Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ad4ant24 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
Ref | Expression |
---|---|
ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad4ant24 | ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantlr 711 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜓) → 𝜒) |
3 | 2 | adantlll 714 | 1 ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: oaass 8354 oewordri 8385 infxp 9902 lediv12a 11798 xmulgt0 12946 ioodisj 13143 leexp1a 13821 swrdswrdlem 14345 seqshft 14724 sumss2 15366 prmdvdsncoprmbd 16359 mulgfval 18617 grpissubg 18690 f1otrspeq 18970 mat1dimcrng 21534 elcls 22132 neiptopreu 22192 alexsubALTlem4 23109 ustuqtop2 23302 iscfil2 24335 tglowdim1i 26766 axcontlem2 27236 opreu2reuALT 30726 nsgqusf1olem1 31500 naddssim 33764 matunitlindflem1 35700 matunitlindflem2 35701 poimirlem4 35708 founiiun0 42617 xralrple2 42783 rexabslelem 42848 climisp 43177 climxrre 43181 cnrefiisplem 43260 sge0iunmptlemre 43843 nnfoctbdjlem 43883 iundjiun 43888 meaiuninc3v 43912 hoidmvlelem3 44025 hspmbllem2 44055 smflimlem2 44194 |
Copyright terms: Public domain | W3C validator |