| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad4ant24 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad4ant24 | ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantlr 715 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜓) → 𝜒) |
| 3 | 2 | adantlll 718 | 1 ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: oaass 8571 oewordri 8602 naddssim 8695 infxp 10226 lediv12a 12133 xmulgt0 13297 ioodisj 13497 leexp1a 14191 swrdswrdlem 14720 seqshft 15102 sumss2 15740 prmdvdsncoprmbd 16744 mulgfval 19050 grpissubg 19127 f1otrspeq 19426 mat1dimcrng 22413 elcls 23009 neiptopreu 23069 alexsubALTlem4 23986 ustuqtop2 24179 iscfil2 25216 absmuls 28185 tglowdim1i 28426 axcontlem2 28890 opreu2reuALT 32404 nsgqusf1olem1 33374 lbslelsp 33583 matunitlindflem1 37586 matunitlindflem2 37587 poimirlem4 37594 founiiun0 45162 xralrple2 45329 rexabslelem 45393 climisp 45723 climxrre 45727 cnrefiisplem 45806 sge0iunmptlemre 46392 nnfoctbdjlem 46432 iundjiun 46437 meaiuninc3v 46461 hoidmvlelem3 46574 hspmbllem2 46604 smflimlem2 46749 |
| Copyright terms: Public domain | W3C validator |