Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupmnflem Structured version   Visualization version   GIF version

Theorem limsupmnflem 43261
Description: The superior limit of a function is -∞ if and only if every real number is the upper bound of the restriction of the function to an upper interval of real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupmnflem.a (𝜑𝐴 ⊆ ℝ)
limsupmnflem.f (𝜑𝐹:𝐴⟶ℝ*)
limsupmnflem.g 𝐺 = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ))
Assertion
Ref Expression
limsupmnflem (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐺(𝑥,𝑗,𝑘)

Proof of Theorem limsupmnflem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1917 . . . . 5 𝑘𝜑
2 reex 10962 . . . . . . 7 ℝ ∈ V
32a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
4 limsupmnflem.a . . . . . 6 (𝜑𝐴 ⊆ ℝ)
53, 4ssexd 5248 . . . . 5 (𝜑𝐴 ∈ V)
6 limsupmnflem.f . . . . 5 (𝜑𝐹:𝐴⟶ℝ*)
7 limsupmnflem.g . . . . 5 𝐺 = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ))
81, 5, 6, 7limsupval3 43233 . . . 4 (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
97rneqi 5846 . . . . . 6 ran 𝐺 = ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ))
109infeq1i 9237 . . . . 5 inf(ran 𝐺, ℝ*, < ) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < )
1110a1i 11 . . . 4 (𝜑 → inf(ran 𝐺, ℝ*, < ) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ))
128, 11eqtrd 2778 . . 3 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ))
1312eqeq1d 2740 . 2 (𝜑 → ((lim sup‘𝐹) = -∞ ↔ inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) = -∞))
14 nfv 1917 . . 3 𝑥𝜑
156fimassd 42771 . . . . 5 (𝜑 → (𝐹 “ (𝑘[,)+∞)) ⊆ ℝ*)
1615adantr 481 . . . 4 ((𝜑𝑘 ∈ ℝ) → (𝐹 “ (𝑘[,)+∞)) ⊆ ℝ*)
1716supxrcld 42657 . . 3 ((𝜑𝑘 ∈ ℝ) → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ∈ ℝ*)
181, 14, 17infxrunb3rnmpt 42968 . 2 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) = -∞))
1915adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (𝑘[,)+∞)) ⊆ ℝ*)
20 ressxr 11019 . . . . . . . . 9 ℝ ⊆ ℝ*
2120a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℝ*)
2221sselda 3921 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ*)
23 supxrleub 13060 . . . . . . 7 (((𝐹 “ (𝑘[,)+∞)) ⊆ ℝ*𝑥 ∈ ℝ*) → (sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥))
2419, 22, 23syl2anc 584 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥))
2524adantr 481 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥))
266ffnd 6601 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn 𝐴)
2726ad3antrrr 727 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝐹 Fn 𝐴)
28 simplr 766 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗𝐴)
2920sseli 3917 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℝ → 𝑘 ∈ ℝ*)
3029ad3antlr 728 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑘 ∈ ℝ*)
31 pnfxr 11029 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
3231a1i 11 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → +∞ ∈ ℝ*)
3320a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐴) → ℝ ⊆ ℝ*)
344sselda 3921 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐴) → 𝑗 ∈ ℝ)
3533, 34sseldd 3922 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝐴) → 𝑗 ∈ ℝ*)
3635ad4ant13 748 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗 ∈ ℝ*)
37 simpr 485 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑘𝑗)
3834ltpnfd 12857 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝐴) → 𝑗 < +∞)
3938ad4ant13 748 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗 < +∞)
4030, 32, 36, 37, 39elicod 13129 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗 ∈ (𝑘[,)+∞))
4127, 28, 40fnfvimad 7110 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ∈ (𝐹 “ (𝑘[,)+∞)))
4241adantllr 716 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ∈ (𝐹 “ (𝑘[,)+∞)))
43 simpllr 773 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥)
44 breq1 5077 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑗) → (𝑦𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
4544rspcva 3559 . . . . . . . . . . 11 (((𝐹𝑗) ∈ (𝐹 “ (𝑘[,)+∞)) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) → (𝐹𝑗) ≤ 𝑥)
4642, 43, 45syl2anc 584 . . . . . . . . . 10 (((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ≤ 𝑥)
4746adantl4r 752 . . . . . . . . 9 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ≤ 𝑥)
4847ex 413 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) ∧ 𝑗𝐴) → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
4948ralrimiva 3103 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) → ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
5049ex 413 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥 → ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
51 nfcv 2907 . . . . . . . . . . . . . 14 𝑗𝐹
5226adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → 𝐹 Fn 𝐴)
53 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → 𝑦 ∈ (𝐹 “ (𝑘[,)+∞)))
5451, 52, 53fvelimad 6836 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → ∃𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑗) = 𝑦)
5554ad4ant14 749 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → ∃𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑗) = 𝑦)
56 nfv 1917 . . . . . . . . . . . . . . 15 𝑗(𝜑𝑘 ∈ ℝ)
57 nfra1 3144 . . . . . . . . . . . . . . 15 𝑗𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)
5856, 57nfan 1902 . . . . . . . . . . . . . 14 𝑗((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
59 nfv 1917 . . . . . . . . . . . . . 14 𝑗 𝑦𝑥
6029adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℝ ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑘 ∈ ℝ*)
6131a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℝ ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → +∞ ∈ ℝ*)
62 elinel2 4130 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞)) → 𝑗 ∈ (𝑘[,)+∞))
6362adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℝ ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑗 ∈ (𝑘[,)+∞))
6460, 61, 63icogelbd 43096 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℝ ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑘𝑗)
6564adantlr 712 . . . . . . . . . . . . . . . . . 18 (((𝑘 ∈ ℝ ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑘𝑗)
66 elinel1 4129 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞)) → 𝑗𝐴)
6766adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑗𝐴)
68 rspa 3132 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ∧ 𝑗𝐴) → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
6967, 68syldan 591 . . . . . . . . . . . . . . . . . . 19 ((∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
7069adantll 711 . . . . . . . . . . . . . . . . . 18 (((𝑘 ∈ ℝ ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
7165, 70mpd 15 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℝ ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝐹𝑗) ≤ 𝑥)
72 id 22 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑗) = 𝑦 → (𝐹𝑗) = 𝑦)
7372eqcomd 2744 . . . . . . . . . . . . . . . . . . . 20 ((𝐹𝑗) = 𝑦𝑦 = (𝐹𝑗))
7473adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝐹𝑗) ≤ 𝑥 ∧ (𝐹𝑗) = 𝑦) → 𝑦 = (𝐹𝑗))
75 simpl 483 . . . . . . . . . . . . . . . . . . 19 (((𝐹𝑗) ≤ 𝑥 ∧ (𝐹𝑗) = 𝑦) → (𝐹𝑗) ≤ 𝑥)
7674, 75eqbrtrd 5096 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑗) ≤ 𝑥 ∧ (𝐹𝑗) = 𝑦) → 𝑦𝑥)
7776ex 413 . . . . . . . . . . . . . . . . 17 ((𝐹𝑗) ≤ 𝑥 → ((𝐹𝑗) = 𝑦𝑦𝑥))
7871, 77syl 17 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℝ ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → ((𝐹𝑗) = 𝑦𝑦𝑥))
7978adantlll 715 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → ((𝐹𝑗) = 𝑦𝑦𝑥))
8079ex 413 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞)) → ((𝐹𝑗) = 𝑦𝑦𝑥)))
8158, 59, 80rexlimd 3250 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (∃𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑗) = 𝑦𝑦𝑥))
8281imp 407 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ ∃𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑗) = 𝑦) → 𝑦𝑥)
8355, 82syldan 591 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → 𝑦𝑥)
8483ralrimiva 3103 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥)
8584adantllr 716 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥)
8624ad2antrr 723 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥))
8785, 86mpbird 256 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥)
8887ex 413 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥))
8988, 25sylibd 238 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥))
9050, 89impbid 211 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥 ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9125, 90bitrd 278 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9291rexbidva 3225 . . 3 ((𝜑𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9392ralbidva 3111 . 2 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9413, 18, 933bitr2d 307 1 (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  cin 3886  wss 3887   class class class wbr 5074  cmpt 5157  ran crn 5590  cima 5592   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  supcsup 9199  infcinf 9200  cr 10870  +∞cpnf 11006  -∞cmnf 11007  *cxr 11008   < clt 11009  cle 11010  [,)cico 13081  lim supclsp 15179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-ico 13085  df-limsup 15180
This theorem is referenced by:  limsupmnf  43262
  Copyright terms: Public domain W3C validator