![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad4ant24 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
Ref | Expression |
---|---|
ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad4ant24 | ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantll 685 | . 2 ⊢ (((𝜃 ∧ 𝜑) ∧ 𝜓) → 𝜒) |
3 | 2 | adantlr 686 | 1 ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 383 |
This theorem is referenced by: seqshft 14032 matunitlindflem1 33734 matunitlindflem2 33735 founiiun0 39893 xralrple2 40082 rexabslelem 40157 climisp 40492 climxrre 40496 cnrefiisplem 40569 sge0iunmptlemre 41145 nnfoctbdjlem 41185 iundjiun 41190 meaiuninc3v 41214 hoidmvlelem3 41327 hspmbllem2 41357 smflimlem2 41496 |
Copyright terms: Public domain | W3C validator |