| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad4ant24 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad4ant24 | ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantlr 715 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜓) → 𝜒) |
| 3 | 2 | adantlll 718 | 1 ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: oaass 8502 oewordri 8533 naddssim 8626 infxp 10143 lediv12a 12052 xmulgt0 13219 ioodisj 13419 leexp1a 14116 swrdswrdlem 14645 seqshft 15027 sumss2 15668 prmdvdsncoprmbd 16673 mulgfval 18977 grpissubg 19054 f1otrspeq 19353 mat1dimcrng 22340 elcls 22936 neiptopreu 22996 alexsubALTlem4 23913 ustuqtop2 24106 iscfil2 25142 absmuls 28122 tglowdim1i 28404 axcontlem2 28868 opreu2reuALT 32379 nsgqusf1olem1 33357 lbslelsp 33566 matunitlindflem1 37583 matunitlindflem2 37584 poimirlem4 37591 founiiun0 45157 xralrple2 45323 rexabslelem 45387 climisp 45717 climxrre 45721 cnrefiisplem 45800 sge0iunmptlemre 46386 nnfoctbdjlem 46426 iundjiun 46431 meaiuninc3v 46455 hoidmvlelem3 46568 hspmbllem2 46598 smflimlem2 46743 |
| Copyright terms: Public domain | W3C validator |