| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad4ant24 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad4ant24 | ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantlr 715 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜓) → 𝜒) |
| 3 | 2 | adantlll 718 | 1 ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: oaass 8479 oewordri 8510 naddssim 8603 infxp 10108 lediv12a 12018 xmulgt0 13185 ioodisj 13385 leexp1a 14082 swrdswrdlem 14610 seqshft 14992 sumss2 15633 prmdvdsncoprmbd 16638 mulgfval 18948 grpissubg 19025 f1otrspeq 19326 mat1dimcrng 22362 elcls 22958 neiptopreu 23018 alexsubALTlem4 23935 ustuqtop2 24128 iscfil2 25164 absmuls 28151 tglowdim1i 28446 axcontlem2 28910 opreu2reuALT 32421 nsgqusf1olem1 33350 lbslelsp 33564 matunitlindflem1 37596 matunitlindflem2 37597 poimirlem4 37604 founiiun0 45168 xralrple2 45334 rexabslelem 45397 climisp 45727 climxrre 45731 cnrefiisplem 45810 sge0iunmptlemre 46396 nnfoctbdjlem 46436 iundjiun 46441 meaiuninc3v 46465 hoidmvlelem3 46578 hspmbllem2 46608 smflimlem2 46753 |
| Copyright terms: Public domain | W3C validator |