| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad4ant24 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad4ant24 | ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantlr 715 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜓) → 𝜒) |
| 3 | 2 | adantlll 718 | 1 ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: oaass 8528 oewordri 8559 naddssim 8652 infxp 10174 lediv12a 12083 xmulgt0 13250 ioodisj 13450 leexp1a 14147 swrdswrdlem 14676 seqshft 15058 sumss2 15699 prmdvdsncoprmbd 16704 mulgfval 19008 grpissubg 19085 f1otrspeq 19384 mat1dimcrng 22371 elcls 22967 neiptopreu 23027 alexsubALTlem4 23944 ustuqtop2 24137 iscfil2 25173 absmuls 28153 tglowdim1i 28435 axcontlem2 28899 opreu2reuALT 32413 nsgqusf1olem1 33391 lbslelsp 33600 matunitlindflem1 37617 matunitlindflem2 37618 poimirlem4 37625 founiiun0 45191 xralrple2 45357 rexabslelem 45421 climisp 45751 climxrre 45755 cnrefiisplem 45834 sge0iunmptlemre 46420 nnfoctbdjlem 46460 iundjiun 46465 meaiuninc3v 46489 hoidmvlelem3 46602 hspmbllem2 46632 smflimlem2 46777 |
| Copyright terms: Public domain | W3C validator |