MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  midexlem Structured version   Visualization version   GIF version

Theorem midexlem 28617
Description: Lemma for the existence of a middle point. Lemma 7.25 of [Schwabhauser] p. 55. This proof of the existence of a midpoint requires the existence of a third point 𝐶 equidistant to 𝐴 and 𝐵 This condition will be removed later. Because the operation notation (𝐴(midG‘𝐺)𝐵) for a midpoint implies its uniqueness, it cannot be used until uniqueness is proven, and until then, an equivalent mirror point notation 𝐵 = (𝑀𝐴) has to be used. See mideu 28663 for the existence and uniqueness of the midpoint. (Contributed by Thierry Arnoux, 25-Aug-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
midexlem.m 𝑀 = (𝑆𝑥)
midexlem.a (𝜑𝐴𝑃)
midexlem.b (𝜑𝐵𝑃)
midexlem.c (𝜑𝐶𝑃)
midexlem.1 (𝜑 → (𝐶 𝐴) = (𝐶 𝐵))
Assertion
Ref Expression
midexlem (𝜑 → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐼   𝑥,𝐿   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥
Allowed substitution hints:   𝐺(𝑥)   𝑀(𝑥)

Proof of Theorem midexlem
Dummy variables 𝑝 𝑞 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 midexlem.c . . . . 5 (𝜑𝐶𝑃)
2 midexlem.m . . . . . . . 8 𝑀 = (𝑆𝑥)
3 fveq2 6875 . . . . . . . 8 (𝑥 = 𝐶 → (𝑆𝑥) = (𝑆𝐶))
42, 3eqtrid 2782 . . . . . . 7 (𝑥 = 𝐶𝑀 = (𝑆𝐶))
54fveq1d 6877 . . . . . 6 (𝑥 = 𝐶 → (𝑀𝐴) = ((𝑆𝐶)‘𝐴))
65rspceeqv 3624 . . . . 5 ((𝐶𝑃𝐵 = ((𝑆𝐶)‘𝐴)) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
71, 6sylan 580 . . . 4 ((𝜑𝐵 = ((𝑆𝐶)‘𝐴)) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
87adantlr 715 . . 3 (((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝐵 = ((𝑆𝐶)‘𝐴)) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
9 midexlem.a . . . . 5 (𝜑𝐴𝑃)
10 mirval.p . . . . . . . 8 𝑃 = (Base‘𝐺)
11 mirval.d . . . . . . . 8 = (dist‘𝐺)
12 mirval.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
13 mirval.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
14 mirval.s . . . . . . . 8 𝑆 = (pInvG‘𝐺)
15 mirval.g . . . . . . . 8 (𝜑𝐺 ∈ TarskiG)
16 eqid 2735 . . . . . . . 8 (𝑆𝐴) = (𝑆𝐴)
1710, 11, 12, 13, 14, 15, 9, 16mircinv 28593 . . . . . . 7 (𝜑 → ((𝑆𝐴)‘𝐴) = 𝐴)
1817adantr 480 . . . . . 6 ((𝜑𝐴 = 𝐵) → ((𝑆𝐴)‘𝐴) = 𝐴)
19 simpr 484 . . . . . 6 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐵)
2018, 19eqtr2d 2771 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐵 = ((𝑆𝐴)‘𝐴))
21 fveq2 6875 . . . . . . . 8 (𝑥 = 𝐴 → (𝑆𝑥) = (𝑆𝐴))
222, 21eqtrid 2782 . . . . . . 7 (𝑥 = 𝐴𝑀 = (𝑆𝐴))
2322fveq1d 6877 . . . . . 6 (𝑥 = 𝐴 → (𝑀𝐴) = ((𝑆𝐴)‘𝐴))
2423rspceeqv 3624 . . . . 5 ((𝐴𝑃𝐵 = ((𝑆𝐴)‘𝐴)) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
259, 20, 24syl2an2r 685 . . . 4 ((𝜑𝐴 = 𝐵) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
2625adantlr 715 . . 3 (((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝐴 = 𝐵) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
2715adantr 480 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐺 ∈ TarskiG)
28 eqid 2735 . . . 4 (𝑆𝐶) = (𝑆𝐶)
299adantr 480 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐴𝑃)
30 midexlem.b . . . . 5 (𝜑𝐵𝑃)
3130adantr 480 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐵𝑃)
321adantr 480 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐶𝑃)
33 simpr 484 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
34 midexlem.1 . . . . 5 (𝜑 → (𝐶 𝐴) = (𝐶 𝐵))
3534adantr 480 . . . 4 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → (𝐶 𝐴) = (𝐶 𝐵))
3610, 11, 12, 13, 14, 27, 28, 29, 31, 32, 33, 35colmid 28613 . . 3 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → (𝐵 = ((𝑆𝐶)‘𝐴) ∨ 𝐴 = 𝐵))
378, 26, 36mpjaodan 960 . 2 ((𝜑 ∧ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
3815adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐺 ∈ TarskiG)
3938ad2antrr 726 . . . . . . . . . 10 ((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) → 𝐺 ∈ TarskiG)
4039ad2antrr 726 . . . . . . . . 9 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → 𝐺 ∈ TarskiG)
4140ad2antrr 726 . . . . . . . 8 ((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝐺 ∈ TarskiG)
4241adantr 480 . . . . . . 7 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐺 ∈ TarskiG)
43 simprl 770 . . . . . . 7 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑥𝑃)
449adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐴𝑃)
4544ad2antrr 726 . . . . . . . . . 10 ((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) → 𝐴𝑃)
4645ad2antrr 726 . . . . . . . . 9 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → 𝐴𝑃)
4746ad2antrr 726 . . . . . . . 8 ((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝐴𝑃)
4847adantr 480 . . . . . . 7 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐴𝑃)
4930ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) → 𝐵𝑃)
5049ad2antrr 726 . . . . . . . . 9 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → 𝐵𝑃)
5150ad2antrr 726 . . . . . . . 8 ((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝐵𝑃)
5251adantr 480 . . . . . . 7 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐵𝑃)
5342ad2antrr 726 . . . . . . . . 9 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐺 ∈ TarskiG)
54 simpllr 775 . . . . . . . . . 10 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑟𝑃)
5554ad2antrr 726 . . . . . . . . 9 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑟𝑃)
561adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐶𝑃)
5756ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) → 𝐶𝑃)
5857ad2antrr 726 . . . . . . . . . . . 12 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → 𝐶𝑃)
5958ad2antrr 726 . . . . . . . . . . 11 ((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝐶𝑃)
6059adantr 480 . . . . . . . . . 10 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐶𝑃)
6160ad2antrr 726 . . . . . . . . 9 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐶𝑃)
6243ad2antrr 726 . . . . . . . . 9 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑥𝑃)
63 eqid 2735 . . . . . . . . 9 (cgrG‘𝐺) = (cgrG‘𝐺)
6452ad2antrr 726 . . . . . . . . 9 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐵𝑃)
6548ad2antrr 726 . . . . . . . . 9 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐴𝑃)
66 simpr 484 . . . . . . . . . . 11 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟 = 𝐴) → 𝑟 = 𝐴)
6730adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐵𝑃)
68 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
6910, 12, 13, 38, 56, 44, 67, 68ncolne1 28550 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝐶𝐴)
7069ad7antr 738 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐶𝐴)
7170ad2antrr 726 . . . . . . . . . . . . 13 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐶𝐴)
7271adantr 480 . . . . . . . . . . . 12 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟 = 𝐴) → 𝐶𝐴)
7372necomd 2987 . . . . . . . . . . 11 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟 = 𝐴) → 𝐴𝐶)
7466, 73eqnetrd 2999 . . . . . . . . . 10 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟 = 𝐴) → 𝑟𝐶)
7553adantr 480 . . . . . . . . . . 11 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟𝐴) → 𝐺 ∈ TarskiG)
7655adantr 480 . . . . . . . . . . 11 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟𝐴) → 𝑟𝑃)
7765adantr 480 . . . . . . . . . . 11 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟𝐴) → 𝐴𝑃)
7861adantr 480 . . . . . . . . . . 11 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟𝐴) → 𝐶𝑃)
79 simplr 768 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → 𝑞𝑃)
8079ad3antrrr 730 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑞𝑃)
8180ad2antrr 726 . . . . . . . . . . . . 13 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑞𝑃)
8281adantr 480 . . . . . . . . . . . 12 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟𝐴) → 𝑞𝑃)
8368ad9antr 742 . . . . . . . . . . . . . . . 16 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
8410, 13, 12, 53, 65, 64, 61, 83ncolrot2 28488 . . . . . . . . . . . . . . 15 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ¬ (𝐵 ∈ (𝐶𝐿𝐴) ∨ 𝐶 = 𝐴))
8515adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) → 𝐺 ∈ TarskiG)
8630adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) → 𝐵𝑃)
879adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) → 𝐴𝑃)
881adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) → 𝐶𝑃)
89 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) → (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴))
9010, 13, 12, 85, 86, 87, 88, 89colcom 28483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
9190stoic1a 1772 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → ¬ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴))
9291ad9antr 742 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ¬ (𝐶 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴))
9310, 12, 13, 53, 61, 64, 65, 92ncolne1 28550 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐶𝐵)
9493necomd 2987 . . . . . . . . . . . . . . . 16 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐵𝐶)
95 simprl 770 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → 𝐵 ∈ (𝐶𝐼𝑞))
9695ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐵 ∈ (𝐶𝐼𝑞))
9796ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐵 ∈ (𝐶𝐼𝑞))
9810, 12, 13, 53, 61, 64, 81, 93, 97btwnlng3 28546 . . . . . . . . . . . . . . . 16 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑞 ∈ (𝐶𝐿𝐵))
9910, 12, 13, 53, 64, 61, 81, 94, 98lncom 28547 . . . . . . . . . . . . . . 15 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑞 ∈ (𝐵𝐿𝐶))
10053adantr 480 . . . . . . . . . . . . . . . . . 18 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑞 = 𝐶) → 𝐺 ∈ TarskiG)
10161adantr 480 . . . . . . . . . . . . . . . . . 18 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑞 = 𝐶) → 𝐶𝑃)
10264adantr 480 . . . . . . . . . . . . . . . . . 18 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑞 = 𝐶) → 𝐵𝑃)
10397adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑞 = 𝐶) → 𝐵 ∈ (𝐶𝐼𝑞))
104 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑞 = 𝐶) → 𝑞 = 𝐶)
105104oveq2d 7419 . . . . . . . . . . . . . . . . . . 19 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑞 = 𝐶) → (𝐶𝐼𝑞) = (𝐶𝐼𝐶))
106103, 105eleqtrd 2836 . . . . . . . . . . . . . . . . . 18 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑞 = 𝐶) → 𝐵 ∈ (𝐶𝐼𝐶))
10710, 11, 12, 100, 101, 102, 106axtgbtwnid 28391 . . . . . . . . . . . . . . . . 17 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑞 = 𝐶) → 𝐶 = 𝐵)
10893adantr 480 . . . . . . . . . . . . . . . . . 18 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑞 = 𝐶) → 𝐶𝐵)
109108neneqd 2937 . . . . . . . . . . . . . . . . 17 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑞 = 𝐶) → ¬ 𝐶 = 𝐵)
110107, 109pm2.65da 816 . . . . . . . . . . . . . . . 16 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ¬ 𝑞 = 𝐶)
111110neqned 2939 . . . . . . . . . . . . . . 15 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑞𝐶)
11210, 12, 13, 53, 64, 61, 65, 81, 84, 99, 111ncolncol 28571 . . . . . . . . . . . . . 14 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ¬ (𝑞 ∈ (𝐶𝐿𝐴) ∨ 𝐶 = 𝐴))
11310, 13, 12, 53, 61, 65, 81, 112ncolcom 28486 . . . . . . . . . . . . 13 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ¬ (𝑞 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
114113adantr 480 . . . . . . . . . . . 12 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟𝐴) → ¬ (𝑞 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
115 simp-4r 783 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → 𝑝𝑃)
116115ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝑝𝑃)
117116adantr 480 . . . . . . . . . . . . . . . . . 18 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑝𝑃)
118117ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑝𝑃)
119 simp-4r 783 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝)))
120119simprd 495 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝐵 𝑞) = (𝐴 𝑝))
121120eqcomd 2741 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝐴 𝑝) = (𝐵 𝑞))
122121ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐴 𝑝) = (𝐵 𝑞))
12310, 11, 12, 53, 65, 118, 64, 81, 122tgcgrcomlr 28405 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑝 𝐴) = (𝑞 𝐵))
124 simpllr 775 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝))
125124ad5antr 734 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝))
126125simprd 495 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐴𝑝)
127126necomd 2987 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑝𝐴)
12810, 11, 12, 53, 118, 65, 81, 64, 123, 127tgcgrneq 28408 . . . . . . . . . . . . . . . 16 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑞𝐵)
12910, 12, 13, 53, 61, 64, 65, 81, 92, 98, 128ncolncol 28571 . . . . . . . . . . . . . . 15 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ¬ (𝑞 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴))
13010, 12, 13, 53, 81, 64, 65, 129ncolne2 28551 . . . . . . . . . . . . . 14 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑞𝐴)
131130necomd 2987 . . . . . . . . . . . . . . 15 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐴𝑞)
132 simp-4r 783 . . . . . . . . . . . . . . . 16 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝)))
133132simpld 494 . . . . . . . . . . . . . . 15 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑟 ∈ (𝐴𝐼𝑞))
13410, 12, 13, 53, 65, 81, 55, 131, 133btwnlng1 28544 . . . . . . . . . . . . . 14 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑟 ∈ (𝐴𝐿𝑞))
13510, 12, 13, 53, 81, 65, 55, 130, 134lncom 28547 . . . . . . . . . . . . 13 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑟 ∈ (𝑞𝐿𝐴))
136135adantr 480 . . . . . . . . . . . 12 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟𝐴) → 𝑟 ∈ (𝑞𝐿𝐴))
137 simpr 484 . . . . . . . . . . . 12 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟𝐴) → 𝑟𝐴)
13810, 12, 13, 75, 82, 77, 78, 76, 114, 136, 137ncolncol 28571 . . . . . . . . . . 11 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟𝐴) → ¬ (𝑟 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
13910, 12, 13, 75, 76, 77, 78, 138ncolne2 28551 . . . . . . . . . 10 ((((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) ∧ 𝑟𝐴) → 𝑟𝐶)
14074, 139pm2.61dane 3019 . . . . . . . . 9 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑟𝐶)
141 simpllr 775 . . . . . . . . . . . 12 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶))))
142141simprd 495 . . . . . . . . . . 11 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))
143142simprd 495 . . . . . . . . . 10 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑥 ∈ (𝑟𝐼𝐶))
14410, 13, 12, 53, 55, 62, 61, 143btwncolg3 28482 . . . . . . . . 9 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐶 ∈ (𝑟𝐿𝑥) ∨ 𝑟 = 𝑥))
145 simplr 768 . . . . . . . . . . 11 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑠𝑃)
146 simplr 768 . . . . . . . . . . . . 13 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝)))
147146simprd 495 . . . . . . . . . . . 12 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑟 ∈ (𝐵𝐼𝑝))
148147ad2antrr 726 . . . . . . . . . . 11 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑟 ∈ (𝐵𝐼𝑝))
149 simprl 770 . . . . . . . . . . 11 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑠 ∈ (𝐴𝐼𝑞))
150124simpld 494 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → 𝐴 ∈ (𝐶𝐼𝑝))
151150ad2antrr 726 . . . . . . . . . . . . . . 15 ((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝐴 ∈ (𝐶𝐼𝑝))
152151adantr 480 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐴 ∈ (𝐶𝐼𝑝))
15334ad8antr 740 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝐶 𝐴) = (𝐶 𝐵))
154153eqcomd 2741 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝐶 𝐵) = (𝐶 𝐴))
15510, 11, 12, 42, 48, 52axtgcgrrflx 28387 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝐴 𝐵) = (𝐵 𝐴))
15610, 11, 12, 42, 60, 48, 117, 60, 52, 80, 52, 48, 70, 152, 96, 153, 121, 154, 155axtg5seg 28390 . . . . . . . . . . . . 13 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝑝 𝐵) = (𝑞 𝐴))
15710, 11, 12, 42, 117, 52, 80, 48, 156tgcgrcomlr 28405 . . . . . . . . . . . 12 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝐵 𝑝) = (𝐴 𝑞))
158157ad2antrr 726 . . . . . . . . . . 11 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐵 𝑝) = (𝐴 𝑞))
159 simprr 772 . . . . . . . . . . . 12 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)
16010, 11, 12, 63, 53, 64, 55, 118, 65, 145, 81, 159cgr3simp2 28446 . . . . . . . . . . 11 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑟 𝑝) = (𝑠 𝑞))
16110, 11, 12, 53, 64, 65axtgcgrrflx 28387 . . . . . . . . . . 11 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐵 𝐴) = (𝐴 𝐵))
16210, 11, 12, 53, 64, 55, 118, 65, 65, 145, 81, 64, 148, 149, 158, 160, 161, 123tgifscgr 28433 . . . . . . . . . 10 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑟 𝐴) = (𝑠 𝐵))
163 simp-10l 794 . . . . . . . . . . . . 13 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝜑)
164125simpld 494 . . . . . . . . . . . . . . 15 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐴 ∈ (𝐶𝐼𝑝))
16510, 12, 13, 53, 61, 65, 118, 71, 164btwnlng3 28546 . . . . . . . . . . . . . 14 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑝 ∈ (𝐶𝐿𝐴))
16610, 12, 13, 53, 61, 65, 64, 118, 83, 165, 127ncolncol 28571 . . . . . . . . . . . . 13 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ¬ (𝑝 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
16715ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑝𝑃) ∧ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴)) → 𝐺 ∈ TarskiG)
168 simplr 768 . . . . . . . . . . . . . . 15 (((𝜑𝑝𝑃) ∧ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴)) → 𝑝𝑃)
1699ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑝𝑃) ∧ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴)) → 𝐴𝑃)
17030ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑝𝑃) ∧ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴)) → 𝐵𝑃)
171 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑝𝑃) ∧ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴)) → (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴))
17210, 13, 12, 167, 168, 169, 170, 171colrot1 28484 . . . . . . . . . . . . . 14 (((𝜑𝑝𝑃) ∧ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴)) → (𝑝 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
173172stoic1a 1772 . . . . . . . . . . . . 13 (((𝜑𝑝𝑃) ∧ ¬ (𝑝 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → ¬ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴))
174163, 118, 166, 173syl21anc 837 . . . . . . . . . . . 12 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ¬ (𝐵 ∈ (𝑝𝐿𝐴) ∨ 𝑝 = 𝐴))
17510, 12, 13, 53, 118, 65, 64, 166ncolne2 28551 . . . . . . . . . . . . . . 15 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑝𝐵)
176175necomd 2987 . . . . . . . . . . . . . 14 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝐵𝑝)
177176neneqd 2937 . . . . . . . . . . . . 13 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ¬ 𝐵 = 𝑝)
17810, 13, 12, 53, 65, 81, 55, 133btwncolg1 28480 . . . . . . . . . . . . . . . 16 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑟 ∈ (𝐴𝐿𝑞) ∨ 𝐴 = 𝑞))
17910, 11, 12, 53, 55, 65, 145, 64, 162tgcgrcomlr 28405 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐴 𝑟) = (𝐵 𝑠))
180120ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐵 𝑞) = (𝐴 𝑝))
18110, 11, 12, 53, 118, 81axtgcgrrflx 28387 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑝 𝑞) = (𝑞 𝑝))
18210, 11, 12, 53, 64, 55, 118, 81, 65, 145, 81, 118, 148, 149, 158, 160, 180, 181tgifscgr 28433 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑟 𝑞) = (𝑠 𝑝))
18310, 11, 12, 53, 65, 145, 81, 149tgbtwncom 28413 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑠 ∈ (𝑞𝐼𝐴))
18410, 11, 12, 42, 52, 54, 117, 147tgbtwncom 28413 . . . . . . . . . . . . . . . . . . 19 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑟 ∈ (𝑝𝐼𝐵))
185184ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑟 ∈ (𝑝𝐼𝐵))
186160eqcomd 2741 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑠 𝑞) = (𝑟 𝑝))
18710, 11, 12, 53, 145, 81, 55, 118, 186tgcgrcomlr 28405 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑞 𝑠) = (𝑝 𝑟))
18810, 11, 12, 63, 53, 64, 55, 118, 65, 145, 81, 159cgr3simp1 28445 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐵 𝑟) = (𝐴 𝑠))
189188eqcomd 2741 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐴 𝑠) = (𝐵 𝑟))
19010, 11, 12, 53, 65, 145, 64, 55, 189tgcgrcomlr 28405 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑠 𝐴) = (𝑟 𝐵))
19110, 11, 12, 53, 81, 145, 65, 118, 55, 64, 183, 185, 187, 190tgcgrextend 28410 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑞 𝐴) = (𝑝 𝐵))
19210, 11, 63, 53, 65, 55, 81, 64, 145, 118, 179, 182, 191trgcgr 28441 . . . . . . . . . . . . . . . 16 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → ⟨“𝐴𝑟𝑞”⟩(cgrG‘𝐺)⟨“𝐵𝑠𝑝”⟩)
19310, 13, 12, 53, 65, 55, 81, 63, 64, 145, 118, 178, 192lnxfr 28491 . . . . . . . . . . . . . . 15 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑠 ∈ (𝐵𝐿𝑝) ∨ 𝐵 = 𝑝))
194193orcomd 871 . . . . . . . . . . . . . 14 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐵 = 𝑝𝑠 ∈ (𝐵𝐿𝑝)))
195194ord 864 . . . . . . . . . . . . 13 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (¬ 𝐵 = 𝑝𝑠 ∈ (𝐵𝐿𝑝)))
196177, 195mpd 15 . . . . . . . . . . . 12 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑠 ∈ (𝐵𝐿𝑝))
19710, 12, 13, 53, 64, 118, 55, 176, 148btwnlng1 28544 . . . . . . . . . . . 12 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑟 ∈ (𝐵𝐿𝑝))
19810, 12, 13, 53, 65, 81, 145, 131, 149btwnlng1 28544 . . . . . . . . . . . 12 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑠 ∈ (𝐴𝐿𝑞))
19910, 12, 13, 53, 64, 118, 65, 81, 174, 196, 197, 198, 134tglineinteq 28570 . . . . . . . . . . 11 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → 𝑠 = 𝑟)
200199oveq1d 7418 . . . . . . . . . 10 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑠 𝐵) = (𝑟 𝐵))
201162, 200eqtr2d 2771 . . . . . . . . 9 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑟 𝐵) = (𝑟 𝐴))
202154ad2antrr 726 . . . . . . . . 9 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝐶 𝐵) = (𝐶 𝐴))
20310, 13, 12, 53, 55, 61, 62, 63, 64, 65, 11, 140, 144, 201, 202lncgr 28494 . . . . . . . 8 (((((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) ∧ 𝑠𝑃) ∧ (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩)) → (𝑥 𝐵) = (𝑥 𝐴))
20410, 11, 12, 63, 42, 52, 54, 117, 48, 80, 147, 157tgcgrxfr 28443 . . . . . . . 8 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → ∃𝑠𝑃 (𝑠 ∈ (𝐴𝐼𝑞) ∧ ⟨“𝐵𝑟𝑝”⟩(cgrG‘𝐺)⟨“𝐴𝑠𝑞”⟩))
205203, 204r19.29a 3148 . . . . . . 7 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → (𝑥 𝐵) = (𝑥 𝐴))
206 simprrl 780 . . . . . . . 8 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑥 ∈ (𝐴𝐼𝐵))
20710, 11, 12, 42, 48, 43, 52, 206tgbtwncom 28413 . . . . . . 7 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝑥 ∈ (𝐵𝐼𝐴))
20810, 11, 12, 13, 14, 42, 43, 2, 48, 52, 205, 207ismir 28584 . . . . . 6 (((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) ∧ (𝑥𝑃 ∧ (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))) → 𝐵 = (𝑀𝐴))
209 simplr 768 . . . . . . 7 ((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝑟𝑃)
210 simprr 772 . . . . . . 7 ((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → 𝑟 ∈ (𝐵𝐼𝑝))
21110, 11, 12, 41, 59, 51, 116, 47, 209, 151, 210axtgpasch 28392 . . . . . 6 ((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑥 ∈ (𝑟𝐼𝐶)))
212208, 211reximddv 3156 . . . . 5 ((((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) ∧ 𝑟𝑃) ∧ (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝))) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
21310, 11, 12, 40, 58, 46, 115, 150tgbtwncom 28413 . . . . . 6 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → 𝐴 ∈ (𝑝𝐼𝐶))
21410, 11, 12, 40, 58, 50, 79, 95tgbtwncom 28413 . . . . . 6 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → 𝐵 ∈ (𝑞𝐼𝐶))
21510, 11, 12, 40, 115, 79, 58, 46, 50, 213, 214axtgpasch 28392 . . . . 5 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → ∃𝑟𝑃 (𝑟 ∈ (𝐴𝐼𝑞) ∧ 𝑟 ∈ (𝐵𝐼𝑝)))
216212, 215r19.29a 3148 . . . 4 ((((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) ∧ 𝑞𝑃) ∧ (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝))) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
217 simplr 768 . . . . 5 ((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) → 𝑝𝑃)
21810, 11, 12, 39, 57, 49, 45, 217axtgsegcon 28389 . . . 4 ((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) → ∃𝑞𝑃 (𝐵 ∈ (𝐶𝐼𝑞) ∧ (𝐵 𝑞) = (𝐴 𝑝)))
219216, 218r19.29a 3148 . . 3 ((((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝)) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
22010fvexi 6889 . . . . . 6 𝑃 ∈ V
221220a1i 11 . . . . 5 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 𝑃 ∈ V)
222221, 56, 44, 69nehash2 14490 . . . 4 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → 2 ≤ (♯‘𝑃))
22310, 11, 12, 38, 56, 44, 222tgbtwndiff 28431 . . 3 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → ∃𝑝𝑃 (𝐴 ∈ (𝐶𝐼𝑝) ∧ 𝐴𝑝))
224219, 223r19.29a 3148 . 2 ((𝜑 ∧ ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
22537, 224pm2.61dan 812 1 (𝜑 → ∃𝑥𝑃 𝐵 = (𝑀𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  wrex 3060  Vcvv 3459   class class class wbr 5119  cfv 6530  (class class class)co 7403  ⟨“cs3 14859  Basecbs 17226  distcds 17278  TarskiGcstrkg 28352  Itvcitv 28358  LineGclng 28359  cgrGccgrg 28435  pInvGcmir 28577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-oadd 8482  df-er 8717  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-dju 9913  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-xnn0 12573  df-z 12587  df-uz 12851  df-fz 13523  df-fzo 13670  df-hash 14347  df-word 14530  df-concat 14587  df-s1 14612  df-s2 14865  df-s3 14866  df-trkgc 28373  df-trkgb 28374  df-trkgcb 28375  df-trkg 28378  df-cgrg 28436  df-mir 28578
This theorem is referenced by:  footexALT  28643  footex  28646  colperpexlem3  28657  opphllem  28660
  Copyright terms: Public domain W3C validator