Step | Hyp | Ref
| Expression |
1 | | midexlem.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
2 | | midexlem.m |
. . . . . . . 8
⊢ 𝑀 = (𝑆‘𝑥) |
3 | | fveq2 6448 |
. . . . . . . 8
⊢ (𝑥 = 𝐶 → (𝑆‘𝑥) = (𝑆‘𝐶)) |
4 | 2, 3 | syl5eq 2826 |
. . . . . . 7
⊢ (𝑥 = 𝐶 → 𝑀 = (𝑆‘𝐶)) |
5 | 4 | fveq1d 6450 |
. . . . . 6
⊢ (𝑥 = 𝐶 → (𝑀‘𝐴) = ((𝑆‘𝐶)‘𝐴)) |
6 | 5 | rspceeqv 3529 |
. . . . 5
⊢ ((𝐶 ∈ 𝑃 ∧ 𝐵 = ((𝑆‘𝐶)‘𝐴)) → ∃𝑥 ∈ 𝑃 𝐵 = (𝑀‘𝐴)) |
7 | 1, 6 | sylan 575 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 = ((𝑆‘𝐶)‘𝐴)) → ∃𝑥 ∈ 𝑃 𝐵 = (𝑀‘𝐴)) |
8 | 7 | adantlr 705 |
. . 3
⊢ (((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝐵 = ((𝑆‘𝐶)‘𝐴)) → ∃𝑥 ∈ 𝑃 𝐵 = (𝑀‘𝐴)) |
9 | | midexlem.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
10 | 9 | adantr 474 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 ∈ 𝑃) |
11 | | mirval.p |
. . . . . . . 8
⊢ 𝑃 = (Base‘𝐺) |
12 | | mirval.d |
. . . . . . . 8
⊢ − =
(dist‘𝐺) |
13 | | mirval.i |
. . . . . . . 8
⊢ 𝐼 = (Itv‘𝐺) |
14 | | mirval.l |
. . . . . . . 8
⊢ 𝐿 = (LineG‘𝐺) |
15 | | mirval.s |
. . . . . . . 8
⊢ 𝑆 = (pInvG‘𝐺) |
16 | | mirval.g |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
17 | | eqid 2778 |
. . . . . . . 8
⊢ (𝑆‘𝐴) = (𝑆‘𝐴) |
18 | 11, 12, 13, 14, 15, 16, 9, 17 | mircinv 26023 |
. . . . . . 7
⊢ (𝜑 → ((𝑆‘𝐴)‘𝐴) = 𝐴) |
19 | 18 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ((𝑆‘𝐴)‘𝐴) = 𝐴) |
20 | | simpr 479 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) |
21 | 19, 20 | eqtr2d 2815 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐵 = ((𝑆‘𝐴)‘𝐴)) |
22 | | fveq2 6448 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑆‘𝑥) = (𝑆‘𝐴)) |
23 | 2, 22 | syl5eq 2826 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → 𝑀 = (𝑆‘𝐴)) |
24 | 23 | fveq1d 6450 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑀‘𝐴) = ((𝑆‘𝐴)‘𝐴)) |
25 | 24 | rspceeqv 3529 |
. . . . 5
⊢ ((𝐴 ∈ 𝑃 ∧ 𝐵 = ((𝑆‘𝐴)‘𝐴)) → ∃𝑥 ∈ 𝑃 𝐵 = (𝑀‘𝐴)) |
26 | 10, 21, 25 | syl2anc 579 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ∃𝑥 ∈ 𝑃 𝐵 = (𝑀‘𝐴)) |
27 | 26 | adantlr 705 |
. . 3
⊢ (((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝐴 = 𝐵) → ∃𝑥 ∈ 𝑃 𝐵 = (𝑀‘𝐴)) |
28 | 16 | adantr 474 |
. . . 4
⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐺 ∈ TarskiG) |
29 | | eqid 2778 |
. . . 4
⊢ (𝑆‘𝐶) = (𝑆‘𝐶) |
30 | 9 | adantr 474 |
. . . 4
⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐴 ∈ 𝑃) |
31 | | midexlem.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
32 | 31 | adantr 474 |
. . . 4
⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐵 ∈ 𝑃) |
33 | 1 | adantr 474 |
. . . 4
⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐶 ∈ 𝑃) |
34 | | simpr 479 |
. . . 4
⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
35 | | midexlem.1 |
. . . . 5
⊢ (𝜑 → (𝐶 − 𝐴) = (𝐶 − 𝐵)) |
36 | 35 | adantr 474 |
. . . 4
⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → (𝐶 − 𝐴) = (𝐶 − 𝐵)) |
37 | 11, 12, 13, 14, 15, 28, 29, 30, 32, 33, 34, 36 | colmid 26043 |
. . 3
⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → (𝐵 = ((𝑆‘𝐶)‘𝐴) ∨ 𝐴 = 𝐵)) |
38 | 8, 27, 37 | mpjaodan 944 |
. 2
⊢ ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → ∃𝑥 ∈ 𝑃 𝐵 = (𝑀‘𝐴)) |
39 | 16 | adantr 474 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐺 ∈ TarskiG) |
40 | 39 | ad2antrr 716 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐺 ∈ TarskiG) |
41 | 40 | ad2antrr 716 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) → 𝐺 ∈ TarskiG) |
42 | 41 | ad2antrr 716 |
. . . . . . . 8
⊢
((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝐺 ∈ TarskiG) |
43 | 42 | adantr 474 |
. . . . . . 7
⊢
(((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐺 ∈ TarskiG) |
44 | | simprl 761 |
. . . . . . 7
⊢
(((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑥 ∈ 𝑃) |
45 | 9 | adantr 474 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐴 ∈ 𝑃) |
46 | 45 | ad2antrr 716 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐴 ∈ 𝑃) |
47 | 46 | ad2antrr 716 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) → 𝐴 ∈ 𝑃) |
48 | 47 | ad2antrr 716 |
. . . . . . . 8
⊢
((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝐴 ∈ 𝑃) |
49 | 48 | adantr 474 |
. . . . . . 7
⊢
(((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐴 ∈ 𝑃) |
50 | 31 | ad3antrrr 720 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐵 ∈ 𝑃) |
51 | 50 | ad2antrr 716 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) → 𝐵 ∈ 𝑃) |
52 | 51 | ad2antrr 716 |
. . . . . . . 8
⊢
((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝐵 ∈ 𝑃) |
53 | 52 | adantr 474 |
. . . . . . 7
⊢
(((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐵 ∈ 𝑃) |
54 | 43 | ad2antrr 716 |
. . . . . . . . 9
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝐺 ∈ TarskiG) |
55 | | simpllr 766 |
. . . . . . . . . 10
⊢
(((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑟 ∈ 𝑃) |
56 | 55 | ad2antrr 716 |
. . . . . . . . 9
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝑟 ∈ 𝑃) |
57 | 1 | adantr 474 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐶 ∈ 𝑃) |
58 | 57 | ad2antrr 716 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝐶 ∈ 𝑃) |
59 | 58 | ad2antrr 716 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) → 𝐶 ∈ 𝑃) |
60 | 59 | ad2antrr 716 |
. . . . . . . . . . 11
⊢
((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝐶 ∈ 𝑃) |
61 | 60 | adantr 474 |
. . . . . . . . . 10
⊢
(((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐶 ∈ 𝑃) |
62 | 61 | ad2antrr 716 |
. . . . . . . . 9
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝐶 ∈ 𝑃) |
63 | 44 | ad2antrr 716 |
. . . . . . . . 9
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝑥 ∈ 𝑃) |
64 | | eqid 2778 |
. . . . . . . . 9
⊢
(cgrG‘𝐺) =
(cgrG‘𝐺) |
65 | 53 | ad2antrr 716 |
. . . . . . . . 9
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝐵 ∈ 𝑃) |
66 | 49 | ad2antrr 716 |
. . . . . . . . 9
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝐴 ∈ 𝑃) |
67 | | simpr 479 |
. . . . . . . . . . 11
⊢
((((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) ∧ 𝑟 = 𝐴) → 𝑟 = 𝐴) |
68 | 31 | adantr 474 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐵 ∈ 𝑃) |
69 | | simpr 479 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
70 | 11, 13, 14, 39, 57, 45, 68, 69 | ncolne1 25980 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐶 ≠ 𝐴) |
71 | 70 | ad7antr 728 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐶 ≠ 𝐴) |
72 | 71 | ad2antrr 716 |
. . . . . . . . . . . . 13
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝐶 ≠ 𝐴) |
73 | 72 | adantr 474 |
. . . . . . . . . . . 12
⊢
((((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) ∧ 𝑟 = 𝐴) → 𝐶 ≠ 𝐴) |
74 | 73 | necomd 3024 |
. . . . . . . . . . 11
⊢
((((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) ∧ 𝑟 = 𝐴) → 𝐴 ≠ 𝐶) |
75 | 67, 74 | eqnetrd 3036 |
. . . . . . . . . 10
⊢
((((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) ∧ 𝑟 = 𝐴) → 𝑟 ≠ 𝐶) |
76 | 54 | adantr 474 |
. . . . . . . . . . 11
⊢
((((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) ∧ 𝑟 ≠ 𝐴) → 𝐺 ∈ TarskiG) |
77 | 56 | adantr 474 |
. . . . . . . . . . 11
⊢
((((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) ∧ 𝑟 ≠ 𝐴) → 𝑟 ∈ 𝑃) |
78 | 66 | adantr 474 |
. . . . . . . . . . 11
⊢
((((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) ∧ 𝑟 ≠ 𝐴) → 𝐴 ∈ 𝑃) |
79 | 62 | adantr 474 |
. . . . . . . . . . 11
⊢
((((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) ∧ 𝑟 ≠ 𝐴) → 𝐶 ∈ 𝑃) |
80 | | simplr 759 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) → 𝑞 ∈ 𝑃) |
81 | 80 | ad3antrrr 720 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑞 ∈ 𝑃) |
82 | 81 | ad2antrr 716 |
. . . . . . . . . . . . 13
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝑞 ∈ 𝑃) |
83 | 82 | adantr 474 |
. . . . . . . . . . . 12
⊢
((((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) ∧ 𝑟 ≠ 𝐴) → 𝑞 ∈ 𝑃) |
84 | 69 | ad9antr 732 |
. . . . . . . . . . . . . . . 16
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
85 | 11, 14, 13, 54, 66, 65, 62, 84 | ncolrot2 25918 |
. . . . . . . . . . . . . . 15
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → ¬ (𝐵 ∈ (𝐶𝐿𝐴) ∨ 𝐶 = 𝐴)) |
86 | 16 | adantr 474 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) → 𝐺 ∈ TarskiG) |
87 | 31 | adantr 474 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) → 𝐵 ∈ 𝑃) |
88 | 9 | adantr 474 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) → 𝐴 ∈ 𝑃) |
89 | 1 | adantr 474 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) → 𝐶 ∈ 𝑃) |
90 | | simpr 479 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) → (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) |
91 | 11, 14, 13, 86, 87, 88, 89, 90 | colcom 25913 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
92 | 91 | stoic1a 1816 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → ¬ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) |
93 | 92 | ad9antr 732 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → ¬ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) |
94 | 11, 13, 14, 54, 62, 65, 66, 93 | ncolne1 25980 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝐶 ≠ 𝐵) |
95 | 94 | necomd 3024 |
. . . . . . . . . . . . . . . 16
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝐵 ≠ 𝐶) |
96 | | simprl 761 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) → 𝐵 ∈ (𝐶𝐼𝑞)) |
97 | 96 | ad3antrrr 720 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐵 ∈ (𝐶𝐼𝑞)) |
98 | 97 | ad2antrr 716 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝐵 ∈ (𝐶𝐼𝑞)) |
99 | 11, 13, 14, 54, 62, 65, 82, 94, 98 | btwnlng3 25976 |
. . . . . . . . . . . . . . . 16
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝑞 ∈ (𝐶𝐿𝐵)) |
100 | 11, 13, 14, 54, 65, 62, 82, 95, 99 | lncom 25977 |
. . . . . . . . . . . . . . 15
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝑞 ∈ (𝐵𝐿𝐶)) |
101 | 54 | adantr 474 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) ∧ 𝑞 = 𝐶) → 𝐺 ∈ TarskiG) |
102 | 62 | adantr 474 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) ∧ 𝑞 = 𝐶) → 𝐶 ∈ 𝑃) |
103 | 65 | adantr 474 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) ∧ 𝑞 = 𝐶) → 𝐵 ∈ 𝑃) |
104 | 98 | adantr 474 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) ∧ 𝑞 = 𝐶) → 𝐵 ∈ (𝐶𝐼𝑞)) |
105 | | simpr 479 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) ∧ 𝑞 = 𝐶) → 𝑞 = 𝐶) |
106 | 105 | oveq2d 6940 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) ∧ 𝑞 = 𝐶) → (𝐶𝐼𝑞) = (𝐶𝐼𝐶)) |
107 | 104, 106 | eleqtrd 2861 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) ∧ 𝑞 = 𝐶) → 𝐵 ∈ (𝐶𝐼𝐶)) |
108 | 11, 12, 13, 101, 102, 103, 107 | axtgbtwnid 25821 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) ∧ 𝑞 = 𝐶) → 𝐶 = 𝐵) |
109 | 94 | adantr 474 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) ∧ 𝑞 = 𝐶) → 𝐶 ≠ 𝐵) |
110 | 109 | neneqd 2974 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) ∧ 𝑞 = 𝐶) → ¬ 𝐶 = 𝐵) |
111 | 108, 110 | pm2.65da 807 |
. . . . . . . . . . . . . . . 16
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → ¬ 𝑞 = 𝐶) |
112 | 111 | neqned 2976 |
. . . . . . . . . . . . . . 15
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝑞 ≠ 𝐶) |
113 | 11, 13, 14, 54, 65, 62, 66, 82, 85, 100, 112 | ncolncol 26001 |
. . . . . . . . . . . . . 14
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → ¬ (𝑞 ∈ (𝐶𝐿𝐴) ∨ 𝐶 = 𝐴)) |
114 | 11, 14, 13, 54, 62, 66, 82, 113 | ncolcom 25916 |
. . . . . . . . . . . . 13
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → ¬ (𝑞 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶)) |
115 | 114 | adantr 474 |
. . . . . . . . . . . 12
⊢
((((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) ∧ 𝑟 ≠ 𝐴) → ¬ (𝑞 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶)) |
116 | | simp-4r 774 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) → 𝑝 ∈ 𝑃) |
117 | 116 | ad2antrr 716 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝑝 ∈ 𝑃) |
118 | 117 | adantr 474 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑝 ∈ 𝑃) |
119 | 118 | ad2antrr 716 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝑝 ∈ 𝑃) |
120 | | simp-4r 774 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) |
121 | 120 | simprd 491 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝐵 − 𝑞) = (𝐴 − 𝑝)) |
122 | 121 | eqcomd 2784 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝐴 − 𝑝) = (𝐵 − 𝑞)) |
123 | 122 | ad2antrr 716 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → (𝐴 − 𝑝) = (𝐵 − 𝑞)) |
124 | 11, 12, 13, 54, 66, 119, 65, 82, 123 | tgcgrcomlr 25835 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → (𝑝 − 𝐴) = (𝑞 − 𝐵)) |
125 | | simpllr 766 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) → (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) |
126 | 125 | ad5antr 724 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) |
127 | 126 | simprd 491 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝐴 ≠ 𝑝) |
128 | 127 | necomd 3024 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝑝 ≠ 𝐴) |
129 | 11, 12, 13, 54, 119, 66, 82, 65, 124, 128 | tgcgrneq 25838 |
. . . . . . . . . . . . . . . 16
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝑞 ≠ 𝐵) |
130 | 11, 13, 14, 54, 62, 65, 66, 82, 93, 99, 129 | ncolncol 26001 |
. . . . . . . . . . . . . . 15
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → ¬ (𝑞 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) |
131 | 11, 13, 14, 54, 82, 65, 66, 130 | ncolne2 25981 |
. . . . . . . . . . . . . 14
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝑞 ≠ 𝐴) |
132 | 131 | necomd 3024 |
. . . . . . . . . . . . . . 15
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝐴 ≠ 𝑞) |
133 | | simp-4r 774 |
. . . . . . . . . . . . . . . 16
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) |
134 | 133 | simpld 490 |
. . . . . . . . . . . . . . 15
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝑟 ∈ (𝐴𝐼𝑞)) |
135 | 11, 13, 14, 54, 66, 82, 56, 132, 134 | btwnlng1 25974 |
. . . . . . . . . . . . . 14
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝑟 ∈ (𝐴𝐿𝑞)) |
136 | 11, 13, 14, 54, 82, 66, 56, 131, 135 | lncom 25977 |
. . . . . . . . . . . . 13
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝑟 ∈ (𝑞𝐿𝐴)) |
137 | 136 | adantr 474 |
. . . . . . . . . . . 12
⊢
((((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) ∧ 𝑟 ≠ 𝐴) → 𝑟 ∈ (𝑞𝐿𝐴)) |
138 | | simpr 479 |
. . . . . . . . . . . 12
⊢
((((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) ∧ 𝑟 ≠ 𝐴) → 𝑟 ≠ 𝐴) |
139 | 11, 13, 14, 76, 83, 78, 79, 77, 115, 137, 138 | ncolncol 26001 |
. . . . . . . . . . 11
⊢
((((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) ∧ 𝑟 ≠ 𝐴) → ¬ (𝑟 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶)) |
140 | 11, 13, 14, 76, 77, 78, 79, 139 | ncolne2 25981 |
. . . . . . . . . 10
⊢
((((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) ∧ 𝑟 ≠ 𝐴) → 𝑟 ≠ 𝐶) |
141 | 75, 140 | pm2.61dane 3057 |
. . . . . . . . 9
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝑟 ≠ 𝐶) |
142 | | simpllr 766 |
. . . . . . . . . . . 12
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) |
143 | 142 | simprd 491 |
. . . . . . . . . . 11
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶))) |
144 | 143 | simprd 491 |
. . . . . . . . . 10
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝑥 ∈ (𝑟𝐼𝐶)) |
145 | 11, 14, 13, 54, 56, 63, 62, 144 | btwncolg3 25912 |
. . . . . . . . 9
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → (𝐶 ∈ (𝑟𝐿𝑥) ∨ 𝑟 = 𝑥)) |
146 | | simplr 759 |
. . . . . . . . . . 11
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝑠 ∈ 𝑃) |
147 | | simplr 759 |
. . . . . . . . . . . . 13
⊢
(((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) |
148 | 147 | simprd 491 |
. . . . . . . . . . . 12
⊢
(((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑟 ∈ (𝐵𝐼𝑝)) |
149 | 148 | ad2antrr 716 |
. . . . . . . . . . 11
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝑟 ∈ (𝐵𝐼𝑝)) |
150 | | simprl 761 |
. . . . . . . . . . 11
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝑠 ∈ (𝐴𝐼𝑞)) |
151 | 125 | simpld 490 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) → 𝐴 ∈ (𝐶𝐼𝑝)) |
152 | 151 | ad2antrr 716 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝐴 ∈ (𝐶𝐼𝑝)) |
153 | 152 | adantr 474 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐴 ∈ (𝐶𝐼𝑝)) |
154 | 35 | ad8antr 730 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝐶 − 𝐴) = (𝐶 − 𝐵)) |
155 | 154 | eqcomd 2784 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝐶 − 𝐵) = (𝐶 − 𝐴)) |
156 | 11, 12, 13, 43, 49, 53 | axtgcgrrflx 25817 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝐴 − 𝐵) = (𝐵 − 𝐴)) |
157 | 11, 12, 13, 43, 61, 49, 118, 61, 53, 81, 53, 49, 71, 153, 97, 154, 122, 155, 156 | axtg5seg 25820 |
. . . . . . . . . . . . 13
⊢
(((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝑝 − 𝐵) = (𝑞 − 𝐴)) |
158 | 11, 12, 13, 43, 118, 53, 81, 49, 157 | tgcgrcomlr 25835 |
. . . . . . . . . . . 12
⊢
(((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝐵 − 𝑝) = (𝐴 − 𝑞)) |
159 | 158 | ad2antrr 716 |
. . . . . . . . . . 11
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → (𝐵 − 𝑝) = (𝐴 − 𝑞)) |
160 | | simprr 763 |
. . . . . . . . . . . 12
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉) |
161 | 11, 12, 13, 64, 54, 65, 56, 119, 66, 146, 82, 160 | cgr3simp2 25876 |
. . . . . . . . . . 11
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → (𝑟 − 𝑝) = (𝑠 − 𝑞)) |
162 | 11, 12, 13, 54, 65, 66 | axtgcgrrflx 25817 |
. . . . . . . . . . 11
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → (𝐵 − 𝐴) = (𝐴 − 𝐵)) |
163 | 11, 12, 13, 54, 65, 56, 119, 66, 66, 146, 82, 65, 149, 150, 159, 161, 162, 124 | tgifscgr 25863 |
. . . . . . . . . 10
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → (𝑟 − 𝐴) = (𝑠 − 𝐵)) |
164 | | simp-10l 785 |
. . . . . . . . . . . . 13
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝜑) |
165 | 126 | simpld 490 |
. . . . . . . . . . . . . . 15
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝐴 ∈ (𝐶𝐼𝑝)) |
166 | 11, 13, 14, 54, 62, 66, 119, 72, 165 | btwnlng3 25976 |
. . . . . . . . . . . . . 14
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝑝 ∈ (𝐶𝐿𝐴)) |
167 | 11, 13, 14, 54, 62, 66, 65, 119, 84, 166, 128 | ncolncol 26001 |
. . . . . . . . . . . . 13
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → ¬ (𝑝 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
168 | 16 | ad2antrr 716 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴)) → 𝐺 ∈ TarskiG) |
169 | | simplr 759 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴)) → 𝑝 ∈ 𝑃) |
170 | 9 | ad2antrr 716 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴)) → 𝐴 ∈ 𝑃) |
171 | 31 | ad2antrr 716 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴)) → 𝐵 ∈ 𝑃) |
172 | | simpr 479 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴)) → (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴)) |
173 | 11, 14, 13, 168, 169, 170, 171, 172 | colrot1 25914 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴)) → (𝑝 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
174 | 173 | stoic1a 1816 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ ¬ (𝑝 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → ¬ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴)) |
175 | 164, 119,
167, 174 | syl21anc 828 |
. . . . . . . . . . . 12
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → ¬ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴)) |
176 | 11, 13, 14, 54, 119, 66, 65, 167 | ncolne2 25981 |
. . . . . . . . . . . . . . 15
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝑝 ≠ 𝐵) |
177 | 176 | necomd 3024 |
. . . . . . . . . . . . . 14
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝐵 ≠ 𝑝) |
178 | 177 | neneqd 2974 |
. . . . . . . . . . . . 13
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → ¬ 𝐵 = 𝑝) |
179 | 11, 14, 13, 54, 66, 82, 56, 134 | btwncolg1 25910 |
. . . . . . . . . . . . . . . 16
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → (𝑟 ∈ (𝐴𝐿𝑞) ∨ 𝐴 = 𝑞)) |
180 | 11, 12, 13, 54, 56, 66, 146, 65, 163 | tgcgrcomlr 25835 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → (𝐴 − 𝑟) = (𝐵 − 𝑠)) |
181 | 121 | ad2antrr 716 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → (𝐵 − 𝑞) = (𝐴 − 𝑝)) |
182 | 11, 12, 13, 54, 119, 82 | axtgcgrrflx 25817 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → (𝑝 − 𝑞) = (𝑞 − 𝑝)) |
183 | 11, 12, 13, 54, 65, 56, 119, 82, 66, 146, 82, 119, 149, 150, 159, 161, 181, 182 | tgifscgr 25863 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → (𝑟 − 𝑞) = (𝑠 − 𝑝)) |
184 | 11, 12, 13, 54, 66, 146, 82, 150 | tgbtwncom 25843 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝑠 ∈ (𝑞𝐼𝐴)) |
185 | 11, 12, 13, 43, 53, 55, 118, 148 | tgbtwncom 25843 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑟 ∈ (𝑝𝐼𝐵)) |
186 | 185 | ad2antrr 716 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝑟 ∈ (𝑝𝐼𝐵)) |
187 | 161 | eqcomd 2784 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → (𝑠 − 𝑞) = (𝑟 − 𝑝)) |
188 | 11, 12, 13, 54, 146, 82, 56, 119, 187 | tgcgrcomlr 25835 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → (𝑞 − 𝑠) = (𝑝 − 𝑟)) |
189 | 11, 12, 13, 64, 54, 65, 56, 119, 66, 146, 82, 160 | cgr3simp1 25875 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → (𝐵 − 𝑟) = (𝐴 − 𝑠)) |
190 | 189 | eqcomd 2784 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → (𝐴 − 𝑠) = (𝐵 − 𝑟)) |
191 | 11, 12, 13, 54, 66, 146, 65, 56, 190 | tgcgrcomlr 25835 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → (𝑠 − 𝐴) = (𝑟 − 𝐵)) |
192 | 11, 12, 13, 54, 82, 146, 66, 119, 56, 65, 184, 186, 188, 191 | tgcgrextend 25840 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → (𝑞 − 𝐴) = (𝑝 − 𝐵)) |
193 | 11, 12, 64, 54, 66, 56, 82, 65, 146, 119, 180, 183, 192 | trgcgr 25871 |
. . . . . . . . . . . . . . . 16
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 〈“𝐴𝑟𝑞”〉(cgrG‘𝐺)〈“𝐵𝑠𝑝”〉) |
194 | 11, 14, 13, 54, 66, 56, 82, 64, 65, 146, 119, 179, 193 | lnxfr 25921 |
. . . . . . . . . . . . . . 15
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → (𝑠 ∈ (𝐵𝐿𝑝) ∨ 𝐵 = 𝑝)) |
195 | 194 | orcomd 860 |
. . . . . . . . . . . . . 14
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → (𝐵 = 𝑝 ∨ 𝑠 ∈ (𝐵𝐿𝑝))) |
196 | 195 | ord 853 |
. . . . . . . . . . . . 13
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → (¬ 𝐵 = 𝑝 → 𝑠 ∈ (𝐵𝐿𝑝))) |
197 | 178, 196 | mpd 15 |
. . . . . . . . . . . 12
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝑠 ∈ (𝐵𝐿𝑝)) |
198 | 11, 13, 14, 54, 65, 119, 56, 177, 149 | btwnlng1 25974 |
. . . . . . . . . . . 12
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝑟 ∈ (𝐵𝐿𝑝)) |
199 | 11, 13, 14, 54, 66, 82, 146, 132, 150 | btwnlng1 25974 |
. . . . . . . . . . . 12
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝑠 ∈ (𝐴𝐿𝑞)) |
200 | 11, 13, 14, 54, 65, 119, 66, 82, 175, 197, 198, 199, 135 | tglineinteq 26000 |
. . . . . . . . . . 11
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → 𝑠 = 𝑟) |
201 | 200 | oveq1d 6939 |
. . . . . . . . . 10
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → (𝑠 − 𝐵) = (𝑟 − 𝐵)) |
202 | 163, 201 | eqtr2d 2815 |
. . . . . . . . 9
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → (𝑟 − 𝐵) = (𝑟 − 𝐴)) |
203 | 155 | ad2antrr 716 |
. . . . . . . . 9
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → (𝐶 − 𝐵) = (𝐶 − 𝐴)) |
204 | 11, 14, 13, 54, 56, 62, 63, 64, 65, 66, 12, 141, 145, 202, 203 | lncgr 25924 |
. . . . . . . 8
⊢
(((((((((((𝜑 ∧
¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠 ∈ 𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) → (𝑥 − 𝐵) = (𝑥 − 𝐴)) |
205 | 11, 12, 13, 64, 43, 53, 55, 118, 49, 81, 148, 158 | tgcgrxfr 25873 |
. . . . . . . 8
⊢
(((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → ∃𝑠 ∈ 𝑃 (𝑠 ∈ (𝐴𝐼𝑞) ∧ 〈“𝐵𝑟𝑝”〉(cgrG‘𝐺)〈“𝐴𝑠𝑞”〉)) |
206 | 204, 205 | r19.29a 3264 |
. . . . . . 7
⊢
(((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝑥 − 𝐵) = (𝑥 − 𝐴)) |
207 | | simprrl 771 |
. . . . . . . 8
⊢
(((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑥 ∈ (𝐴𝐼𝐵)) |
208 | 11, 12, 13, 43, 49, 44, 53, 207 | tgbtwncom 25843 |
. . . . . . 7
⊢
(((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑥 ∈ (𝐵𝐼𝐴)) |
209 | 11, 12, 13, 14, 15, 43, 44, 2, 49, 53, 206, 208 | ismir 26014 |
. . . . . 6
⊢
(((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥 ∈ 𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐵 = (𝑀‘𝐴)) |
210 | | simplr 759 |
. . . . . . 7
⊢
((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝑟 ∈ 𝑃) |
211 | | simprr 763 |
. . . . . . 7
⊢
((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝑟 ∈ (𝐵𝐼𝑝)) |
212 | 11, 12, 13, 42, 60, 52, 117, 48, 210, 152, 211 | axtgpasch 25822 |
. . . . . 6
⊢
((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶))) |
213 | 209, 212 | reximddv 3199 |
. . . . 5
⊢
((((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) ∧ 𝑟 ∈ 𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → ∃𝑥 ∈ 𝑃 𝐵 = (𝑀‘𝐴)) |
214 | 11, 12, 13, 41, 59, 47, 116, 151 | tgbtwncom 25843 |
. . . . . 6
⊢
((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) → 𝐴 ∈ (𝑝𝐼𝐶)) |
215 | 11, 12, 13, 41, 59, 51, 80, 96 | tgbtwncom 25843 |
. . . . . 6
⊢
((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) → 𝐵 ∈ (𝑞𝐼𝐶)) |
216 | 11, 12, 13, 41, 116, 80, 59, 47, 51, 214, 215 | axtgpasch 25822 |
. . . . 5
⊢
((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) → ∃𝑟 ∈ 𝑃 (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) |
217 | 213, 216 | r19.29a 3264 |
. . . 4
⊢
((((((𝜑 ∧ ¬
(𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) ∧ 𝑞 ∈ 𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) → ∃𝑥 ∈ 𝑃 𝐵 = (𝑀‘𝐴)) |
218 | | simplr 759 |
. . . . 5
⊢ ((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → 𝑝 ∈ 𝑃) |
219 | 11, 12, 13, 40, 58, 50, 46, 218 | axtgsegcon 25819 |
. . . 4
⊢ ((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → ∃𝑞 ∈ 𝑃 (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 − 𝑞) = (𝐴 − 𝑝))) |
220 | 217, 219 | r19.29a 3264 |
. . 3
⊢ ((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝 ∈ 𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) → ∃𝑥 ∈ 𝑃 𝐵 = (𝑀‘𝐴)) |
221 | 11 | fvexi 6462 |
. . . . . 6
⊢ 𝑃 ∈ V |
222 | 221 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝑃 ∈ V) |
223 | 222, 57, 45, 70 | nehash2 13574 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 2 ≤ (♯‘𝑃)) |
224 | 11, 12, 13, 39, 57, 45, 223 | tgbtwndiff 25861 |
. . 3
⊢ ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → ∃𝑝 ∈ 𝑃 (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴 ≠ 𝑝)) |
225 | 220, 224 | r19.29a 3264 |
. 2
⊢ ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → ∃𝑥 ∈ 𝑃 𝐵 = (𝑀‘𝐴)) |
226 | 38, 225 | pm2.61dan 803 |
1
⊢ (𝜑 → ∃𝑥 ∈ 𝑃 𝐵 = (𝑀‘𝐴)) |