| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad4ant24 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad4ant24 | ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantlr 715 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜓) → 𝜒) |
| 3 | 2 | adantlll 718 | 1 ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: oaass 8476 oewordri 8507 naddssim 8600 infxp 10105 lediv12a 12015 xmulgt0 13182 ioodisj 13382 leexp1a 14082 swrdswrdlem 14611 seqshft 14992 sumss2 15633 prmdvdsncoprmbd 16638 mulgfval 18982 grpissubg 19059 f1otrspeq 19359 mat1dimcrng 22392 elcls 22988 neiptopreu 23048 alexsubALTlem4 23965 ustuqtop2 24157 iscfil2 25193 absmuls 28182 tglowdim1i 28479 axcontlem2 28943 opreu2reuALT 32456 nsgqusf1olem1 33378 lbslelsp 33610 matunitlindflem1 37664 matunitlindflem2 37665 poimirlem4 37672 founiiun0 45235 xralrple2 45401 rexabslelem 45464 climisp 45792 climxrre 45796 cnrefiisplem 45875 sge0iunmptlemre 46461 nnfoctbdjlem 46501 iundjiun 46506 meaiuninc3v 46530 hoidmvlelem3 46643 hspmbllem2 46673 smflimlem2 46818 |
| Copyright terms: Public domain | W3C validator |