![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad4ant24 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
Ref | Expression |
---|---|
ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad4ant24 | ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantlr 715 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜓) → 𝜒) |
3 | 2 | adantlll 718 | 1 ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: oaass 8598 oewordri 8629 naddssim 8722 infxp 10252 lediv12a 12159 xmulgt0 13322 ioodisj 13519 leexp1a 14212 swrdswrdlem 14739 seqshft 15121 sumss2 15759 prmdvdsncoprmbd 16761 mulgfval 19100 grpissubg 19177 f1otrspeq 19480 mat1dimcrng 22499 elcls 23097 neiptopreu 23157 alexsubALTlem4 24074 ustuqtop2 24267 iscfil2 25314 absmuls 28283 tglowdim1i 28524 axcontlem2 28995 opreu2reuALT 32505 nsgqusf1olem1 33421 matunitlindflem1 37603 matunitlindflem2 37604 poimirlem4 37611 founiiun0 45133 xralrple2 45304 rexabslelem 45368 climisp 45702 climxrre 45706 cnrefiisplem 45785 sge0iunmptlemre 46371 nnfoctbdjlem 46411 iundjiun 46416 meaiuninc3v 46440 hoidmvlelem3 46553 hspmbllem2 46583 smflimlem2 46728 |
Copyright terms: Public domain | W3C validator |