Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ad4ant24 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
Ref | Expression |
---|---|
ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad4ant24 | ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantlr 714 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜓) → 𝜒) |
3 | 2 | adantlll 717 | 1 ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: oaass 8203 oewordri 8234 infxp 9688 lediv12a 11584 xmulgt0 12730 ioodisj 12927 leexp1a 13602 swrdswrdlem 14126 seqshft 14505 sumss2 15144 prmdvdsncoprmbd 16136 mulgfval 18307 grpissubg 18380 f1otrspeq 18656 mat1dimcrng 21191 elcls 21787 neiptopreu 21847 alexsubALTlem4 22764 ustuqtop2 22957 iscfil2 23980 tglowdim1i 26408 axcontlem2 26872 opreu2reuALT 30360 nsgqusf1olem1 31132 naddssim 33435 matunitlindflem1 35368 matunitlindflem2 35369 poimirlem4 35376 founiiun0 42232 xralrple2 42399 rexabslelem 42466 climisp 42799 climxrre 42803 cnrefiisplem 42882 sge0iunmptlemre 43465 nnfoctbdjlem 43505 iundjiun 43510 meaiuninc3v 43534 hoidmvlelem3 43647 hspmbllem2 43677 smflimlem2 43816 |
Copyright terms: Public domain | W3C validator |