![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad4ant24 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
Ref | Expression |
---|---|
ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad4ant24 | ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantlr 713 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜓) → 𝜒) |
3 | 2 | adantlll 716 | 1 ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: oaass 8563 oewordri 8594 naddssim 8686 infxp 10212 lediv12a 12109 xmulgt0 13264 ioodisj 13461 leexp1a 14142 swrdswrdlem 14656 seqshft 15034 sumss2 15674 prmdvdsncoprmbd 16665 mulgfval 18954 grpissubg 19028 f1otrspeq 19317 mat1dimcrng 21986 elcls 22584 neiptopreu 22644 alexsubALTlem4 23561 ustuqtop2 23754 iscfil2 24790 tglowdim1i 27790 axcontlem2 28261 opreu2reuALT 31755 nsgqusf1olem1 32569 matunitlindflem1 36570 matunitlindflem2 36571 poimirlem4 36578 founiiun0 43968 xralrple2 44143 rexabslelem 44207 climisp 44541 climxrre 44545 cnrefiisplem 44624 sge0iunmptlemre 45210 nnfoctbdjlem 45250 iundjiun 45255 meaiuninc3v 45279 hoidmvlelem3 45392 hspmbllem2 45422 smflimlem2 45567 |
Copyright terms: Public domain | W3C validator |