MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  midexlem Structured version   Visualization version   GIF version

Theorem midexlem 28619
Description: Lemma for the existence of a middle point. Lemma 7.25 of [Schwabhauser] p. 55. This proof of the existence of a midpoint requires the existence of a third point 𝐶 equidistant to 𝐴 and 𝐵 This condition will be removed later. Because the operation notation (𝐴(midG‘𝐺)𝐵) for a midpoint implies its uniqueness, it cannot be used until uniqueness is proven, and until then, an equivalent mirror point notation 𝐵 = (𝑀𝐴) has to be used. See mideu 28665 for the existence and uniqueness of the midpoint. (Contributed by Thierry Arnoux, 25-Aug-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
midexlem.m 𝑀 = (𝑆𝑥)
midexlem.a (𝜑𝐴𝑃)
midexlem.b (𝜑𝐵𝑃)
midexlem.c (𝜑𝐶𝑃)
midexlem.1 (𝜑 → (𝐶 𝐴) = (𝐶 𝐵))
Assertion
Ref Expression
midexlem (𝜑 → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐼   𝑥,𝐿   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥
Allowed substitution hints:   𝐺(𝑥)   𝑀(𝑥)

Proof of Theorem midexlem
Dummy variables 𝑝 𝑞 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 midexlem.c . . . . 5 (𝜑𝐶𝑃)
2 midexlem.m . . . . . . . 8 𝑀 = (𝑆𝑥)
3 fveq2 6858 . . . . . . . 8 (𝑥 = 𝐶 → (𝑆𝑥) = (𝑆𝐶))
42, 3eqtrid 2776 . . . . . . 7 (𝑥 = 𝐶𝑀 = (𝑆𝐶))
54fveq1d 6860 . . . . . 6 (𝑥 = 𝐶 → (𝑀𝐴) = ((𝑆𝐶)‘𝐴))
65rspceeqv 3611 . . . . 5 ((𝐶𝑃𝐵 = ((𝑆𝐶)‘𝐴)) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
71, 6sylan 580 . . . 4 ((𝜑𝐵 = ((𝑆𝐶)‘𝐴)) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
87adantlr 715 . . 3 (((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝐵 = ((𝑆𝐶)‘𝐴)) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
9 midexlem.a . . . . 5 (𝜑𝐴𝑃)
10 mirval.p . . . . . . . 8 𝑃 = (Base‘𝐺)
11 mirval.d . . . . . . . 8 = (dist‘𝐺)
12 mirval.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
13 mirval.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
14 mirval.s . . . . . . . 8 𝑆 = (pInvG‘𝐺)
15 mirval.g . . . . . . . 8 (𝜑𝐺 ∈ TarskiG)
16 eqid 2729 . . . . . . . 8 (𝑆𝐴) = (𝑆𝐴)
1710, 11, 12, 13, 14, 15, 9, 16mircinv 28595 . . . . . . 7 (𝜑 → ((𝑆𝐴)‘𝐴) = 𝐴)
1817adantr 480 . . . . . 6 ((𝜑𝐴 = 𝐵) → ((𝑆𝐴)‘𝐴) = 𝐴)
19 simpr 484 . . . . . 6 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐵)
2018, 19eqtr2d 2765 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐵 = ((𝑆𝐴)‘𝐴))
21 fveq2 6858 . . . . . . . 8 (𝑥 = 𝐴 → (𝑆𝑥) = (𝑆𝐴))
222, 21eqtrid 2776 . . . . . . 7 (𝑥 = 𝐴𝑀 = (𝑆𝐴))
2322fveq1d 6860 . . . . . 6 (𝑥 = 𝐴 → (𝑀𝐴) = ((𝑆𝐴)‘𝐴))
2423rspceeqv 3611 . . . . 5 ((𝐴𝑃𝐵 = ((𝑆𝐴)‘𝐴)) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
259, 20, 24syl2an2r 685 . . . 4 ((𝜑𝐴 = 𝐵) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
2625adantlr 715 . . 3 (((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝐴 = 𝐵) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
2715adantr 480 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐺 ∈ TarskiG)
28 eqid 2729 . . . 4 (𝑆𝐶) = (𝑆𝐶)
299adantr 480 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐴𝑃)
30 midexlem.b . . . . 5 (𝜑𝐵𝑃)
3130adantr 480 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐵𝑃)
321adantr 480 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐶𝑃)
33 simpr 484 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
34 midexlem.1 . . . . 5 (𝜑 → (𝐶 𝐴) = (𝐶 𝐵))
3534adantr 480 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → (𝐶 𝐴) = (𝐶 𝐵))
3610, 11, 12, 13, 14, 27, 28, 29, 31, 32, 33, 35colmid 28615 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → (𝐵 = ((𝑆𝐶)‘𝐴) ∨ 𝐴 = 𝐵))
378, 26, 36mpjaodan 960 . 2 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
3815adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐺 ∈ TarskiG)
3938ad2antrr 726 . . . . . . . . . 10 ((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) → 𝐺 ∈ TarskiG)
4039ad2antrr 726 . . . . . . . . 9 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → 𝐺 ∈ TarskiG)
4140ad2antrr 726 . . . . . . . 8 ((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝐺 ∈ TarskiG)
4241adantr 480 . . . . . . 7 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐺 ∈ TarskiG)
43 simprl 770 . . . . . . 7 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑥𝑃)
449adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐴𝑃)
4544ad2antrr 726 . . . . . . . . . 10 ((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) → 𝐴𝑃)
4645ad2antrr 726 . . . . . . . . 9 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → 𝐴𝑃)
4746ad2antrr 726 . . . . . . . 8 ((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝐴𝑃)
4847adantr 480 . . . . . . 7 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐴𝑃)
4930ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) → 𝐵𝑃)
5049ad2antrr 726 . . . . . . . . 9 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → 𝐵𝑃)
5150ad2antrr 726 . . . . . . . 8 ((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝐵𝑃)
5251adantr 480 . . . . . . 7 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐵𝑃)
5342ad2antrr 726 . . . . . . . . 9 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐺 ∈ TarskiG)
54 simpllr 775 . . . . . . . . . 10 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑟𝑃)
5554ad2antrr 726 . . . . . . . . 9 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑟𝑃)
561adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐶𝑃)
5756ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) → 𝐶𝑃)
5857ad2antrr 726 . . . . . . . . . . . 12 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → 𝐶𝑃)
5958ad2antrr 726 . . . . . . . . . . 11 ((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝐶𝑃)
6059adantr 480 . . . . . . . . . 10 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐶𝑃)
6160ad2antrr 726 . . . . . . . . 9 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐶𝑃)
6243ad2antrr 726 . . . . . . . . 9 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑥𝑃)
63 eqid 2729 . . . . . . . . 9 (cgrG‘𝐺) = (cgrG‘𝐺)
6452ad2antrr 726 . . . . . . . . 9 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐵𝑃)
6548ad2antrr 726 . . . . . . . . 9 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐴𝑃)
66 simpr 484 . . . . . . . . . . 11 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟 = 𝐴) → 𝑟 = 𝐴)
6730adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐵𝑃)
68 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
6910, 12, 13, 38, 56, 44, 67, 68ncolne1 28552 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐶𝐴)
7069ad7antr 738 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐶𝐴)
7170ad2antrr 726 . . . . . . . . . . . . 13 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐶𝐴)
7271adantr 480 . . . . . . . . . . . 12 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟 = 𝐴) → 𝐶𝐴)
7372necomd 2980 . . . . . . . . . . 11 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟 = 𝐴) → 𝐴𝐶)
7466, 73eqnetrd 2992 . . . . . . . . . 10 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟 = 𝐴) → 𝑟𝐶)
7553adantr 480 . . . . . . . . . . 11 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟𝐴) → 𝐺 ∈ TarskiG)
7655adantr 480 . . . . . . . . . . 11 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟𝐴) → 𝑟𝑃)
7765adantr 480 . . . . . . . . . . 11 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟𝐴) → 𝐴𝑃)
7861adantr 480 . . . . . . . . . . 11 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟𝐴) → 𝐶𝑃)
79 simplr 768 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → 𝑞𝑃)
8079ad3antrrr 730 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑞𝑃)
8180ad2antrr 726 . . . . . . . . . . . . 13 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑞𝑃)
8281adantr 480 . . . . . . . . . . . 12 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟𝐴) → 𝑞𝑃)
8368ad9antr 742 . . . . . . . . . . . . . . . 16 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
8410, 13, 12, 53, 65, 64, 61, 83ncolrot2 28490 . . . . . . . . . . . . . . 15 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ¬ (𝐵 ∈ (𝐶𝐿𝐴) ∨ 𝐶 = 𝐴))
8515adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) → 𝐺 ∈ TarskiG)
8630adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) → 𝐵𝑃)
879adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) → 𝐴𝑃)
881adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) → 𝐶𝑃)
89 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) → (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴))
9010, 13, 12, 85, 86, 87, 88, 89colcom 28485 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
9190stoic1a 1772 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → ¬ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴))
9291ad9antr 742 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ¬ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴))
9310, 12, 13, 53, 61, 64, 65, 92ncolne1 28552 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐶𝐵)
9493necomd 2980 . . . . . . . . . . . . . . . 16 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐵𝐶)
95 simprl 770 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → 𝐵 ∈ (𝐶𝐼𝑞))
9695ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐵 ∈ (𝐶𝐼𝑞))
9796ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐵 ∈ (𝐶𝐼𝑞))
9810, 12, 13, 53, 61, 64, 81, 93, 97btwnlng3 28548 . . . . . . . . . . . . . . . 16 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑞 ∈ (𝐶𝐿𝐵))
9910, 12, 13, 53, 64, 61, 81, 94, 98lncom 28549 . . . . . . . . . . . . . . 15 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑞 ∈ (𝐵𝐿𝐶))
10053adantr 480 . . . . . . . . . . . . . . . . . 18 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑞 = 𝐶) → 𝐺 ∈ TarskiG)
10161adantr 480 . . . . . . . . . . . . . . . . . 18 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑞 = 𝐶) → 𝐶𝑃)
10264adantr 480 . . . . . . . . . . . . . . . . . 18 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑞 = 𝐶) → 𝐵𝑃)
10397adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑞 = 𝐶) → 𝐵 ∈ (𝐶𝐼𝑞))
104 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑞 = 𝐶) → 𝑞 = 𝐶)
105104oveq2d 7403 . . . . . . . . . . . . . . . . . . 19 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑞 = 𝐶) → (𝐶𝐼𝑞) = (𝐶𝐼𝐶))
106103, 105eleqtrd 2830 . . . . . . . . . . . . . . . . . 18 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑞 = 𝐶) → 𝐵 ∈ (𝐶𝐼𝐶))
10710, 11, 12, 100, 101, 102, 106axtgbtwnid 28393 . . . . . . . . . . . . . . . . 17 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑞 = 𝐶) → 𝐶 = 𝐵)
10893adantr 480 . . . . . . . . . . . . . . . . . 18 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑞 = 𝐶) → 𝐶𝐵)
109108neneqd 2930 . . . . . . . . . . . . . . . . 17 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑞 = 𝐶) → ¬ 𝐶 = 𝐵)
110107, 109pm2.65da 816 . . . . . . . . . . . . . . . 16 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ¬ 𝑞 = 𝐶)
111110neqned 2932 . . . . . . . . . . . . . . 15 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑞𝐶)
11210, 12, 13, 53, 64, 61, 65, 81, 84, 99, 111ncolncol 28573 . . . . . . . . . . . . . 14 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ¬ (𝑞 ∈ (𝐶𝐿𝐴) ∨ 𝐶 = 𝐴))
11310, 13, 12, 53, 61, 65, 81, 112ncolcom 28488 . . . . . . . . . . . . 13 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ¬ (𝑞 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
114113adantr 480 . . . . . . . . . . . 12 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟𝐴) → ¬ (𝑞 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
115 simp-4r 783 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → 𝑝𝑃)
116115ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝑝𝑃)
117116adantr 480 . . . . . . . . . . . . . . . . . 18 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑝𝑃)
118117ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑝𝑃)
119 simp-4r 783 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝)))
120119simprd 495 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝐵 𝑞) = (𝐴 𝑝))
121120eqcomd 2735 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝐴 𝑝) = (𝐵 𝑞))
122121ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐴 𝑝) = (𝐵 𝑞))
12310, 11, 12, 53, 65, 118, 64, 81, 122tgcgrcomlr 28407 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑝 𝐴) = (𝑞 𝐵))
124 simpllr 775 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝))
125124ad5antr 734 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝))
126125simprd 495 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐴𝑝)
127126necomd 2980 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑝𝐴)
12810, 11, 12, 53, 118, 65, 81, 64, 123, 127tgcgrneq 28410 . . . . . . . . . . . . . . . 16 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑞𝐵)
12910, 12, 13, 53, 61, 64, 65, 81, 92, 98, 128ncolncol 28573 . . . . . . . . . . . . . . 15 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ¬ (𝑞 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴))
13010, 12, 13, 53, 81, 64, 65, 129ncolne2 28553 . . . . . . . . . . . . . 14 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑞𝐴)
131130necomd 2980 . . . . . . . . . . . . . . 15 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐴𝑞)
132 simp-4r 783 . . . . . . . . . . . . . . . 16 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝)))
133132simpld 494 . . . . . . . . . . . . . . 15 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑟 ∈ (𝐴𝐼𝑞))
13410, 12, 13, 53, 65, 81, 55, 131, 133btwnlng1 28546 . . . . . . . . . . . . . 14 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑟 ∈ (𝐴𝐿𝑞))
13510, 12, 13, 53, 81, 65, 55, 130, 134lncom 28549 . . . . . . . . . . . . 13 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑟 ∈ (𝑞𝐿𝐴))
136135adantr 480 . . . . . . . . . . . 12 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟𝐴) → 𝑟 ∈ (𝑞𝐿𝐴))
137 simpr 484 . . . . . . . . . . . 12 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟𝐴) → 𝑟𝐴)
13810, 12, 13, 75, 82, 77, 78, 76, 114, 136, 137ncolncol 28573 . . . . . . . . . . 11 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟𝐴) → ¬ (𝑟 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
13910, 12, 13, 75, 76, 77, 78, 138ncolne2 28553 . . . . . . . . . 10 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟𝐴) → 𝑟𝐶)
14074, 139pm2.61dane 3012 . . . . . . . . 9 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑟𝐶)
141 simpllr 775 . . . . . . . . . . . 12 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶))))
142141simprd 495 . . . . . . . . . . 11 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))
143142simprd 495 . . . . . . . . . 10 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑥 ∈ (𝑟𝐼𝐶))
14410, 13, 12, 53, 55, 62, 61, 143btwncolg3 28484 . . . . . . . . 9 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐶 ∈ (𝑟𝐿𝑥) ∨ 𝑟 = 𝑥))
145 simplr 768 . . . . . . . . . . 11 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑠𝑃)
146 simplr 768 . . . . . . . . . . . . 13 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝)))
147146simprd 495 . . . . . . . . . . . 12 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑟 ∈ (𝐵𝐼𝑝))
148147ad2antrr 726 . . . . . . . . . . 11 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑟 ∈ (𝐵𝐼𝑝))
149 simprl 770 . . . . . . . . . . 11 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑠 ∈ (𝐴𝐼𝑞))
150124simpld 494 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → 𝐴 ∈ (𝐶𝐼𝑝))
151150ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝐴 ∈ (𝐶𝐼𝑝))
152151adantr 480 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐴 ∈ (𝐶𝐼𝑝))
15334ad8antr 740 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝐶 𝐴) = (𝐶 𝐵))
154153eqcomd 2735 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝐶 𝐵) = (𝐶 𝐴))
15510, 11, 12, 42, 48, 52axtgcgrrflx 28389 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝐴 𝐵) = (𝐵 𝐴))
15610, 11, 12, 42, 60, 48, 117, 60, 52, 80, 52, 48, 70, 152, 96, 153, 121, 154, 155axtg5seg 28392 . . . . . . . . . . . . 13 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝑝 𝐵) = (𝑞 𝐴))
15710, 11, 12, 42, 117, 52, 80, 48, 156tgcgrcomlr 28407 . . . . . . . . . . . 12 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝐵 𝑝) = (𝐴 𝑞))
158157ad2antrr 726 . . . . . . . . . . 11 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐵 𝑝) = (𝐴 𝑞))
159 simprr 772 . . . . . . . . . . . 12 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)
16010, 11, 12, 63, 53, 64, 55, 118, 65, 145, 81, 159cgr3simp2 28448 . . . . . . . . . . 11 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑟 𝑝) = (𝑠 𝑞))
16110, 11, 12, 53, 64, 65axtgcgrrflx 28389 . . . . . . . . . . 11 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐵 𝐴) = (𝐴 𝐵))
16210, 11, 12, 53, 64, 55, 118, 65, 65, 145, 81, 64, 148, 149, 158, 160, 161, 123tgifscgr 28435 . . . . . . . . . 10 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑟 𝐴) = (𝑠 𝐵))
163 simp-10l 794 . . . . . . . . . . . . 13 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝜑)
164125simpld 494 . . . . . . . . . . . . . . 15 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐴 ∈ (𝐶𝐼𝑝))
16510, 12, 13, 53, 61, 65, 118, 71, 164btwnlng3 28548 . . . . . . . . . . . . . 14 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑝 ∈ (𝐶𝐿𝐴))
16610, 12, 13, 53, 61, 65, 64, 118, 83, 165, 127ncolncol 28573 . . . . . . . . . . . . 13 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ¬ (𝑝 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
16715ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑝𝑃) ∧ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴)) → 𝐺 ∈ TarskiG)
168 simplr 768 . . . . . . . . . . . . . . 15 (((𝜑𝑝𝑃) ∧ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴)) → 𝑝𝑃)
1699ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑝𝑃) ∧ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴)) → 𝐴𝑃)
17030ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑝𝑃) ∧ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴)) → 𝐵𝑃)
171 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑝𝑃) ∧ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴)) → (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴))
17210, 13, 12, 167, 168, 169, 170, 171colrot1 28486 . . . . . . . . . . . . . 14 (((𝜑𝑝𝑃) ∧ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴)) → (𝑝 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
173172stoic1a 1772 . . . . . . . . . . . . 13 (((𝜑𝑝𝑃) ∧ ¬ (𝑝 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → ¬ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴))
174163, 118, 166, 173syl21anc 837 . . . . . . . . . . . 12 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ¬ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴))
17510, 12, 13, 53, 118, 65, 64, 166ncolne2 28553 . . . . . . . . . . . . . . 15 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑝𝐵)
176175necomd 2980 . . . . . . . . . . . . . 14 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐵𝑝)
177176neneqd 2930 . . . . . . . . . . . . 13 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ¬ 𝐵 = 𝑝)
17810, 13, 12, 53, 65, 81, 55, 133btwncolg1 28482 . . . . . . . . . . . . . . . 16 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑟 ∈ (𝐴𝐿𝑞) ∨ 𝐴 = 𝑞))
17910, 11, 12, 53, 55, 65, 145, 64, 162tgcgrcomlr 28407 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐴 𝑟) = (𝐵 𝑠))
180120ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐵 𝑞) = (𝐴 𝑝))
18110, 11, 12, 53, 118, 81axtgcgrrflx 28389 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑝 𝑞) = (𝑞 𝑝))
18210, 11, 12, 53, 64, 55, 118, 81, 65, 145, 81, 118, 148, 149, 158, 160, 180, 181tgifscgr 28435 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑟 𝑞) = (𝑠 𝑝))
18310, 11, 12, 53, 65, 145, 81, 149tgbtwncom 28415 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑠 ∈ (𝑞𝐼𝐴))
18410, 11, 12, 42, 52, 54, 117, 147tgbtwncom 28415 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑟 ∈ (𝑝𝐼𝐵))
185184ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑟 ∈ (𝑝𝐼𝐵))
186160eqcomd 2735 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑠 𝑞) = (𝑟 𝑝))
18710, 11, 12, 53, 145, 81, 55, 118, 186tgcgrcomlr 28407 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑞 𝑠) = (𝑝 𝑟))
18810, 11, 12, 63, 53, 64, 55, 118, 65, 145, 81, 159cgr3simp1 28447 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐵 𝑟) = (𝐴 𝑠))
189188eqcomd 2735 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐴 𝑠) = (𝐵 𝑟))
19010, 11, 12, 53, 65, 145, 64, 55, 189tgcgrcomlr 28407 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑠 𝐴) = (𝑟 𝐵))
19110, 11, 12, 53, 81, 145, 65, 118, 55, 64, 183, 185, 187, 190tgcgrextend 28412 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑞 𝐴) = (𝑝 𝐵))
19210, 11, 63, 53, 65, 55, 81, 64, 145, 118, 179, 182, 191trgcgr 28443 . . . . . . . . . . . . . . . 16 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ⟨“𝐴𝑟𝑞”⟩(cgrG‘𝐺)⟨“𝐵𝑠𝑝”⟩)
19310, 13, 12, 53, 65, 55, 81, 63, 64, 145, 118, 178, 192lnxfr 28493 . . . . . . . . . . . . . . 15 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑠 ∈ (𝐵𝐿𝑝) ∨ 𝐵 = 𝑝))
194193orcomd 871 . . . . . . . . . . . . . 14 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐵 = 𝑝𝑠 ∈ (𝐵𝐿𝑝)))
195194ord 864 . . . . . . . . . . . . 13 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (¬ 𝐵 = 𝑝𝑠 ∈ (𝐵𝐿𝑝)))
196177, 195mpd 15 . . . . . . . . . . . 12 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑠 ∈ (𝐵𝐿𝑝))
19710, 12, 13, 53, 64, 118, 55, 176, 148btwnlng1 28546 . . . . . . . . . . . 12 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑟 ∈ (𝐵𝐿𝑝))
19810, 12, 13, 53, 65, 81, 145, 131, 149btwnlng1 28546 . . . . . . . . . . . 12 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑠 ∈ (𝐴𝐿𝑞))
19910, 12, 13, 53, 64, 118, 65, 81, 174, 196, 197, 198, 134tglineinteq 28572 . . . . . . . . . . 11 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑠 = 𝑟)
200199oveq1d 7402 . . . . . . . . . 10 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑠 𝐵) = (𝑟 𝐵))
201162, 200eqtr2d 2765 . . . . . . . . 9 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑟 𝐵) = (𝑟 𝐴))
202154ad2antrr 726 . . . . . . . . 9 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐶 𝐵) = (𝐶 𝐴))
20310, 13, 12, 53, 55, 61, 62, 63, 64, 65, 11, 140, 144, 201, 202lncgr 28496 . . . . . . . 8 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑥 𝐵) = (𝑥 𝐴))
20410, 11, 12, 63, 42, 52, 54, 117, 48, 80, 147, 157tgcgrxfr 28445 . . . . . . . 8 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → ∃𝑠𝑃 (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩))
205203, 204r19.29a 3141 . . . . . . 7 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝑥 𝐵) = (𝑥 𝐴))
206 simprrl 780 . . . . . . . 8 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑥 ∈ (𝐴𝐼𝐵))
20710, 11, 12, 42, 48, 43, 52, 206tgbtwncom 28415 . . . . . . 7 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑥 ∈ (𝐵𝐼𝐴))
20810, 11, 12, 13, 14, 42, 43, 2, 48, 52, 205, 207ismir 28586 . . . . . 6 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐵 = (𝑀𝐴))
209 simplr 768 . . . . . . 7 ((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝑟𝑃)
210 simprr 772 . . . . . . 7 ((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝑟 ∈ (𝐵𝐼𝑝))
21110, 11, 12, 41, 59, 51, 116, 47, 209, 151, 210axtgpasch 28394 . . . . . 6 ((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))
212208, 211reximddv 3149 . . . . 5 ((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
21310, 11, 12, 40, 58, 46, 115, 150tgbtwncom 28415 . . . . . 6 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → 𝐴 ∈ (𝑝𝐼𝐶))
21410, 11, 12, 40, 58, 50, 79, 95tgbtwncom 28415 . . . . . 6 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → 𝐵 ∈ (𝑞𝐼𝐶))
21510, 11, 12, 40, 115, 79, 58, 46, 50, 213, 214axtgpasch 28394 . . . . 5 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → ∃𝑟𝑃 (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝)))
216212, 215r19.29a 3141 . . . 4 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
217 simplr 768 . . . . 5 ((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) → 𝑝𝑃)
21810, 11, 12, 39, 57, 49, 45, 217axtgsegcon 28391 . . . 4 ((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) → ∃𝑞𝑃 (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝)))
219216, 218r19.29a 3141 . . 3 ((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
22010fvexi 6872 . . . . . 6 𝑃 ∈ V
221220a1i 11 . . . . 5 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝑃 ∈ V)
222221, 56, 44, 69nehash2 14439 . . . 4 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 2 ≤ (♯‘𝑃))
22310, 11, 12, 38, 56, 44, 222tgbtwndiff 28433 . . 3 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → ∃𝑝𝑃 (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝))
224219, 223r19.29a 3141 . 2 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
22537, 224pm2.61dan 812 1 (𝜑 → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3447   class class class wbr 5107  cfv 6511  (class class class)co 7387  ⟨“cs3 14808  Basecbs 17179  distcds 17229  TarskiGcstrkg 28354  Itvcitv 28360  LineGclng 28361  cgrGccgrg 28437  pInvGcmir 28579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-concat 14536  df-s1 14561  df-s2 14814  df-s3 14815  df-trkgc 28375  df-trkgb 28376  df-trkgcb 28377  df-trkg 28380  df-cgrg 28438  df-mir 28580
This theorem is referenced by:  footexALT  28645  footex  28648  colperpexlem3  28659  opphllem  28662
  Copyright terms: Public domain W3C validator