Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmimaidl Structured version   Visualization version   GIF version

Theorem rhmimaidl 31511
Description: The image of an ideal 𝐼 by a surjective ring homomorphism 𝐹 is an ideal. (Contributed by Thierry Arnoux, 6-Jul-2024.)
Hypotheses
Ref Expression
rhmimaidl.b 𝐵 = (Base‘𝑆)
rhmimaidl.t 𝑇 = (LIdeal‘𝑅)
rhmimaidl.u 𝑈 = (LIdeal‘𝑆)
Assertion
Ref Expression
rhmimaidl ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵𝐼𝑇) → (𝐹𝐼) ∈ 𝑈)

Proof of Theorem rhmimaidl
Dummy variables 𝑎 𝑏 𝑖 𝑗 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
2 rhmimaidl.b . . . . . 6 𝐵 = (Base‘𝑆)
31, 2rhmf 19885 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶𝐵)
4 fimass 6605 . . . . 5 (𝐹:(Base‘𝑅)⟶𝐵 → (𝐹𝐼) ⊆ 𝐵)
53, 4syl 17 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹𝐼) ⊆ 𝐵)
65ad2antrr 722 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → (𝐹𝐼) ⊆ 𝐵)
73ffnd 6585 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 Fn (Base‘𝑅))
87ad2antrr 722 . . . . 5 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → 𝐹 Fn (Base‘𝑅))
9 rhmrcl1 19878 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
109ad2antrr 722 . . . . . 6 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → 𝑅 ∈ Ring)
11 eqid 2738 . . . . . . 7 (0g𝑅) = (0g𝑅)
121, 11ring0cl 19723 . . . . . 6 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
1310, 12syl 17 . . . . 5 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → (0g𝑅) ∈ (Base‘𝑅))
14 simpr 484 . . . . . 6 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → 𝐼𝑇)
15 rhmimaidl.t . . . . . . 7 𝑇 = (LIdeal‘𝑅)
1615, 11lidl0cl 20396 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑇) → (0g𝑅) ∈ 𝐼)
1710, 14, 16syl2anc 583 . . . . 5 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → (0g𝑅) ∈ 𝐼)
188, 13, 17fnfvimad 7092 . . . 4 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → (𝐹‘(0g𝑅)) ∈ (𝐹𝐼))
1918ne0d 4266 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → (𝐹𝐼) ≠ ∅)
20 rhmghm 19884 . . . . . . . . . . . . . . . . . . . 20 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
2120ad4antr 728 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
229ad4antr 728 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
23 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → 𝑧 ∈ (Base‘𝑅))
241, 15lidlss 20394 . . . . . . . . . . . . . . . . . . . . . 22 (𝐼𝑇𝐼 ⊆ (Base‘𝑅))
2524ad4antlr 729 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → 𝐼 ⊆ (Base‘𝑅))
26 simplr 765 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → 𝑖𝐼)
2725, 26sseldd 3918 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → 𝑖 ∈ (Base‘𝑅))
28 eqid 2738 . . . . . . . . . . . . . . . . . . . . 21 (.r𝑅) = (.r𝑅)
291, 28ringcl 19715 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑖 ∈ (Base‘𝑅)) → (𝑧(.r𝑅)𝑖) ∈ (Base‘𝑅))
3022, 23, 27, 29syl3anc 1369 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝑧(.r𝑅)𝑖) ∈ (Base‘𝑅))
31 simpllr 772 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → 𝑗𝐼)
3225, 31sseldd 3918 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → 𝑗 ∈ (Base‘𝑅))
33 eqid 2738 . . . . . . . . . . . . . . . . . . . 20 (+g𝑅) = (+g𝑅)
34 eqid 2738 . . . . . . . . . . . . . . . . . . . 20 (+g𝑆) = (+g𝑆)
351, 33, 34ghmlin 18754 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝑧(.r𝑅)𝑖) ∈ (Base‘𝑅) ∧ 𝑗 ∈ (Base‘𝑅)) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) = ((𝐹‘(𝑧(.r𝑅)𝑖))(+g𝑆)(𝐹𝑗)))
3621, 30, 32, 35syl3anc 1369 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) = ((𝐹‘(𝑧(.r𝑅)𝑖))(+g𝑆)(𝐹𝑗)))
37 simp-4l 779 . . . . . . . . . . . . . . . . . . . 20 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → 𝐹 ∈ (𝑅 RingHom 𝑆))
38 eqid 2738 . . . . . . . . . . . . . . . . . . . . 21 (.r𝑆) = (.r𝑆)
391, 28, 38rhmmul 19886 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑖 ∈ (Base‘𝑅)) → (𝐹‘(𝑧(.r𝑅)𝑖)) = ((𝐹𝑧)(.r𝑆)(𝐹𝑖)))
4037, 23, 27, 39syl3anc 1369 . . . . . . . . . . . . . . . . . . 19 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝐹‘(𝑧(.r𝑅)𝑖)) = ((𝐹𝑧)(.r𝑆)(𝐹𝑖)))
4140oveq1d 7270 . . . . . . . . . . . . . . . . . 18 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝐹‘(𝑧(.r𝑅)𝑖))(+g𝑆)(𝐹𝑗)) = (((𝐹𝑧)(.r𝑆)(𝐹𝑖))(+g𝑆)(𝐹𝑗)))
4236, 41eqtrd 2778 . . . . . . . . . . . . . . . . 17 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) = (((𝐹𝑧)(.r𝑆)(𝐹𝑖))(+g𝑆)(𝐹𝑗)))
4342adantl4r 751 . . . . . . . . . . . . . . . 16 ((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) = (((𝐹𝑧)(.r𝑆)(𝐹𝑖))(+g𝑆)(𝐹𝑗)))
4443adantl3r 746 . . . . . . . . . . . . . . 15 (((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) = (((𝐹𝑧)(.r𝑆)(𝐹𝑖))(+g𝑆)(𝐹𝑗)))
4544adantl3r 746 . . . . . . . . . . . . . 14 ((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) = (((𝐹𝑧)(.r𝑆)(𝐹𝑖))(+g𝑆)(𝐹𝑗)))
4645adantl3r 746 . . . . . . . . . . . . 13 (((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) = (((𝐹𝑧)(.r𝑆)(𝐹𝑖))(+g𝑆)(𝐹𝑗)))
4746adantllr 715 . . . . . . . . . . . 12 ((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ 𝑧 ∈ (Base‘𝑅)) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) = (((𝐹𝑧)(.r𝑆)(𝐹𝑖))(+g𝑆)(𝐹𝑗)))
4847ad4ant13 747 . . . . . . . . . . 11 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) = (((𝐹𝑧)(.r𝑆)(𝐹𝑖))(+g𝑆)(𝐹𝑗)))
49 simpr 484 . . . . . . . . . . . . 13 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → (𝐹𝑧) = 𝑥)
50 simpllr 772 . . . . . . . . . . . . 13 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → (𝐹𝑖) = 𝑎)
5149, 50oveq12d 7273 . . . . . . . . . . . 12 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → ((𝐹𝑧)(.r𝑆)(𝐹𝑖)) = (𝑥(.r𝑆)𝑎))
52 simp-5r 782 . . . . . . . . . . . 12 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → (𝐹𝑗) = 𝑏)
5351, 52oveq12d 7273 . . . . . . . . . . 11 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → (((𝐹𝑧)(.r𝑆)(𝐹𝑖))(+g𝑆)(𝐹𝑗)) = ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏))
5448, 53eqtrd 2778 . . . . . . . . . 10 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) = ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏))
558ad9antr 738 . . . . . . . . . . 11 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → 𝐹 Fn (Base‘𝑅))
5614, 24syl 17 . . . . . . . . . . . . 13 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → 𝐼 ⊆ (Base‘𝑅))
5756ad9antr 738 . . . . . . . . . . . 12 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → 𝐼 ⊆ (Base‘𝑅))
5814ad9antr 738 . . . . . . . . . . . . 13 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → 𝐼𝑇)
59 simplr 765 . . . . . . . . . . . . 13 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → 𝑧 ∈ (Base‘𝑅))
60 simp-4r 780 . . . . . . . . . . . . 13 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → 𝑖𝐼)
61 simp-6r 784 . . . . . . . . . . . . 13 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → 𝑗𝐼)
6215, 1, 33, 28islidl 20395 . . . . . . . . . . . . . . . . 17 (𝐼𝑇 ↔ (𝐼 ⊆ (Base‘𝑅) ∧ 𝐼 ≠ ∅ ∧ ∀𝑧 ∈ (Base‘𝑅)∀𝑖𝐼𝑗𝐼 ((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗) ∈ 𝐼))
6362simp3bi 1145 . . . . . . . . . . . . . . . 16 (𝐼𝑇 → ∀𝑧 ∈ (Base‘𝑅)∀𝑖𝐼𝑗𝐼 ((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗) ∈ 𝐼)
6463r19.21bi 3132 . . . . . . . . . . . . . . 15 ((𝐼𝑇𝑧 ∈ (Base‘𝑅)) → ∀𝑖𝐼𝑗𝐼 ((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗) ∈ 𝐼)
6564r19.21bi 3132 . . . . . . . . . . . . . 14 (((𝐼𝑇𝑧 ∈ (Base‘𝑅)) ∧ 𝑖𝐼) → ∀𝑗𝐼 ((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗) ∈ 𝐼)
6665r19.21bi 3132 . . . . . . . . . . . . 13 ((((𝐼𝑇𝑧 ∈ (Base‘𝑅)) ∧ 𝑖𝐼) ∧ 𝑗𝐼) → ((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗) ∈ 𝐼)
6758, 59, 60, 61, 66syl1111anc 836 . . . . . . . . . . . 12 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → ((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗) ∈ 𝐼)
6857, 67sseldd 3918 . . . . . . . . . . 11 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → ((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗) ∈ (Base‘𝑅))
6955, 68, 67fnfvimad 7092 . . . . . . . . . 10 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → (𝐹‘((𝑧(.r𝑅)𝑖)(+g𝑅)𝑗)) ∈ (𝐹𝐼))
7054, 69eqeltrrd 2840 . . . . . . . . 9 ((((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑧) = 𝑥) → ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐹𝐼))
713ad2antrr 722 . . . . . . . . . . . 12 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → 𝐹:(Base‘𝑅)⟶𝐵)
7271ffund 6588 . . . . . . . . . . 11 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → Fun 𝐹)
7372ad7antr 734 . . . . . . . . . 10 ((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) → Fun 𝐹)
743fdmd 6595 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (𝑅 RingHom 𝑆) → dom 𝐹 = (Base‘𝑅))
7574imaeq2d 5958 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹 “ dom 𝐹) = (𝐹 “ (Base‘𝑅)))
76 imadmrn 5968 . . . . . . . . . . . . . . . . 17 (𝐹 “ dom 𝐹) = ran 𝐹
7775, 76eqtr3di 2794 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹 “ (Base‘𝑅)) = ran 𝐹)
7877eqeq1d 2740 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹 “ (Base‘𝑅)) = 𝐵 ↔ ran 𝐹 = 𝐵))
7978biimpar 477 . . . . . . . . . . . . . 14 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) → (𝐹 “ (Base‘𝑅)) = 𝐵)
8079eleq2d 2824 . . . . . . . . . . . . 13 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) → (𝑥 ∈ (𝐹 “ (Base‘𝑅)) ↔ 𝑥𝐵))
8180biimpar 477 . . . . . . . . . . . 12 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐹 “ (Base‘𝑅)))
8281adantlr 711 . . . . . . . . . . 11 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐹 “ (Base‘𝑅)))
8382ad6antr 732 . . . . . . . . . 10 ((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) → 𝑥 ∈ (𝐹 “ (Base‘𝑅)))
84 fvelima 6817 . . . . . . . . . 10 ((Fun 𝐹𝑥 ∈ (𝐹 “ (Base‘𝑅))) → ∃𝑧 ∈ (Base‘𝑅)(𝐹𝑧) = 𝑥)
8573, 83, 84syl2anc 583 . . . . . . . . 9 ((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) → ∃𝑧 ∈ (Base‘𝑅)(𝐹𝑧) = 𝑥)
8670, 85r19.29a 3217 . . . . . . . 8 ((((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) ∧ 𝑖𝐼) ∧ (𝐹𝑖) = 𝑎) → ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐹𝐼))
8772ad5antr 730 . . . . . . . . 9 ((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) → Fun 𝐹)
88 simp-4r 780 . . . . . . . . 9 ((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) → 𝑎 ∈ (𝐹𝐼))
89 fvelima 6817 . . . . . . . . 9 ((Fun 𝐹𝑎 ∈ (𝐹𝐼)) → ∃𝑖𝐼 (𝐹𝑖) = 𝑎)
9087, 88, 89syl2anc 583 . . . . . . . 8 ((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) → ∃𝑖𝐼 (𝐹𝑖) = 𝑎)
9186, 90r19.29a 3217 . . . . . . 7 ((((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) ∧ 𝑗𝐼) ∧ (𝐹𝑗) = 𝑏) → ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐹𝐼))
9272ad3antrrr 726 . . . . . . . 8 ((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) → Fun 𝐹)
93 simpr 484 . . . . . . . 8 ((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) → 𝑏 ∈ (𝐹𝐼))
94 fvelima 6817 . . . . . . . 8 ((Fun 𝐹𝑏 ∈ (𝐹𝐼)) → ∃𝑗𝐼 (𝐹𝑗) = 𝑏)
9592, 93, 94syl2anc 583 . . . . . . 7 ((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) → ∃𝑗𝐼 (𝐹𝑗) = 𝑏)
9691, 95r19.29a 3217 . . . . . 6 ((((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ 𝑎 ∈ (𝐹𝐼)) ∧ 𝑏 ∈ (𝐹𝐼)) → ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐹𝐼))
9796anasss 466 . . . . 5 (((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) ∧ (𝑎 ∈ (𝐹𝐼) ∧ 𝑏 ∈ (𝐹𝐼))) → ((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐹𝐼))
9897ralrimivva 3114 . . . 4 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) ∧ 𝑥𝐵) → ∀𝑎 ∈ (𝐹𝐼)∀𝑏 ∈ (𝐹𝐼)((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐹𝐼))
9998ralrimiva 3107 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → ∀𝑥𝐵𝑎 ∈ (𝐹𝐼)∀𝑏 ∈ (𝐹𝐼)((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐹𝐼))
100 rhmimaidl.u . . . 4 𝑈 = (LIdeal‘𝑆)
101100, 2, 34, 38islidl 20395 . . 3 ((𝐹𝐼) ∈ 𝑈 ↔ ((𝐹𝐼) ⊆ 𝐵 ∧ (𝐹𝐼) ≠ ∅ ∧ ∀𝑥𝐵𝑎 ∈ (𝐹𝐼)∀𝑏 ∈ (𝐹𝐼)((𝑥(.r𝑆)𝑎)(+g𝑆)𝑏) ∈ (𝐹𝐼)))
1026, 19, 99, 101syl3anbrc 1341 . 2 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵) ∧ 𝐼𝑇) → (𝐹𝐼) ∈ 𝑈)
1031023impa 1108 1 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ran 𝐹 = 𝐵𝐼𝑇) → (𝐹𝐼) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  wss 3883  c0 4253  dom cdm 5580  ran crn 5581  cima 5583  Fun wfun 6412   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  0gc0g 17067   GrpHom cghm 18746  Ringcrg 19698   RingHom crh 19871  LIdealclidl 20347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-ghm 18747  df-mgp 19636  df-ur 19653  df-ring 19700  df-rnghom 19874  df-subrg 19937  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-lidl 20351
This theorem is referenced by:  rhmpreimacnlem  31736  rhmpreimacn  31737
  Copyright terms: Public domain W3C validator