![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad4ant24 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
Ref | Expression |
---|---|
ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad4ant24 | ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantlr 714 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜓) → 𝜒) |
3 | 2 | adantlll 717 | 1 ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: oaass 8561 oewordri 8592 naddssim 8684 infxp 10210 lediv12a 12107 xmulgt0 13262 ioodisj 13459 leexp1a 14140 swrdswrdlem 14654 seqshft 15032 sumss2 15672 prmdvdsncoprmbd 16663 mulgfval 18952 grpissubg 19026 f1otrspeq 19315 mat1dimcrng 21979 elcls 22577 neiptopreu 22637 alexsubALTlem4 23554 ustuqtop2 23747 iscfil2 24783 tglowdim1i 27752 axcontlem2 28223 opreu2reuALT 31717 nsgqusf1olem1 32524 matunitlindflem1 36484 matunitlindflem2 36485 poimirlem4 36492 founiiun0 43888 xralrple2 44064 rexabslelem 44128 climisp 44462 climxrre 44466 cnrefiisplem 44545 sge0iunmptlemre 45131 nnfoctbdjlem 45171 iundjiun 45176 meaiuninc3v 45200 hoidmvlelem3 45313 hspmbllem2 45343 smflimlem2 45488 |
Copyright terms: Public domain | W3C validator |