Step | Hyp | Ref
| Expression |
1 | | fo2nd 7992 |
. . . . 5
ā¢
2nd :VāontoāV |
2 | | fofn 6804 |
. . . . 5
ā¢
(2nd :VāontoāV ā 2nd Fn V) |
3 | 1, 2 | mp1i 13 |
. . . 4
ā¢ (š ā 2nd Fn
V) |
4 | | ssv 4005 |
. . . . 5
ā¢ š ā V |
5 | 4 | a1i 11 |
. . . 4
ā¢ (š ā š ā V) |
6 | 3, 5 | fnssresd 6671 |
. . 3
ā¢ (š ā (2nd ā¾
š) Fn š) |
7 | | simpr 485 |
. . . . . 6
ā¢ ((š ā§ š¢ ā š) ā š¢ ā š) |
8 | 7 | fvresd 6908 |
. . . . 5
ā¢ ((š ā§ š¢ ā š) ā ((2nd ā¾ š)āš¢) = (2nd āš¢)) |
9 | | 2ndresdju.u |
. . . . . . . 8
ā¢ š = āŖ š„ ā š ({š„} Ć š¶) |
10 | | djussxp2 31860 |
. . . . . . . . 9
ā¢ āŖ š„ ā š ({š„} Ć š¶) ā (š Ć āŖ
š„ ā š š¶) |
11 | | 2ndresdju.2 |
. . . . . . . . . 10
ā¢ (š ā āŖ š„ ā š š¶ = š“) |
12 | 11 | xpeq2d 5705 |
. . . . . . . . 9
ā¢ (š ā (š Ć āŖ
š„ ā š š¶) = (š Ć š“)) |
13 | 10, 12 | sseqtrid 4033 |
. . . . . . . 8
ā¢ (š ā āŖ š„ ā š ({š„} Ć š¶) ā (š Ć š“)) |
14 | 9, 13 | eqsstrid 4029 |
. . . . . . 7
ā¢ (š ā š ā (š Ć š“)) |
15 | 14 | sselda 3981 |
. . . . . 6
ā¢ ((š ā§ š¢ ā š) ā š¢ ā (š Ć š“)) |
16 | | xp2nd 8004 |
. . . . . 6
ā¢ (š¢ ā (š Ć š“) ā (2nd āš¢) ā š“) |
17 | 15, 16 | syl 17 |
. . . . 5
ā¢ ((š ā§ š¢ ā š) ā (2nd āš¢) ā š“) |
18 | 8, 17 | eqeltrd 2833 |
. . . 4
ā¢ ((š ā§ š¢ ā š) ā ((2nd ā¾ š)āš¢) ā š“) |
19 | 18 | ralrimiva 3146 |
. . 3
ā¢ (š ā āš¢ ā š ((2nd ā¾ š)āš¢) ā š“) |
20 | | ffnfv 7114 |
. . 3
ā¢
((2nd ā¾ š):šā¶š“ ā ((2nd ā¾ š) Fn š ā§ āš¢ ā š ((2nd ā¾ š)āš¢) ā š“)) |
21 | 6, 19, 20 | sylanbrc 583 |
. 2
ā¢ (š ā (2nd ā¾
š):šā¶š“) |
22 | | nfv 1917 |
. . . . . . . . 9
ā¢
ā²š„š |
23 | | nfiu1 5030 |
. . . . . . . . . . 11
ā¢
ā²š„āŖ š„ ā š ({š„} Ć š¶) |
24 | 9, 23 | nfcxfr 2901 |
. . . . . . . . . 10
ā¢
ā²š„š |
25 | 24 | nfcri 2890 |
. . . . . . . . 9
ā¢
ā²š„ š¢ ā š |
26 | 22, 25 | nfan 1902 |
. . . . . . . 8
ā¢
ā²š„(š ā§ š¢ ā š) |
27 | 24 | nfcri 2890 |
. . . . . . . 8
ā¢
ā²š„ š£ ā š |
28 | 26, 27 | nfan 1902 |
. . . . . . 7
ā¢
ā²š„((š ā§ š¢ ā š) ā§ š£ ā š) |
29 | | nfcv 2903 |
. . . . . . . . . 10
ā¢
ā²š„2nd |
30 | 29, 24 | nfres 5981 |
. . . . . . . . 9
ā¢
ā²š„(2nd ā¾ š) |
31 | | nfcv 2903 |
. . . . . . . . 9
ā¢
ā²š„š¢ |
32 | 30, 31 | nffv 6898 |
. . . . . . . 8
ā¢
ā²š„((2nd ā¾ š)āš¢) |
33 | | nfcv 2903 |
. . . . . . . . 9
ā¢
ā²š„š£ |
34 | 30, 33 | nffv 6898 |
. . . . . . . 8
ā¢
ā²š„((2nd ā¾ š)āš£) |
35 | 32, 34 | nfeq 2916 |
. . . . . . 7
ā¢
ā²š„((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£) |
36 | 28, 35 | nfan 1902 |
. . . . . 6
ā¢
ā²š„(((š ā§ š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) |
37 | | nfv 1917 |
. . . . . 6
ā¢
ā²š„ š¢ = š£ |
38 | 9 | eleq2i 2825 |
. . . . . . . 8
ā¢ (š¢ ā š ā š¢ ā āŖ
š„ ā š ({š„} Ć š¶)) |
39 | | eliunxp 5835 |
. . . . . . . 8
ā¢ (š¢ ā āŖ š„ ā š ({š„} Ć š¶) ā āš„āš(š¢ = āØš„, šā© ā§ (š„ ā š ā§ š ā š¶))) |
40 | 38, 39 | sylbb 218 |
. . . . . . 7
ā¢ (š¢ ā š ā āš„āš(š¢ = āØš„, šā© ā§ (š„ ā š ā§ š ā š¶))) |
41 | 40 | ad3antlr 729 |
. . . . . 6
ā¢ ((((š ā§ š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā āš„āš(š¢ = āØš„, šā© ā§ (š„ ā š ā§ š ā š¶))) |
42 | 9 | eleq2i 2825 |
. . . . . . . . . . . . 13
ā¢ (š£ ā š ā š£ ā āŖ
š„ ā š ({š„} Ć š¶)) |
43 | | eliunxp 5835 |
. . . . . . . . . . . . 13
ā¢ (š£ ā āŖ š„ ā š ({š„} Ć š¶) ā āš„āš(š£ = āØš„, šā© ā§ (š„ ā š ā§ š ā š¶))) |
44 | 42, 43 | bitri 274 |
. . . . . . . . . . . 12
ā¢ (š£ ā š ā āš„āš(š£ = āØš„, šā© ā§ (š„ ā š ā§ š ā š¶))) |
45 | | nfv 1917 |
. . . . . . . . . . . . 13
ā¢
ā²š¦āš(š£ = āØš„, šā© ā§ (š„ ā š ā§ š ā š¶)) |
46 | | nfv 1917 |
. . . . . . . . . . . . . . 15
ā¢
ā²š„ š£ = āØš¦, šā© |
47 | | nfv 1917 |
. . . . . . . . . . . . . . . 16
ā¢
ā²š„ š¦ ā š |
48 | | nfcsb1v 3917 |
. . . . . . . . . . . . . . . . 17
ā¢
ā²š„ā¦š¦ / š„ā¦š¶ |
49 | 48 | nfcri 2890 |
. . . . . . . . . . . . . . . 16
ā¢
ā²š„ š ā ā¦š¦ / š„ā¦š¶ |
50 | 47, 49 | nfan 1902 |
. . . . . . . . . . . . . . 15
ā¢
ā²š„(š¦ ā š ā§ š ā ā¦š¦ / š„ā¦š¶) |
51 | 46, 50 | nfan 1902 |
. . . . . . . . . . . . . 14
ā¢
ā²š„(š£ = āØš¦, šā© ā§ (š¦ ā š ā§ š ā ā¦š¦ / š„ā¦š¶)) |
52 | 51 | nfex 2317 |
. . . . . . . . . . . . 13
ā¢
ā²š„āš(š£ = āØš¦, šā© ā§ (š¦ ā š ā§ š ā ā¦š¦ / š„ā¦š¶)) |
53 | | opeq1 4872 |
. . . . . . . . . . . . . . . 16
ā¢ (š„ = š¦ ā āØš„, šā© = āØš¦, šā©) |
54 | 53 | eqeq2d 2743 |
. . . . . . . . . . . . . . 15
ā¢ (š„ = š¦ ā (š£ = āØš„, šā© ā š£ = āØš¦, šā©)) |
55 | | eleq1w 2816 |
. . . . . . . . . . . . . . . 16
ā¢ (š„ = š¦ ā (š„ ā š ā š¦ ā š)) |
56 | | csbeq1a 3906 |
. . . . . . . . . . . . . . . . 17
ā¢ (š„ = š¦ ā š¶ = ā¦š¦ / š„ā¦š¶) |
57 | 56 | eleq2d 2819 |
. . . . . . . . . . . . . . . 16
ā¢ (š„ = š¦ ā (š ā š¶ ā š ā ā¦š¦ / š„ā¦š¶)) |
58 | 55, 57 | anbi12d 631 |
. . . . . . . . . . . . . . 15
ā¢ (š„ = š¦ ā ((š„ ā š ā§ š ā š¶) ā (š¦ ā š ā§ š ā ā¦š¦ / š„ā¦š¶))) |
59 | 54, 58 | anbi12d 631 |
. . . . . . . . . . . . . 14
ā¢ (š„ = š¦ ā ((š£ = āØš„, šā© ā§ (š„ ā š ā§ š ā š¶)) ā (š£ = āØš¦, šā© ā§ (š¦ ā š ā§ š ā ā¦š¦ / š„ā¦š¶)))) |
60 | 59 | exbidv 1924 |
. . . . . . . . . . . . 13
ā¢ (š„ = š¦ ā (āš(š£ = āØš„, šā© ā§ (š„ ā š ā§ š ā š¶)) ā āš(š£ = āØš¦, šā© ā§ (š¦ ā š ā§ š ā ā¦š¦ / š„ā¦š¶)))) |
61 | 45, 52, 60 | cbvexv1 2338 |
. . . . . . . . . . . 12
ā¢
(āš„āš(š£ = āØš„, šā© ā§ (š„ ā š ā§ š ā š¶)) ā āš¦āš(š£ = āØš¦, šā© ā§ (š¦ ā š ā§ š ā ā¦š¦ / š„ā¦š¶))) |
62 | 44, 61 | sylbb 218 |
. . . . . . . . . . 11
ā¢ (š£ ā š ā āš¦āš(š£ = āØš¦, šā© ā§ (š¦ ā š ā§ š ā ā¦š¦ / š„ā¦š¶))) |
63 | 62 | ad5antlr 733 |
. . . . . . . . . 10
ā¢
(((((((š ā§ š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā§ š¢ = āØš„, šā©) ā§ š„ ā š) ā§ š ā š¶) ā āš¦āš(š£ = āØš¦, šā© ā§ (š¦ ā š ā§ š ā ā¦š¦ / š„ā¦š¶))) |
64 | | 2ndresdju.1 |
. . . . . . . . . . . . . . . . 17
ā¢ (š ā Disj š„ ā š š¶) |
65 | 64 | ad9antr 740 |
. . . . . . . . . . . . . . . 16
ā¢
((((((((((š ā§
š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā§ š¢ = āØš„, šā©) ā§ š„ ā š) ā§ š ā š¶) ā§ š£ = āØš¦, šā©) ā§ š¦ ā š) ā§ š ā ā¦š¦ / š„ā¦š¶) ā Disj š„ ā š š¶) |
66 | | simp-5r 784 |
. . . . . . . . . . . . . . . 16
ā¢
((((((((((š ā§
š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā§ š¢ = āØš„, šā©) ā§ š„ ā š) ā§ š ā š¶) ā§ š£ = āØš¦, šā©) ā§ š¦ ā š) ā§ š ā ā¦š¦ / š„ā¦š¶) ā š„ ā š) |
67 | | simplr 767 |
. . . . . . . . . . . . . . . 16
ā¢
((((((((((š ā§
š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā§ š¢ = āØš„, šā©) ā§ š„ ā š) ā§ š ā š¶) ā§ š£ = āØš¦, šā©) ā§ š¦ ā š) ā§ š ā ā¦š¦ / š„ā¦š¶) ā š¦ ā š) |
68 | | simp-4r 782 |
. . . . . . . . . . . . . . . 16
ā¢
((((((((((š ā§
š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā§ š¢ = āØš„, šā©) ā§ š„ ā š) ā§ š ā š¶) ā§ š£ = āØš¦, šā©) ā§ š¦ ā š) ā§ š ā ā¦š¦ / š„ā¦š¶) ā š ā š¶) |
69 | | simp-7r 788 |
. . . . . . . . . . . . . . . . . 18
ā¢
((((((((((š ā§
š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā§ š¢ = āØš„, šā©) ā§ š„ ā š) ā§ š ā š¶) ā§ š£ = āØš¦, šā©) ā§ š¦ ā š) ā§ š ā ā¦š¦ / š„ā¦š¶) ā ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) |
70 | | simp-9r 792 |
. . . . . . . . . . . . . . . . . . . 20
ā¢
((((((((((š ā§
š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā§ š¢ = āØš„, šā©) ā§ š„ ā š) ā§ š ā š¶) ā§ š£ = āØš¦, šā©) ā§ š¦ ā š) ā§ š ā ā¦š¦ / š„ā¦š¶) ā š¢ ā š) |
71 | 70 | fvresd 6908 |
. . . . . . . . . . . . . . . . . . 19
ā¢
((((((((((š ā§
š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā§ š¢ = āØš„, šā©) ā§ š„ ā š) ā§ š ā š¶) ā§ š£ = āØš¦, šā©) ā§ š¦ ā š) ā§ š ā ā¦š¦ / š„ā¦š¶) ā ((2nd ā¾ š)āš¢) = (2nd āš¢)) |
72 | | simp-6r 786 |
. . . . . . . . . . . . . . . . . . . . 21
ā¢
((((((((((š ā§
š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā§ š¢ = āØš„, šā©) ā§ š„ ā š) ā§ š ā š¶) ā§ š£ = āØš¦, šā©) ā§ š¦ ā š) ā§ š ā ā¦š¦ / š„ā¦š¶) ā š¢ = āØš„, šā©) |
73 | 72 | fveq2d 6892 |
. . . . . . . . . . . . . . . . . . . 20
ā¢
((((((((((š ā§
š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā§ š¢ = āØš„, šā©) ā§ š„ ā š) ā§ š ā š¶) ā§ š£ = āØš¦, šā©) ā§ š¦ ā š) ā§ š ā ā¦š¦ / š„ā¦š¶) ā (2nd āš¢) = (2nd
āāØš„, šā©)) |
74 | | vex 3478 |
. . . . . . . . . . . . . . . . . . . . 21
ā¢ š„ ā V |
75 | | vex 3478 |
. . . . . . . . . . . . . . . . . . . . 21
ā¢ š ā V |
76 | 74, 75 | op2nd 7980 |
. . . . . . . . . . . . . . . . . . . 20
ā¢
(2nd āāØš„, šā©) = š |
77 | 73, 76 | eqtrdi 2788 |
. . . . . . . . . . . . . . . . . . 19
ā¢
((((((((((š ā§
š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā§ š¢ = āØš„, šā©) ā§ š„ ā š) ā§ š ā š¶) ā§ š£ = āØš¦, šā©) ā§ š¦ ā š) ā§ š ā ā¦š¦ / š„ā¦š¶) ā (2nd āš¢) = š) |
78 | 71, 77 | eqtrd 2772 |
. . . . . . . . . . . . . . . . . 18
ā¢
((((((((((š ā§
š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā§ š¢ = āØš„, šā©) ā§ š„ ā š) ā§ š ā š¶) ā§ š£ = āØš¦, šā©) ā§ š¦ ā š) ā§ š ā ā¦š¦ / š„ā¦š¶) ā ((2nd ā¾ š)āš¢) = š) |
79 | | simp-8r 790 |
. . . . . . . . . . . . . . . . . . . 20
ā¢
((((((((((š ā§
š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā§ š¢ = āØš„, šā©) ā§ š„ ā š) ā§ š ā š¶) ā§ š£ = āØš¦, šā©) ā§ š¦ ā š) ā§ š ā ā¦š¦ / š„ā¦š¶) ā š£ ā š) |
80 | 79 | fvresd 6908 |
. . . . . . . . . . . . . . . . . . 19
ā¢
((((((((((š ā§
š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā§ š¢ = āØš„, šā©) ā§ š„ ā š) ā§ š ā š¶) ā§ š£ = āØš¦, šā©) ā§ š¦ ā š) ā§ š ā ā¦š¦ / š„ā¦š¶) ā ((2nd ā¾ š)āš£) = (2nd āš£)) |
81 | | simpllr 774 |
. . . . . . . . . . . . . . . . . . . . 21
ā¢
((((((((((š ā§
š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā§ š¢ = āØš„, šā©) ā§ š„ ā š) ā§ š ā š¶) ā§ š£ = āØš¦, šā©) ā§ š¦ ā š) ā§ š ā ā¦š¦ / š„ā¦š¶) ā š£ = āØš¦, šā©) |
82 | 81 | fveq2d 6892 |
. . . . . . . . . . . . . . . . . . . 20
ā¢
((((((((((š ā§
š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā§ š¢ = āØš„, šā©) ā§ š„ ā š) ā§ š ā š¶) ā§ š£ = āØš¦, šā©) ā§ š¦ ā š) ā§ š ā ā¦š¦ / š„ā¦š¶) ā (2nd āš£) = (2nd
āāØš¦, šā©)) |
83 | | vex 3478 |
. . . . . . . . . . . . . . . . . . . . 21
ā¢ š¦ ā V |
84 | | vex 3478 |
. . . . . . . . . . . . . . . . . . . . 21
ā¢ š ā V |
85 | 83, 84 | op2nd 7980 |
. . . . . . . . . . . . . . . . . . . 20
ā¢
(2nd āāØš¦, šā©) = š |
86 | 82, 85 | eqtrdi 2788 |
. . . . . . . . . . . . . . . . . . 19
ā¢
((((((((((š ā§
š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā§ š¢ = āØš„, šā©) ā§ š„ ā š) ā§ š ā š¶) ā§ š£ = āØš¦, šā©) ā§ š¦ ā š) ā§ š ā ā¦š¦ / š„ā¦š¶) ā (2nd āš£) = š) |
87 | 80, 86 | eqtrd 2772 |
. . . . . . . . . . . . . . . . . 18
ā¢
((((((((((š ā§
š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā§ š¢ = āØš„, šā©) ā§ š„ ā š) ā§ š ā š¶) ā§ š£ = āØš¦, šā©) ā§ š¦ ā š) ā§ š ā ā¦š¦ / š„ā¦š¶) ā ((2nd ā¾ š)āš£) = š) |
88 | 69, 78, 87 | 3eqtr3d 2780 |
. . . . . . . . . . . . . . . . 17
ā¢
((((((((((š ā§
š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā§ š¢ = āØš„, šā©) ā§ š„ ā š) ā§ š ā š¶) ā§ š£ = āØš¦, šā©) ā§ š¦ ā š) ā§ š ā ā¦š¦ / š„ā¦š¶) ā š = š) |
89 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
ā¢
((((((((((š ā§
š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā§ š¢ = āØš„, šā©) ā§ š„ ā š) ā§ š ā š¶) ā§ š£ = āØš¦, šā©) ā§ š¦ ā š) ā§ š ā ā¦š¦ / š„ā¦š¶) ā š ā ā¦š¦ / š„ā¦š¶) |
90 | 88, 89 | eqeltrd 2833 |
. . . . . . . . . . . . . . . 16
ā¢
((((((((((š ā§
š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā§ š¢ = āØš„, šā©) ā§ š„ ā š) ā§ š ā š¶) ā§ š£ = āØš¦, šā©) ā§ š¦ ā š) ā§ š ā ā¦š¦ / š„ā¦š¶) ā š ā ā¦š¦ / š„ā¦š¶) |
91 | 48, 56 | disjif 31796 |
. . . . . . . . . . . . . . . 16
ā¢
((Disj š„
ā š š¶ ā§ (š„ ā š ā§ š¦ ā š) ā§ (š ā š¶ ā§ š ā ā¦š¦ / š„ā¦š¶)) ā š„ = š¦) |
92 | 65, 66, 67, 68, 90, 91 | syl122anc 1379 |
. . . . . . . . . . . . . . 15
ā¢
((((((((((š ā§
š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā§ š¢ = āØš„, šā©) ā§ š„ ā š) ā§ š ā š¶) ā§ š£ = āØš¦, šā©) ā§ š¦ ā š) ā§ š ā ā¦š¦ / š„ā¦š¶) ā š„ = š¦) |
93 | 92, 88 | opeq12d 4880 |
. . . . . . . . . . . . . 14
ā¢
((((((((((š ā§
š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā§ š¢ = āØš„, šā©) ā§ š„ ā š) ā§ š ā š¶) ā§ š£ = āØš¦, šā©) ā§ š¦ ā š) ā§ š ā ā¦š¦ / š„ā¦š¶) ā āØš„, šā© = āØš¦, šā©) |
94 | 93, 72, 81 | 3eqtr4d 2782 |
. . . . . . . . . . . . 13
ā¢
((((((((((š ā§
š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā§ š¢ = āØš„, šā©) ā§ š„ ā š) ā§ š ā š¶) ā§ š£ = āØš¦, šā©) ā§ š¦ ā š) ā§ š ā ā¦š¦ / š„ā¦š¶) ā š¢ = š£) |
95 | 94 | anasss 467 |
. . . . . . . . . . . 12
ā¢
(((((((((š ā§ š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā§ š¢ = āØš„, šā©) ā§ š„ ā š) ā§ š ā š¶) ā§ š£ = āØš¦, šā©) ā§ (š¦ ā š ā§ š ā ā¦š¦ / š„ā¦š¶)) ā š¢ = š£) |
96 | 95 | expl 458 |
. . . . . . . . . . 11
ā¢
(((((((š ā§ š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā§ š¢ = āØš„, šā©) ā§ š„ ā š) ā§ š ā š¶) ā ((š£ = āØš¦, šā© ā§ (š¦ ā š ā§ š ā ā¦š¦ / š„ā¦š¶)) ā š¢ = š£)) |
97 | 96 | exlimdvv 1937 |
. . . . . . . . . 10
ā¢
(((((((š ā§ š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā§ š¢ = āØš„, šā©) ā§ š„ ā š) ā§ š ā š¶) ā (āš¦āš(š£ = āØš¦, šā© ā§ (š¦ ā š ā§ š ā ā¦š¦ / š„ā¦š¶)) ā š¢ = š£)) |
98 | 63, 97 | mpd 15 |
. . . . . . . . 9
ā¢
(((((((š ā§ š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā§ š¢ = āØš„, šā©) ā§ š„ ā š) ā§ š ā š¶) ā š¢ = š£) |
99 | 98 | anasss 467 |
. . . . . . . 8
ā¢
((((((š ā§ š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā§ š¢ = āØš„, šā©) ā§ (š„ ā š ā§ š ā š¶)) ā š¢ = š£) |
100 | 99 | expl 458 |
. . . . . . 7
ā¢ ((((š ā§ š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā ((š¢ = āØš„, šā© ā§ (š„ ā š ā§ š ā š¶)) ā š¢ = š£)) |
101 | 100 | exlimdv 1936 |
. . . . . 6
ā¢ ((((š ā§ š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā (āš(š¢ = āØš„, šā© ā§ (š„ ā š ā§ š ā š¶)) ā š¢ = š£)) |
102 | 36, 37, 41, 101 | exlimimdd 2212 |
. . . . 5
ā¢ ((((š ā§ š¢ ā š) ā§ š£ ā š) ā§ ((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£)) ā š¢ = š£) |
103 | 102 | ex 413 |
. . . 4
ā¢ (((š ā§ š¢ ā š) ā§ š£ ā š) ā (((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£) ā š¢ = š£)) |
104 | 103 | anasss 467 |
. . 3
ā¢ ((š ā§ (š¢ ā š ā§ š£ ā š)) ā (((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£) ā š¢ = š£)) |
105 | 104 | ralrimivva 3200 |
. 2
ā¢ (š ā āš¢ ā š āš£ ā š (((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£) ā š¢ = š£)) |
106 | | dff13 7250 |
. 2
ā¢
((2nd ā¾ š):šā1-1āš“ ā ((2nd ā¾ š):šā¶š“ ā§ āš¢ ā š āš£ ā š (((2nd ā¾ š)āš¢) = ((2nd ā¾ š)āš£) ā š¢ = š£))) |
107 | 21, 105, 106 | sylanbrc 583 |
1
ā¢ (š ā (2nd ā¾
š):šā1-1āš“) |