| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad4ant24 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad4ant24 | ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantlr 715 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜓) → 𝜒) |
| 3 | 2 | adantlll 718 | 1 ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: oaass 8525 oewordri 8556 naddssim 8649 infxp 10167 lediv12a 12076 xmulgt0 13243 ioodisj 13443 leexp1a 14140 swrdswrdlem 14669 seqshft 15051 sumss2 15692 prmdvdsncoprmbd 16697 mulgfval 19001 grpissubg 19078 f1otrspeq 19377 mat1dimcrng 22364 elcls 22960 neiptopreu 23020 alexsubALTlem4 23937 ustuqtop2 24130 iscfil2 25166 absmuls 28146 tglowdim1i 28428 axcontlem2 28892 opreu2reuALT 32406 nsgqusf1olem1 33384 lbslelsp 33593 matunitlindflem1 37610 matunitlindflem2 37611 poimirlem4 37618 founiiun0 45184 xralrple2 45350 rexabslelem 45414 climisp 45744 climxrre 45748 cnrefiisplem 45827 sge0iunmptlemre 46413 nnfoctbdjlem 46453 iundjiun 46458 meaiuninc3v 46482 hoidmvlelem3 46595 hspmbllem2 46625 smflimlem2 46770 |
| Copyright terms: Public domain | W3C validator |