Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2ndresdju Structured version   Visualization version   GIF version

Theorem 2ndresdju 31861
Description: The 2nd function restricted to a disjoint union is injective. (Contributed by Thierry Arnoux, 23-Jun-2024.)
Hypotheses
Ref Expression
2ndresdju.u š‘ˆ = āˆŖ š‘„ āˆˆ š‘‹ ({š‘„} Ɨ š¶)
2ndresdju.a (šœ‘ ā†’ š“ āˆˆ š‘‰)
2ndresdju.x (šœ‘ ā†’ š‘‹ āˆˆ š‘Š)
2ndresdju.1 (šœ‘ ā†’ Disj š‘„ āˆˆ š‘‹ š¶)
2ndresdju.2 (šœ‘ ā†’ āˆŖ š‘„ āˆˆ š‘‹ š¶ = š“)
Assertion
Ref Expression
2ndresdju (šœ‘ ā†’ (2nd ā†¾ š‘ˆ):š‘ˆā€“1-1ā†’š“)
Distinct variable groups:   š‘„,š“   š‘„,š‘‹   šœ‘,š‘„
Allowed substitution hints:   š¶(š‘„)   š‘ˆ(š‘„)   š‘‰(š‘„)   š‘Š(š‘„)

Proof of Theorem 2ndresdju
Dummy variables š‘¢ š‘ š‘‘ š‘¦ š‘£ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fo2nd 7992 . . . . 5 2nd :Vā€“ontoā†’V
2 fofn 6804 . . . . 5 (2nd :Vā€“ontoā†’V ā†’ 2nd Fn V)
31, 2mp1i 13 . . . 4 (šœ‘ ā†’ 2nd Fn V)
4 ssv 4005 . . . . 5 š‘ˆ āŠ† V
54a1i 11 . . . 4 (šœ‘ ā†’ š‘ˆ āŠ† V)
63, 5fnssresd 6671 . . 3 (šœ‘ ā†’ (2nd ā†¾ š‘ˆ) Fn š‘ˆ)
7 simpr 485 . . . . . 6 ((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) ā†’ š‘¢ āˆˆ š‘ˆ)
87fvresd 6908 . . . . 5 ((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) ā†’ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = (2nd ā€˜š‘¢))
9 2ndresdju.u . . . . . . . 8 š‘ˆ = āˆŖ š‘„ āˆˆ š‘‹ ({š‘„} Ɨ š¶)
10 djussxp2 31860 . . . . . . . . 9 āˆŖ š‘„ āˆˆ š‘‹ ({š‘„} Ɨ š¶) āŠ† (š‘‹ Ɨ āˆŖ š‘„ āˆˆ š‘‹ š¶)
11 2ndresdju.2 . . . . . . . . . 10 (šœ‘ ā†’ āˆŖ š‘„ āˆˆ š‘‹ š¶ = š“)
1211xpeq2d 5705 . . . . . . . . 9 (šœ‘ ā†’ (š‘‹ Ɨ āˆŖ š‘„ āˆˆ š‘‹ š¶) = (š‘‹ Ɨ š“))
1310, 12sseqtrid 4033 . . . . . . . 8 (šœ‘ ā†’ āˆŖ š‘„ āˆˆ š‘‹ ({š‘„} Ɨ š¶) āŠ† (š‘‹ Ɨ š“))
149, 13eqsstrid 4029 . . . . . . 7 (šœ‘ ā†’ š‘ˆ āŠ† (š‘‹ Ɨ š“))
1514sselda 3981 . . . . . 6 ((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) ā†’ š‘¢ āˆˆ (š‘‹ Ɨ š“))
16 xp2nd 8004 . . . . . 6 (š‘¢ āˆˆ (š‘‹ Ɨ š“) ā†’ (2nd ā€˜š‘¢) āˆˆ š“)
1715, 16syl 17 . . . . 5 ((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) ā†’ (2nd ā€˜š‘¢) āˆˆ š“)
188, 17eqeltrd 2833 . . . 4 ((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) ā†’ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) āˆˆ š“)
1918ralrimiva 3146 . . 3 (šœ‘ ā†’ āˆ€š‘¢ āˆˆ š‘ˆ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) āˆˆ š“)
20 ffnfv 7114 . . 3 ((2nd ā†¾ š‘ˆ):š‘ˆāŸ¶š“ ā†” ((2nd ā†¾ š‘ˆ) Fn š‘ˆ āˆ§ āˆ€š‘¢ āˆˆ š‘ˆ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) āˆˆ š“))
216, 19, 20sylanbrc 583 . 2 (šœ‘ ā†’ (2nd ā†¾ š‘ˆ):š‘ˆāŸ¶š“)
22 nfv 1917 . . . . . . . . 9 ā„²š‘„šœ‘
23 nfiu1 5030 . . . . . . . . . . 11 ā„²š‘„āˆŖ š‘„ āˆˆ š‘‹ ({š‘„} Ɨ š¶)
249, 23nfcxfr 2901 . . . . . . . . . 10 ā„²š‘„š‘ˆ
2524nfcri 2890 . . . . . . . . 9 ā„²š‘„ š‘¢ āˆˆ š‘ˆ
2622, 25nfan 1902 . . . . . . . 8 ā„²š‘„(šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ)
2724nfcri 2890 . . . . . . . 8 ā„²š‘„ š‘£ āˆˆ š‘ˆ
2826, 27nfan 1902 . . . . . . 7 ā„²š‘„((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ)
29 nfcv 2903 . . . . . . . . . 10 ā„²š‘„2nd
3029, 24nfres 5981 . . . . . . . . 9 ā„²š‘„(2nd ā†¾ š‘ˆ)
31 nfcv 2903 . . . . . . . . 9 ā„²š‘„š‘¢
3230, 31nffv 6898 . . . . . . . 8 ā„²š‘„((2nd ā†¾ š‘ˆ)ā€˜š‘¢)
33 nfcv 2903 . . . . . . . . 9 ā„²š‘„š‘£
3430, 33nffv 6898 . . . . . . . 8 ā„²š‘„((2nd ā†¾ š‘ˆ)ā€˜š‘£)
3532, 34nfeq 2916 . . . . . . 7 ā„²š‘„((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)
3628, 35nfan 1902 . . . . . 6 ā„²š‘„(((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£))
37 nfv 1917 . . . . . 6 ā„²š‘„ š‘¢ = š‘£
389eleq2i 2825 . . . . . . . 8 (š‘¢ āˆˆ š‘ˆ ā†” š‘¢ āˆˆ āˆŖ š‘„ āˆˆ š‘‹ ({š‘„} Ɨ š¶))
39 eliunxp 5835 . . . . . . . 8 (š‘¢ āˆˆ āˆŖ š‘„ āˆˆ š‘‹ ({š‘„} Ɨ š¶) ā†” āˆƒš‘„āˆƒš‘(š‘¢ = āŸØš‘„, š‘āŸ© āˆ§ (š‘„ āˆˆ š‘‹ āˆ§ š‘ āˆˆ š¶)))
4038, 39sylbb 218 . . . . . . 7 (š‘¢ āˆˆ š‘ˆ ā†’ āˆƒš‘„āˆƒš‘(š‘¢ = āŸØš‘„, š‘āŸ© āˆ§ (š‘„ āˆˆ š‘‹ āˆ§ š‘ āˆˆ š¶)))
4140ad3antlr 729 . . . . . 6 ((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) ā†’ āˆƒš‘„āˆƒš‘(š‘¢ = āŸØš‘„, š‘āŸ© āˆ§ (š‘„ āˆˆ š‘‹ āˆ§ š‘ āˆˆ š¶)))
429eleq2i 2825 . . . . . . . . . . . . 13 (š‘£ āˆˆ š‘ˆ ā†” š‘£ āˆˆ āˆŖ š‘„ āˆˆ š‘‹ ({š‘„} Ɨ š¶))
43 eliunxp 5835 . . . . . . . . . . . . 13 (š‘£ āˆˆ āˆŖ š‘„ āˆˆ š‘‹ ({š‘„} Ɨ š¶) ā†” āˆƒš‘„āˆƒš‘‘(š‘£ = āŸØš‘„, š‘‘āŸ© āˆ§ (š‘„ āˆˆ š‘‹ āˆ§ š‘‘ āˆˆ š¶)))
4442, 43bitri 274 . . . . . . . . . . . 12 (š‘£ āˆˆ š‘ˆ ā†” āˆƒš‘„āˆƒš‘‘(š‘£ = āŸØš‘„, š‘‘āŸ© āˆ§ (š‘„ āˆˆ š‘‹ āˆ§ š‘‘ āˆˆ š¶)))
45 nfv 1917 . . . . . . . . . . . . 13 ā„²š‘¦āˆƒš‘‘(š‘£ = āŸØš‘„, š‘‘āŸ© āˆ§ (š‘„ āˆˆ š‘‹ āˆ§ š‘‘ āˆˆ š¶))
46 nfv 1917 . . . . . . . . . . . . . . 15 ā„²š‘„ š‘£ = āŸØš‘¦, š‘‘āŸ©
47 nfv 1917 . . . . . . . . . . . . . . . 16 ā„²š‘„ š‘¦ āˆˆ š‘‹
48 nfcsb1v 3917 . . . . . . . . . . . . . . . . 17 ā„²š‘„ā¦‹š‘¦ / š‘„ā¦Œš¶
4948nfcri 2890 . . . . . . . . . . . . . . . 16 ā„²š‘„ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶
5047, 49nfan 1902 . . . . . . . . . . . . . . 15 ā„²š‘„(š‘¦ āˆˆ š‘‹ āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶)
5146, 50nfan 1902 . . . . . . . . . . . . . 14 ā„²š‘„(š‘£ = āŸØš‘¦, š‘‘āŸ© āˆ§ (š‘¦ āˆˆ š‘‹ āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶))
5251nfex 2317 . . . . . . . . . . . . 13 ā„²š‘„āˆƒš‘‘(š‘£ = āŸØš‘¦, š‘‘āŸ© āˆ§ (š‘¦ āˆˆ š‘‹ āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶))
53 opeq1 4872 . . . . . . . . . . . . . . . 16 (š‘„ = š‘¦ ā†’ āŸØš‘„, š‘‘āŸ© = āŸØš‘¦, š‘‘āŸ©)
5453eqeq2d 2743 . . . . . . . . . . . . . . 15 (š‘„ = š‘¦ ā†’ (š‘£ = āŸØš‘„, š‘‘āŸ© ā†” š‘£ = āŸØš‘¦, š‘‘āŸ©))
55 eleq1w 2816 . . . . . . . . . . . . . . . 16 (š‘„ = š‘¦ ā†’ (š‘„ āˆˆ š‘‹ ā†” š‘¦ āˆˆ š‘‹))
56 csbeq1a 3906 . . . . . . . . . . . . . . . . 17 (š‘„ = š‘¦ ā†’ š¶ = ā¦‹š‘¦ / š‘„ā¦Œš¶)
5756eleq2d 2819 . . . . . . . . . . . . . . . 16 (š‘„ = š‘¦ ā†’ (š‘‘ āˆˆ š¶ ā†” š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶))
5855, 57anbi12d 631 . . . . . . . . . . . . . . 15 (š‘„ = š‘¦ ā†’ ((š‘„ āˆˆ š‘‹ āˆ§ š‘‘ āˆˆ š¶) ā†” (š‘¦ āˆˆ š‘‹ āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶)))
5954, 58anbi12d 631 . . . . . . . . . . . . . 14 (š‘„ = š‘¦ ā†’ ((š‘£ = āŸØš‘„, š‘‘āŸ© āˆ§ (š‘„ āˆˆ š‘‹ āˆ§ š‘‘ āˆˆ š¶)) ā†” (š‘£ = āŸØš‘¦, š‘‘āŸ© āˆ§ (š‘¦ āˆˆ š‘‹ āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶))))
6059exbidv 1924 . . . . . . . . . . . . 13 (š‘„ = š‘¦ ā†’ (āˆƒš‘‘(š‘£ = āŸØš‘„, š‘‘āŸ© āˆ§ (š‘„ āˆˆ š‘‹ āˆ§ š‘‘ āˆˆ š¶)) ā†” āˆƒš‘‘(š‘£ = āŸØš‘¦, š‘‘āŸ© āˆ§ (š‘¦ āˆˆ š‘‹ āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶))))
6145, 52, 60cbvexv1 2338 . . . . . . . . . . . 12 (āˆƒš‘„āˆƒš‘‘(š‘£ = āŸØš‘„, š‘‘āŸ© āˆ§ (š‘„ āˆˆ š‘‹ āˆ§ š‘‘ āˆˆ š¶)) ā†” āˆƒš‘¦āˆƒš‘‘(š‘£ = āŸØš‘¦, š‘‘āŸ© āˆ§ (š‘¦ āˆˆ š‘‹ āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶)))
6244, 61sylbb 218 . . . . . . . . . . 11 (š‘£ āˆˆ š‘ˆ ā†’ āˆƒš‘¦āˆƒš‘‘(š‘£ = āŸØš‘¦, š‘‘āŸ© āˆ§ (š‘¦ āˆˆ š‘‹ āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶)))
6362ad5antlr 733 . . . . . . . . . 10 (((((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) āˆ§ š‘¢ = āŸØš‘„, š‘āŸ©) āˆ§ š‘„ āˆˆ š‘‹) āˆ§ š‘ āˆˆ š¶) ā†’ āˆƒš‘¦āˆƒš‘‘(š‘£ = āŸØš‘¦, š‘‘āŸ© āˆ§ (š‘¦ āˆˆ š‘‹ āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶)))
64 2ndresdju.1 . . . . . . . . . . . . . . . . 17 (šœ‘ ā†’ Disj š‘„ āˆˆ š‘‹ š¶)
6564ad9antr 740 . . . . . . . . . . . . . . . 16 ((((((((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) āˆ§ š‘¢ = āŸØš‘„, š‘āŸ©) āˆ§ š‘„ āˆˆ š‘‹) āˆ§ š‘ āˆˆ š¶) āˆ§ š‘£ = āŸØš‘¦, š‘‘āŸ©) āˆ§ š‘¦ āˆˆ š‘‹) āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶) ā†’ Disj š‘„ āˆˆ š‘‹ š¶)
66 simp-5r 784 . . . . . . . . . . . . . . . 16 ((((((((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) āˆ§ š‘¢ = āŸØš‘„, š‘āŸ©) āˆ§ š‘„ āˆˆ š‘‹) āˆ§ š‘ āˆˆ š¶) āˆ§ š‘£ = āŸØš‘¦, š‘‘āŸ©) āˆ§ š‘¦ āˆˆ š‘‹) āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶) ā†’ š‘„ āˆˆ š‘‹)
67 simplr 767 . . . . . . . . . . . . . . . 16 ((((((((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) āˆ§ š‘¢ = āŸØš‘„, š‘āŸ©) āˆ§ š‘„ āˆˆ š‘‹) āˆ§ š‘ āˆˆ š¶) āˆ§ š‘£ = āŸØš‘¦, š‘‘āŸ©) āˆ§ š‘¦ āˆˆ š‘‹) āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶) ā†’ š‘¦ āˆˆ š‘‹)
68 simp-4r 782 . . . . . . . . . . . . . . . 16 ((((((((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) āˆ§ š‘¢ = āŸØš‘„, š‘āŸ©) āˆ§ š‘„ āˆˆ š‘‹) āˆ§ š‘ āˆˆ š¶) āˆ§ š‘£ = āŸØš‘¦, š‘‘āŸ©) āˆ§ š‘¦ āˆˆ š‘‹) āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶) ā†’ š‘ āˆˆ š¶)
69 simp-7r 788 . . . . . . . . . . . . . . . . . 18 ((((((((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) āˆ§ š‘¢ = āŸØš‘„, š‘āŸ©) āˆ§ š‘„ āˆˆ š‘‹) āˆ§ š‘ āˆˆ š¶) āˆ§ š‘£ = āŸØš‘¦, š‘‘āŸ©) āˆ§ š‘¦ āˆˆ š‘‹) āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶) ā†’ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£))
70 simp-9r 792 . . . . . . . . . . . . . . . . . . . 20 ((((((((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) āˆ§ š‘¢ = āŸØš‘„, š‘āŸ©) āˆ§ š‘„ āˆˆ š‘‹) āˆ§ š‘ āˆˆ š¶) āˆ§ š‘£ = āŸØš‘¦, š‘‘āŸ©) āˆ§ š‘¦ āˆˆ š‘‹) āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶) ā†’ š‘¢ āˆˆ š‘ˆ)
7170fvresd 6908 . . . . . . . . . . . . . . . . . . 19 ((((((((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) āˆ§ š‘¢ = āŸØš‘„, š‘āŸ©) āˆ§ š‘„ āˆˆ š‘‹) āˆ§ š‘ āˆˆ š¶) āˆ§ š‘£ = āŸØš‘¦, š‘‘āŸ©) āˆ§ š‘¦ āˆˆ š‘‹) āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶) ā†’ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = (2nd ā€˜š‘¢))
72 simp-6r 786 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) āˆ§ š‘¢ = āŸØš‘„, š‘āŸ©) āˆ§ š‘„ āˆˆ š‘‹) āˆ§ š‘ āˆˆ š¶) āˆ§ š‘£ = āŸØš‘¦, š‘‘āŸ©) āˆ§ š‘¦ āˆˆ š‘‹) āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶) ā†’ š‘¢ = āŸØš‘„, š‘āŸ©)
7372fveq2d 6892 . . . . . . . . . . . . . . . . . . . 20 ((((((((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) āˆ§ š‘¢ = āŸØš‘„, š‘āŸ©) āˆ§ š‘„ āˆˆ š‘‹) āˆ§ š‘ āˆˆ š¶) āˆ§ š‘£ = āŸØš‘¦, š‘‘āŸ©) āˆ§ š‘¦ āˆˆ š‘‹) āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶) ā†’ (2nd ā€˜š‘¢) = (2nd ā€˜āŸØš‘„, š‘āŸ©))
74 vex 3478 . . . . . . . . . . . . . . . . . . . . 21 š‘„ āˆˆ V
75 vex 3478 . . . . . . . . . . . . . . . . . . . . 21 š‘ āˆˆ V
7674, 75op2nd 7980 . . . . . . . . . . . . . . . . . . . 20 (2nd ā€˜āŸØš‘„, š‘āŸ©) = š‘
7773, 76eqtrdi 2788 . . . . . . . . . . . . . . . . . . 19 ((((((((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) āˆ§ š‘¢ = āŸØš‘„, š‘āŸ©) āˆ§ š‘„ āˆˆ š‘‹) āˆ§ š‘ āˆˆ š¶) āˆ§ š‘£ = āŸØš‘¦, š‘‘āŸ©) āˆ§ š‘¦ āˆˆ š‘‹) āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶) ā†’ (2nd ā€˜š‘¢) = š‘)
7871, 77eqtrd 2772 . . . . . . . . . . . . . . . . . 18 ((((((((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) āˆ§ š‘¢ = āŸØš‘„, š‘āŸ©) āˆ§ š‘„ āˆˆ š‘‹) āˆ§ š‘ āˆˆ š¶) āˆ§ š‘£ = āŸØš‘¦, š‘‘āŸ©) āˆ§ š‘¦ āˆˆ š‘‹) āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶) ā†’ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = š‘)
79 simp-8r 790 . . . . . . . . . . . . . . . . . . . 20 ((((((((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) āˆ§ š‘¢ = āŸØš‘„, š‘āŸ©) āˆ§ š‘„ āˆˆ š‘‹) āˆ§ š‘ āˆˆ š¶) āˆ§ š‘£ = āŸØš‘¦, š‘‘āŸ©) āˆ§ š‘¦ āˆˆ š‘‹) āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶) ā†’ š‘£ āˆˆ š‘ˆ)
8079fvresd 6908 . . . . . . . . . . . . . . . . . . 19 ((((((((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) āˆ§ š‘¢ = āŸØš‘„, š‘āŸ©) āˆ§ š‘„ āˆˆ š‘‹) āˆ§ š‘ āˆˆ š¶) āˆ§ š‘£ = āŸØš‘¦, š‘‘āŸ©) āˆ§ š‘¦ āˆˆ š‘‹) āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶) ā†’ ((2nd ā†¾ š‘ˆ)ā€˜š‘£) = (2nd ā€˜š‘£))
81 simpllr 774 . . . . . . . . . . . . . . . . . . . . 21 ((((((((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) āˆ§ š‘¢ = āŸØš‘„, š‘āŸ©) āˆ§ š‘„ āˆˆ š‘‹) āˆ§ š‘ āˆˆ š¶) āˆ§ š‘£ = āŸØš‘¦, š‘‘āŸ©) āˆ§ š‘¦ āˆˆ š‘‹) āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶) ā†’ š‘£ = āŸØš‘¦, š‘‘āŸ©)
8281fveq2d 6892 . . . . . . . . . . . . . . . . . . . 20 ((((((((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) āˆ§ š‘¢ = āŸØš‘„, š‘āŸ©) āˆ§ š‘„ āˆˆ š‘‹) āˆ§ š‘ āˆˆ š¶) āˆ§ š‘£ = āŸØš‘¦, š‘‘āŸ©) āˆ§ š‘¦ āˆˆ š‘‹) āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶) ā†’ (2nd ā€˜š‘£) = (2nd ā€˜āŸØš‘¦, š‘‘āŸ©))
83 vex 3478 . . . . . . . . . . . . . . . . . . . . 21 š‘¦ āˆˆ V
84 vex 3478 . . . . . . . . . . . . . . . . . . . . 21 š‘‘ āˆˆ V
8583, 84op2nd 7980 . . . . . . . . . . . . . . . . . . . 20 (2nd ā€˜āŸØš‘¦, š‘‘āŸ©) = š‘‘
8682, 85eqtrdi 2788 . . . . . . . . . . . . . . . . . . 19 ((((((((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) āˆ§ š‘¢ = āŸØš‘„, š‘āŸ©) āˆ§ š‘„ āˆˆ š‘‹) āˆ§ š‘ āˆˆ š¶) āˆ§ š‘£ = āŸØš‘¦, š‘‘āŸ©) āˆ§ š‘¦ āˆˆ š‘‹) āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶) ā†’ (2nd ā€˜š‘£) = š‘‘)
8780, 86eqtrd 2772 . . . . . . . . . . . . . . . . . 18 ((((((((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) āˆ§ š‘¢ = āŸØš‘„, š‘āŸ©) āˆ§ š‘„ āˆˆ š‘‹) āˆ§ š‘ āˆˆ š¶) āˆ§ š‘£ = āŸØš‘¦, š‘‘āŸ©) āˆ§ š‘¦ āˆˆ š‘‹) āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶) ā†’ ((2nd ā†¾ š‘ˆ)ā€˜š‘£) = š‘‘)
8869, 78, 873eqtr3d 2780 . . . . . . . . . . . . . . . . 17 ((((((((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) āˆ§ š‘¢ = āŸØš‘„, š‘āŸ©) āˆ§ š‘„ āˆˆ š‘‹) āˆ§ š‘ āˆˆ š¶) āˆ§ š‘£ = āŸØš‘¦, š‘‘āŸ©) āˆ§ š‘¦ āˆˆ š‘‹) āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶) ā†’ š‘ = š‘‘)
89 simpr 485 . . . . . . . . . . . . . . . . 17 ((((((((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) āˆ§ š‘¢ = āŸØš‘„, š‘āŸ©) āˆ§ š‘„ āˆˆ š‘‹) āˆ§ š‘ āˆˆ š¶) āˆ§ š‘£ = āŸØš‘¦, š‘‘āŸ©) āˆ§ š‘¦ āˆˆ š‘‹) āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶) ā†’ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶)
9088, 89eqeltrd 2833 . . . . . . . . . . . . . . . 16 ((((((((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) āˆ§ š‘¢ = āŸØš‘„, š‘āŸ©) āˆ§ š‘„ āˆˆ š‘‹) āˆ§ š‘ āˆˆ š¶) āˆ§ š‘£ = āŸØš‘¦, š‘‘āŸ©) āˆ§ š‘¦ āˆˆ š‘‹) āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶) ā†’ š‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶)
9148, 56disjif 31796 . . . . . . . . . . . . . . . 16 ((Disj š‘„ āˆˆ š‘‹ š¶ āˆ§ (š‘„ āˆˆ š‘‹ āˆ§ š‘¦ āˆˆ š‘‹) āˆ§ (š‘ āˆˆ š¶ āˆ§ š‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶)) ā†’ š‘„ = š‘¦)
9265, 66, 67, 68, 90, 91syl122anc 1379 . . . . . . . . . . . . . . 15 ((((((((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) āˆ§ š‘¢ = āŸØš‘„, š‘āŸ©) āˆ§ š‘„ āˆˆ š‘‹) āˆ§ š‘ āˆˆ š¶) āˆ§ š‘£ = āŸØš‘¦, š‘‘āŸ©) āˆ§ š‘¦ āˆˆ š‘‹) āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶) ā†’ š‘„ = š‘¦)
9392, 88opeq12d 4880 . . . . . . . . . . . . . 14 ((((((((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) āˆ§ š‘¢ = āŸØš‘„, š‘āŸ©) āˆ§ š‘„ āˆˆ š‘‹) āˆ§ š‘ āˆˆ š¶) āˆ§ š‘£ = āŸØš‘¦, š‘‘āŸ©) āˆ§ š‘¦ āˆˆ š‘‹) āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶) ā†’ āŸØš‘„, š‘āŸ© = āŸØš‘¦, š‘‘āŸ©)
9493, 72, 813eqtr4d 2782 . . . . . . . . . . . . 13 ((((((((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) āˆ§ š‘¢ = āŸØš‘„, š‘āŸ©) āˆ§ š‘„ āˆˆ š‘‹) āˆ§ š‘ āˆˆ š¶) āˆ§ š‘£ = āŸØš‘¦, š‘‘āŸ©) āˆ§ š‘¦ āˆˆ š‘‹) āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶) ā†’ š‘¢ = š‘£)
9594anasss 467 . . . . . . . . . . . 12 (((((((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) āˆ§ š‘¢ = āŸØš‘„, š‘āŸ©) āˆ§ š‘„ āˆˆ š‘‹) āˆ§ š‘ āˆˆ š¶) āˆ§ š‘£ = āŸØš‘¦, š‘‘āŸ©) āˆ§ (š‘¦ āˆˆ š‘‹ āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶)) ā†’ š‘¢ = š‘£)
9695expl 458 . . . . . . . . . . 11 (((((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) āˆ§ š‘¢ = āŸØš‘„, š‘āŸ©) āˆ§ š‘„ āˆˆ š‘‹) āˆ§ š‘ āˆˆ š¶) ā†’ ((š‘£ = āŸØš‘¦, š‘‘āŸ© āˆ§ (š‘¦ āˆˆ š‘‹ āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶)) ā†’ š‘¢ = š‘£))
9796exlimdvv 1937 . . . . . . . . . 10 (((((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) āˆ§ š‘¢ = āŸØš‘„, š‘āŸ©) āˆ§ š‘„ āˆˆ š‘‹) āˆ§ š‘ āˆˆ š¶) ā†’ (āˆƒš‘¦āˆƒš‘‘(š‘£ = āŸØš‘¦, š‘‘āŸ© āˆ§ (š‘¦ āˆˆ š‘‹ āˆ§ š‘‘ āˆˆ ā¦‹š‘¦ / š‘„ā¦Œš¶)) ā†’ š‘¢ = š‘£))
9863, 97mpd 15 . . . . . . . . 9 (((((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) āˆ§ š‘¢ = āŸØš‘„, š‘āŸ©) āˆ§ š‘„ āˆˆ š‘‹) āˆ§ š‘ āˆˆ š¶) ā†’ š‘¢ = š‘£)
9998anasss 467 . . . . . . . 8 ((((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) āˆ§ š‘¢ = āŸØš‘„, š‘āŸ©) āˆ§ (š‘„ āˆˆ š‘‹ āˆ§ š‘ āˆˆ š¶)) ā†’ š‘¢ = š‘£)
10099expl 458 . . . . . . 7 ((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) ā†’ ((š‘¢ = āŸØš‘„, š‘āŸ© āˆ§ (š‘„ āˆˆ š‘‹ āˆ§ š‘ āˆˆ š¶)) ā†’ š‘¢ = š‘£))
101100exlimdv 1936 . . . . . 6 ((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) ā†’ (āˆƒš‘(š‘¢ = āŸØš‘„, š‘āŸ© āˆ§ (š‘„ āˆˆ š‘‹ āˆ§ š‘ āˆˆ š¶)) ā†’ š‘¢ = š‘£))
10236, 37, 41, 101exlimimdd 2212 . . . . 5 ((((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) āˆ§ ((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£)) ā†’ š‘¢ = š‘£)
103102ex 413 . . . 4 (((šœ‘ āˆ§ š‘¢ āˆˆ š‘ˆ) āˆ§ š‘£ āˆˆ š‘ˆ) ā†’ (((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£) ā†’ š‘¢ = š‘£))
104103anasss 467 . . 3 ((šœ‘ āˆ§ (š‘¢ āˆˆ š‘ˆ āˆ§ š‘£ āˆˆ š‘ˆ)) ā†’ (((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£) ā†’ š‘¢ = š‘£))
105104ralrimivva 3200 . 2 (šœ‘ ā†’ āˆ€š‘¢ āˆˆ š‘ˆ āˆ€š‘£ āˆˆ š‘ˆ (((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£) ā†’ š‘¢ = š‘£))
106 dff13 7250 . 2 ((2nd ā†¾ š‘ˆ):š‘ˆā€“1-1ā†’š“ ā†” ((2nd ā†¾ š‘ˆ):š‘ˆāŸ¶š“ āˆ§ āˆ€š‘¢ āˆˆ š‘ˆ āˆ€š‘£ āˆˆ š‘ˆ (((2nd ā†¾ š‘ˆ)ā€˜š‘¢) = ((2nd ā†¾ š‘ˆ)ā€˜š‘£) ā†’ š‘¢ = š‘£)))
10721, 105, 106sylanbrc 583 1 (šœ‘ ā†’ (2nd ā†¾ š‘ˆ):š‘ˆā€“1-1ā†’š“)
Colors of variables: wff setvar class
Syntax hints:   ā†’ wi 4   āˆ§ wa 396   = wceq 1541  āˆƒwex 1781   āˆˆ wcel 2106  āˆ€wral 3061  Vcvv 3474  ā¦‹csb 3892   āŠ† wss 3947  {csn 4627  āŸØcop 4633  āˆŖ ciun 4996  Disj wdisj 5112   Ɨ cxp 5673   ā†¾ cres 5677   Fn wfn 6535  āŸ¶wf 6536  ā€“1-1ā†’wf1 6537  ā€“ontoā†’wfo 6538  ā€˜cfv 6540  2nd c2nd 7970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-disj 5113  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-fv 6548  df-2nd 7972
This theorem is referenced by:  2ndresdjuf1o  31862  gsumpart  32194
  Copyright terms: Public domain W3C validator