| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad4ant24 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad4ant24 | ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantlr 715 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜓) → 𝜒) |
| 3 | 2 | adantlll 718 | 1 ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: oaass 8502 oewordri 8533 naddssim 8626 infxp 10143 lediv12a 12052 xmulgt0 13219 ioodisj 13419 leexp1a 14116 swrdswrdlem 14645 seqshft 15027 sumss2 15668 prmdvdsncoprmbd 16673 mulgfval 18983 grpissubg 19060 f1otrspeq 19361 mat1dimcrng 22397 elcls 22993 neiptopreu 23053 alexsubALTlem4 23970 ustuqtop2 24163 iscfil2 25199 absmuls 28186 tglowdim1i 28481 axcontlem2 28945 opreu2reuALT 32456 nsgqusf1olem1 33377 lbslelsp 33586 matunitlindflem1 37603 matunitlindflem2 37604 poimirlem4 37611 founiiun0 45177 xralrple2 45343 rexabslelem 45407 climisp 45737 climxrre 45741 cnrefiisplem 45820 sge0iunmptlemre 46406 nnfoctbdjlem 46446 iundjiun 46451 meaiuninc3v 46475 hoidmvlelem3 46588 hspmbllem2 46618 smflimlem2 46763 |
| Copyright terms: Public domain | W3C validator |