, 12syl 17 . . . . 5 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → (0g𝑅) ∈ (Base‘𝑅))
14 simpr 485 . . . . . 6 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → 𝐼𝑇)
15 rhmimaidl.t . . . . . . 7 𝑇 = (LIdeal‘𝑅)
1615, 11lidl0cl 20589 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑇) → (0g𝑅) ∈ 𝐼)
1710, 14, 16syl2anc 584 . . . . 5 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → (0g𝑅) ∈ 𝐼)
188, 13, 17fnfvimad 7166 . . . 4 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → (𝐹‘(0g𝑅)) ∈ (𝐹𝐼))
1918ne0d 4282 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → (𝐹𝐼) ≠ ∅)
20 rhmghm 20065 . . . . . . . . . . . . . . . . . . . 20 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
2120ad4antr 729 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
229ad4antr 729 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
23 simpr 485 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → 𝑧 ∈ (Base‘𝑅))
241, 15lidlss 20587 . . . . . . . . . . . . . . . . . . . . . 22 (𝐼𝑇𝐼 ⊆ (Base‘𝑅))
2524ad4antlr 730 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → 𝐼 ⊆ (Base‘𝑅))
26 simplr 766 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → 𝑖𝐼)
2725, 26sseldd 3933 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → 𝑖 ∈ (Base‘𝑅))
28 eqid 2736 . . . . . . . . . . . . . . . . . . . . 21 (.r𝑅) = (.r𝑅)
291, 28ringcl 19895 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑖 ∈ (Base‘𝑅)) → (𝑧(.r𝑅)𝑖) ∈ (Base‘𝑅))
3022, 23, 27, 29syl3anc 1370 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝑧(.r𝑅)𝑖) ∈ (Base‘𝑅))
31 simpllr 773 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → 𝑗𝐼)
3225, 31sseldd 3933 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → 𝑗 ∈ (Base‘𝑅))
33 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (+g𝑅) = (+g𝑅)
34 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (+g𝑆) = (+g𝑆)
351, 33, 34ghmlin 18935 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝑧(.r𝑅)𝑖) ∈ (Base‘𝑅) ∧ 𝑗 ∈ (Base‘𝑅)) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) = ((𝐹‘(𝑧(.r𝑅)𝑖))(+g𝑆)(𝐹𝑗)))
3621, 30, 32, 35syl3anc 1370 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) = ((𝐹‘(𝑧(.r𝑅)𝑖))(+g𝑆)(𝐹𝑗)))
37 simp-4l 780 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → 𝐹 ∈ (𝑅 RingHom 𝑆))
38 eqid 2736 . . . . . . . . . . . . . . . . . . . . 21 (.r𝑆) = (.r𝑆)
391, 28, 38rhmmul 20067 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑖 ∈ (Base‘𝑅)) → (𝐹‘(𝑧(.r𝑅)𝑖)) = ((𝐹𝑧)(.r𝑆)(𝐹𝑖)))
4037, 23, 27, 39syl3anc 1370 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝐹‘(𝑧(.r𝑅)𝑖)) = ((𝐹𝑧)(.r𝑆)(𝐹𝑖)))
4140oveq1d 7352 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝐹‘(𝑧(.r𝑅)𝑖))(+g𝑆)(𝐹𝑗)) = (((𝐹𝑧)(.r𝑆)(𝐹𝑖))(+g𝑆)(𝐹𝑗)))
4236, 41eqtrd 2776 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) = (((𝐹𝑧)(.r𝑆)(𝐹𝑖))(+g𝑆)(𝐹𝑗)))
4342adantl4r 752 . . . . . . . . . . . . . . . 16 ((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) = (((𝐹𝑧)(.r𝑆)(𝐹𝑖))(+g𝑆)(𝐹𝑗)))
4443adantl3r 747 . . . . . . . . . . . . . . 15 (((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) = (((𝐹𝑧)(.r𝑆)(𝐹𝑖))(+g𝑆)(𝐹𝑗)))
4544adantl3r 747 . . . . . . . . . . . . . 14 ((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) = (((𝐹𝑧)(.r𝑆)(𝐹𝑖))(+g𝑆)(𝐹𝑗)))
4645adantl3r 747 . . . . . . . . . . . . 13 (((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) = (((𝐹𝑧)(.r𝑆)(𝐹𝑖))(+g𝑆)(𝐹𝑗)))
4746adantllr 716 . . . . . . . . . . . 12 ((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) = (((𝐹𝑧)(.r𝑆)(𝐹𝑖))(+g𝑆)(𝐹𝑗)))
4847ad4ant13 748 . . . . . . . . . . 11 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) = (((𝐹𝑧)(.r𝑆)(𝐹𝑖))(+g𝑆)(𝐹𝑗)))
49 simpr 485 . . . . . . . . . . . . 13 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → (𝐹𝑧) = 𝑥)
50 simpllr 773 . . . . . . . . . . . . 13 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → (𝐹𝑖) = 𝑎)
5149, 50oveq12d 7355 . . . . . . . . . . . 12 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → ((𝐹𝑧)(.r𝑆)(𝐹𝑖)) = (𝑥(.r𝑆)𝑎))
52 simp-5r 783 . . . . . . . . . . . 12 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → (𝐹𝑗) = 𝑏)
5351, 52oveq12d 7355 . . . . . . . . . . 11 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → (((𝐹𝑧)(.r𝑆)(𝐹𝑖))(+g𝑆)(𝐹𝑗)) = ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏))
5448, 53eqtrd 2776 . . . . . . . . . 10 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) = ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏))
558ad9antr 739 . . . . . . . . . . 11 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → 𝐹 Fn (Base‘𝑅))
5614, 24syl 17 . . . . . . . . . . . . 13 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → 𝐼 ⊆ (Base‘𝑅))
5756ad9antr 739 . . . . . . . . . . . 12 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → 𝐼 ⊆ (Base‘𝑅))
5814ad9antr 739 . . . . . . . . . . . . 13 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → 𝐼𝑇)
59 simplr 766 . . . . . . . . . . . . 13 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → 𝑧 ∈ (Base‘𝑅))
60 simp-4r 781 . . . . . . . . . . . . 13 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → 𝑖𝐼)
61 simp-6r 785 . . . . . . . . . . . . 13 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → 𝑗𝐼)
6215, 1, 33, 28islidl 20588 . . . . . . . . . . . . . . . . 17 (𝐼𝑇 ↔ (𝐼 ⊆ (Base‘𝑅) ∧ 𝐼 ≠ ∅ ∧ ∀𝑧 ∈ (Base‘𝑅)∀𝑖𝐼𝑗𝐼 ((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗) ∈ 𝐼))
6362simp3bi 1146 . . . . . . . . . . . . . . . 16 (𝐼𝑇 → ∀𝑧 ∈ (Base‘𝑅)∀𝑖𝐼𝑗𝐼 ((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗) ∈ 𝐼)
6463r19.21bi 3230 . . . . . . . . . . . . . . 15 ((𝐼𝑇𝑧 ∈ (Base‘𝑅)) → ∀𝑖𝐼𝑗𝐼 ((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗) ∈ 𝐼)
6564r19.21bi 3230 . . . . . . . . . . . . . 14 (((𝐼𝑇𝑧 ∈ (Base‘𝑅)) ∧ 𝑖𝐼) → ∀𝑗𝐼 ((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗) ∈ 𝐼)
6665r19.21bi 3230 . . . . . . . . . . . . 13 ((((𝐼𝑇𝑧 ∈ (Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → ((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗) ∈ 𝐼)
6758, 59, 60, 61, 66syl1111anc 837 . . . . . . . . . . . 12 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → ((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗) ∈ 𝐼)
6857, 67sseldd 3933 . . . . . . . . . . 11 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → ((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗) ∈ (Base‘𝑅))
6955, 68, 67fnfvimad 7166 . . . . . . . . . 10 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) ∈ (𝐹𝐼))
7054, 69eqeltrrd 2838 . . . . . . . . 9 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐹𝐼))
713ad2antrr 723 . . . . . . . . . . . 12 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → 𝐹:(Base‘𝑅)⟶𝐵)
7271ffund 6655 . . . . . . . . . . 11 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → Fun 𝐹)
7372ad7antr 735 . . . . . . . . . 10 ((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) → Fun 𝐹)
743fdmd 6662 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (𝑅 RingHom 𝑆) → dom 𝐹 = (Base‘𝑅))
7574imaeq2d 5999 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹 “ dom 𝐹) = (𝐹 “ (Base‘𝑅)))
76 imadmrn 6009 . . . . . . . . . . . . . . . . 17 (𝐹 “ dom 𝐹) = ran 𝐹
7775, 76eqtr3di 2791 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹 “ (Base‘𝑅)) = ran 𝐹)
7877eqeq1d 2738 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹 “ (Base‘𝑅)) = 𝐵 ↔ ran 𝐹 = 𝐵))
7978biimpar 478 . . . . . . . . . . . . . 14 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) → (𝐹 “ (Base‘𝑅)) = 𝐵)
8079eleq2d 2822 . . . . . . . . . . . . 13 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) → (𝑥 ∈ (𝐹 “ (Base‘𝑅)) ↔ 𝑥𝐵))
8180biimpar 478 . . . . . . . . . . . 12 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐹 “ (Base‘𝑅)))
8281adantlr 712 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐹 “ (Base‘𝑅)))
8382ad6antr 733 . . . . . . . . . 10 ((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) → 𝑥 ∈ (𝐹 “ (Base‘𝑅)))
84 fvelima 6891 . . . . . . . . . 10 ((Fun 𝐹𝑥 ∈ (𝐹 “ (Base‘𝑅))) → ∃𝑧 ∈ (Base‘𝑅)(𝐹𝑧) = 𝑥)
8573, 83, 84syl2anc 584 . . . . . . . . 9 ((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) → ∃𝑧 ∈ (Base‘𝑅)(𝐹𝑧) = 𝑥)
8670, 85r19.29a 3155 . . . . . . . 8 ((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) → ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐹𝐼))
8772ad5antr 731 . . . . . . . . 9 ((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) → Fun 𝐹)
88 simp-4r 781 . . . . . . . . 9 ((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) → 𝑎 ∈ (𝐹𝐼))
89 fvelima 6891 . . . . . . . . 9 ((Fun 𝐹𝑎 ∈ (𝐹𝐼)) → ∃𝑖𝐼 (𝐹𝑖) = 𝑎)
9087, 88, 89syl2anc 584 . . . . . . . 8 ((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) → ∃𝑖𝐼 (𝐹𝑖) = 𝑎)
9186, 90r19.29a 3155 . . . . . . 7 ((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) → ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐹𝐼))
9272ad3antrrr 727 . . . . . . . 8 ((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) → Fun 𝐹)
93 simpr 485 . . . . . . . 8 ((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) → 𝑏 ∈ (𝐹𝐼))
94 fvelima 6891 . . . . . . . 8 ((Fun 𝐹𝑏 ∈ (𝐹𝐼)) → ∃𝑗𝐼 (𝐹𝑗) = 𝑏)
9592, 93, 94syl2anc 584 . . . . . . 7 ((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) → ∃𝑗𝐼 (𝐹𝑗) = 𝑏)
9691, 95r19.29a 3155 . . . . . 6 ((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) → ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐹𝐼))
9796anasss 467 . . . . 5 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ (𝑎 ∈ (𝐹𝐼) ∧ 𝑏 ∈ (𝐹𝐼))) → ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐹𝐼))
9897ralrimivva 3193 . . . 4 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) → ∀𝑎 ∈ (𝐹𝐼)∀𝑏 ∈ (𝐹𝐼)((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐹𝐼))
9998ralrimiva 3139 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → ∀𝑥𝐵𝑎 ∈ (𝐹𝐼)∀𝑏 ∈ (𝐹𝐼)((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐹𝐼))
100 rhmimaidl.u . . . 4 𝑈 = (LIdeal‘𝑆)
101100, 2, 34, 38islidl 20588 . . 3 ((𝐹𝐼) ∈ 𝑈 ↔ ((𝐹𝐼) ⊆ 𝐵 ∧ (𝐹𝐼) ≠ ∅ ∧ ∀𝑥𝐵𝑎 ∈ (𝐹𝐼)∀𝑏 ∈ (𝐹𝐼)((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐹𝐼)))
1026, 19, 99, 101syl3anbrc 1342 . 2 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → (𝐹𝐼) ∈ 𝑈)
1031023impa 1109 1 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵𝐼𝑇) → (𝐹𝐼) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2940  wral 3061  wrex 3070  wss 3898  c0 4269  dom cdm 5620  ran crn 5621  cima 5623  Fun wfun 6473   Fn wfn 6474  wf 6475  cfv 6479  (class class class)co 7337  Basecbs 17009  +gcplusg 17059  .rcmulr 17060  0gc0g 17247   GrpHom cghm 18927  Ringcrg 19878   RingHom crh 20051  LIdealclidl 20538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-er 8569  df-map 8688  df-en 8805  df-dom 8806  df-sdom 8807  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-2 12137  df-3 12138  df-4 12139  df-5 12140  df-6 12141  df-7 12142  df-8 12143  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-mulr 17073  df-sca 17075  df-vsca 17076  df-ip 17077  df-0g 17249  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-mhm 18527  df-grp 18676  df-minusg 18677  df-sbg 18678  df-subg 18848  df-ghm 18928  df-mgp 19816  df-ur 19833  df-ring 19880  df-rnghom 20054  df-subrg 20127  df-lmod 20231  df-lss 20300  df-sra 20540  df-rgmod 20541  df-lidl 20542
This theorem is referenced by:  rhmpreimacnlem  32132  rhmpreimacn  32133
  Copyright terms: Public domain W3C validator