| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad4ant24 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad4ant24 | ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantlr 715 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜓) → 𝜒) |
| 3 | 2 | adantlll 718 | 1 ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: oaass 8578 oewordri 8609 naddssim 8702 infxp 10233 lediv12a 12140 xmulgt0 13304 ioodisj 13504 leexp1a 14198 swrdswrdlem 14727 seqshft 15109 sumss2 15747 prmdvdsncoprmbd 16751 mulgfval 19057 grpissubg 19134 f1otrspeq 19433 mat1dimcrng 22420 elcls 23016 neiptopreu 23076 alexsubALTlem4 23993 ustuqtop2 24186 iscfil2 25223 absmuls 28203 tglowdim1i 28485 axcontlem2 28949 opreu2reuALT 32463 nsgqusf1olem1 33433 lbslelsp 33642 matunitlindflem1 37645 matunitlindflem2 37646 poimirlem4 37653 founiiun0 45181 xralrple2 45348 rexabslelem 45412 climisp 45742 climxrre 45746 cnrefiisplem 45825 sge0iunmptlemre 46411 nnfoctbdjlem 46451 iundjiun 46456 meaiuninc3v 46480 hoidmvlelem3 46593 hspmbllem2 46623 smflimlem2 46768 |
| Copyright terms: Public domain | W3C validator |