![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad4ant24 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
Ref | Expression |
---|---|
ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad4ant24 | ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantlr 712 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜓) → 𝜒) |
3 | 2 | adantlll 715 | 1 ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: oaass 8567 oewordri 8598 naddssim 8690 infxp 10216 lediv12a 12114 xmulgt0 13269 ioodisj 13466 leexp1a 14147 swrdswrdlem 14661 seqshft 15039 sumss2 15679 prmdvdsncoprmbd 16670 mulgfval 18995 grpissubg 19069 f1otrspeq 19363 mat1dimcrng 22298 elcls 22896 neiptopreu 22956 alexsubALTlem4 23873 ustuqtop2 24066 iscfil2 25113 absmuls 28050 tglowdim1i 28184 axcontlem2 28655 opreu2reuALT 32149 nsgqusf1olem1 32963 matunitlindflem1 36947 matunitlindflem2 36948 poimirlem4 36955 founiiun0 44347 xralrple2 44522 rexabslelem 44586 climisp 44920 climxrre 44924 cnrefiisplem 45003 sge0iunmptlemre 45589 nnfoctbdjlem 45629 iundjiun 45634 meaiuninc3v 45658 hoidmvlelem3 45771 hspmbllem2 45801 smflimlem2 45946 |
Copyright terms: Public domain | W3C validator |