MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad4ant24 Structured version   Visualization version   GIF version

Theorem ad4ant24 751
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad4ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad4ant24 ((((𝜃𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒)

Proof of Theorem ad4ant24
StepHypRef Expression
1 ad4ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantlr 712 . 2 (((𝜑𝜏) ∧ 𝜓) → 𝜒)
32adantlll 715 1 ((((𝜃𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  oaass  8392  oewordri  8423  infxp  9971  lediv12a  11868  xmulgt0  13017  ioodisj  13214  leexp1a  13893  swrdswrdlem  14417  seqshft  14796  sumss2  15438  prmdvdsncoprmbd  16431  mulgfval  18702  grpissubg  18775  f1otrspeq  19055  mat1dimcrng  21626  elcls  22224  neiptopreu  22284  alexsubALTlem4  23201  ustuqtop2  23394  iscfil2  24430  tglowdim1i  26862  axcontlem2  27333  opreu2reuALT  30825  nsgqusf1olem1  31598  naddssim  33837  matunitlindflem1  35773  matunitlindflem2  35774  poimirlem4  35781  founiiun0  42728  xralrple2  42893  rexabslelem  42958  climisp  43287  climxrre  43291  cnrefiisplem  43370  sge0iunmptlemre  43953  nnfoctbdjlem  43993  iundjiun  43998  meaiuninc3v  44022  hoidmvlelem3  44135  hspmbllem2  44165  smflimlem2  44307
  Copyright terms: Public domain W3C validator