![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad4ant24 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
Ref | Expression |
---|---|
ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad4ant24 | ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantlr 714 | . 2 ⊢ (((𝜑 ∧ 𝜏) ∧ 𝜓) → 𝜒) |
3 | 2 | adantlll 717 | 1 ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: oaass 8617 oewordri 8648 naddssim 8741 infxp 10283 lediv12a 12188 xmulgt0 13345 ioodisj 13542 leexp1a 14225 swrdswrdlem 14752 seqshft 15134 sumss2 15774 prmdvdsncoprmbd 16774 mulgfval 19109 grpissubg 19186 f1otrspeq 19489 mat1dimcrng 22504 elcls 23102 neiptopreu 23162 alexsubALTlem4 24079 ustuqtop2 24272 iscfil2 25319 absmuls 28286 tglowdim1i 28527 axcontlem2 28998 opreu2reuALT 32505 nsgqusf1olem1 33406 matunitlindflem1 37576 matunitlindflem2 37577 poimirlem4 37584 founiiun0 45097 xralrple2 45269 rexabslelem 45333 climisp 45667 climxrre 45671 cnrefiisplem 45750 sge0iunmptlemre 46336 nnfoctbdjlem 46376 iundjiun 46381 meaiuninc3v 46405 hoidmvlelem3 46518 hspmbllem2 46548 smflimlem2 46693 |
Copyright terms: Public domain | W3C validator |