Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ad4ant24 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
Ref | Expression |
---|---|
ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad4ant24 | ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantlr 712 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜓) → 𝜒) |
3 | 2 | adantlll 715 | 1 ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: oaass 8392 oewordri 8423 infxp 9971 lediv12a 11868 xmulgt0 13017 ioodisj 13214 leexp1a 13893 swrdswrdlem 14417 seqshft 14796 sumss2 15438 prmdvdsncoprmbd 16431 mulgfval 18702 grpissubg 18775 f1otrspeq 19055 mat1dimcrng 21626 elcls 22224 neiptopreu 22284 alexsubALTlem4 23201 ustuqtop2 23394 iscfil2 24430 tglowdim1i 26862 axcontlem2 27333 opreu2reuALT 30825 nsgqusf1olem1 31598 naddssim 33837 matunitlindflem1 35773 matunitlindflem2 35774 poimirlem4 35781 founiiun0 42728 xralrple2 42893 rexabslelem 42958 climisp 43287 climxrre 43291 cnrefiisplem 43370 sge0iunmptlemre 43953 nnfoctbdjlem 43993 iundjiun 43998 meaiuninc3v 44022 hoidmvlelem3 44135 hspmbllem2 44165 smflimlem2 44307 |
Copyright terms: Public domain | W3C validator |