Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupmnflem Structured version   Visualization version   GIF version

Theorem limsupmnflem 45676
Description: The superior limit of a function is -∞ if and only if every real number is the upper bound of the restriction of the function to an upper interval of real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupmnflem.a (𝜑𝐴 ⊆ ℝ)
limsupmnflem.f (𝜑𝐹:𝐴⟶ℝ*)
limsupmnflem.g 𝐺 = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ))
Assertion
Ref Expression
limsupmnflem (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐺(𝑥,𝑗,𝑘)

Proof of Theorem limsupmnflem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1912 . . . . 5 𝑘𝜑
2 reex 11244 . . . . . . 7 ℝ ∈ V
32a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
4 limsupmnflem.a . . . . . 6 (𝜑𝐴 ⊆ ℝ)
53, 4ssexd 5330 . . . . 5 (𝜑𝐴 ∈ V)
6 limsupmnflem.f . . . . 5 (𝜑𝐹:𝐴⟶ℝ*)
7 limsupmnflem.g . . . . 5 𝐺 = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ))
81, 5, 6, 7limsupval3 45648 . . . 4 (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
97rneqi 5951 . . . . . 6 ran 𝐺 = ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ))
109infeq1i 9516 . . . . 5 inf(ran 𝐺, ℝ*, < ) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < )
1110a1i 11 . . . 4 (𝜑 → inf(ran 𝐺, ℝ*, < ) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ))
128, 11eqtrd 2775 . . 3 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ))
1312eqeq1d 2737 . 2 (𝜑 → ((lim sup‘𝐹) = -∞ ↔ inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) = -∞))
14 nfv 1912 . . 3 𝑥𝜑
156fimassd 6758 . . . . 5 (𝜑 → (𝐹 “ (𝑘[,)+∞)) ⊆ ℝ*)
1615adantr 480 . . . 4 ((𝜑𝑘 ∈ ℝ) → (𝐹 “ (𝑘[,)+∞)) ⊆ ℝ*)
1716supxrcld 45047 . . 3 ((𝜑𝑘 ∈ ℝ) → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ∈ ℝ*)
181, 14, 17infxrunb3rnmpt 45378 . 2 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) = -∞))
1915adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (𝑘[,)+∞)) ⊆ ℝ*)
20 ressxr 11303 . . . . . . . . 9 ℝ ⊆ ℝ*
2120a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℝ*)
2221sselda 3995 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ*)
23 supxrleub 13365 . . . . . . 7 (((𝐹 “ (𝑘[,)+∞)) ⊆ ℝ*𝑥 ∈ ℝ*) → (sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥))
2419, 22, 23syl2anc 584 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥))
2524adantr 480 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥))
266ffnd 6738 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn 𝐴)
2726ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝐹 Fn 𝐴)
28 simplr 769 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗𝐴)
2920sseli 3991 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℝ → 𝑘 ∈ ℝ*)
3029ad3antlr 731 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑘 ∈ ℝ*)
31 pnfxr 11313 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
3231a1i 11 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → +∞ ∈ ℝ*)
3320a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐴) → ℝ ⊆ ℝ*)
344sselda 3995 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐴) → 𝑗 ∈ ℝ)
3533, 34sseldd 3996 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝐴) → 𝑗 ∈ ℝ*)
3635ad4ant13 751 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗 ∈ ℝ*)
37 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑘𝑗)
3834ltpnfd 13161 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝐴) → 𝑗 < +∞)
3938ad4ant13 751 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗 < +∞)
4030, 32, 36, 37, 39elicod 13434 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗 ∈ (𝑘[,)+∞))
4127, 28, 40fnfvimad 7254 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ∈ (𝐹 “ (𝑘[,)+∞)))
4241adantllr 719 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ∈ (𝐹 “ (𝑘[,)+∞)))
43 simpllr 776 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥)
44 breq1 5151 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑗) → (𝑦𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
4544rspcva 3620 . . . . . . . . . . 11 (((𝐹𝑗) ∈ (𝐹 “ (𝑘[,)+∞)) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) → (𝐹𝑗) ≤ 𝑥)
4642, 43, 45syl2anc 584 . . . . . . . . . 10 (((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ≤ 𝑥)
4746adantl4r 755 . . . . . . . . 9 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ≤ 𝑥)
4847ex 412 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) ∧ 𝑗𝐴) → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
4948ralrimiva 3144 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) → ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
5049ex 412 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥 → ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
51 nfcv 2903 . . . . . . . . . . . . . 14 𝑗𝐹
5226adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → 𝐹 Fn 𝐴)
53 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → 𝑦 ∈ (𝐹 “ (𝑘[,)+∞)))
5451, 52, 53fvelimad 6976 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → ∃𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑗) = 𝑦)
5554ad4ant14 752 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → ∃𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑗) = 𝑦)
56 nfv 1912 . . . . . . . . . . . . . . 15 𝑗(𝜑𝑘 ∈ ℝ)
57 nfra1 3282 . . . . . . . . . . . . . . 15 𝑗𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)
5856, 57nfan 1897 . . . . . . . . . . . . . 14 𝑗((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
59 nfv 1912 . . . . . . . . . . . . . 14 𝑗 𝑦𝑥
6029adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℝ ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑘 ∈ ℝ*)
6131a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℝ ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → +∞ ∈ ℝ*)
62 elinel2 4212 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞)) → 𝑗 ∈ (𝑘[,)+∞))
6362adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℝ ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑗 ∈ (𝑘[,)+∞))
6460, 61, 63icogelbd 45511 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℝ ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑘𝑗)
6564adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝑘 ∈ ℝ ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑘𝑗)
66 elinel1 4211 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞)) → 𝑗𝐴)
6766adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑗𝐴)
68 rspa 3246 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ∧ 𝑗𝐴) → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
6967, 68syldan 591 . . . . . . . . . . . . . . . . . . 19 ((∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
7069adantll 714 . . . . . . . . . . . . . . . . . 18 (((𝑘 ∈ ℝ ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
7165, 70mpd 15 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℝ ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝐹𝑗) ≤ 𝑥)
72 id 22 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑗) = 𝑦 → (𝐹𝑗) = 𝑦)
7372eqcomd 2741 . . . . . . . . . . . . . . . . . . . 20 ((𝐹𝑗) = 𝑦𝑦 = (𝐹𝑗))
7473adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝐹𝑗) ≤ 𝑥 ∧ (𝐹𝑗) = 𝑦) → 𝑦 = (𝐹𝑗))
75 simpl 482 . . . . . . . . . . . . . . . . . . 19 (((𝐹𝑗) ≤ 𝑥 ∧ (𝐹𝑗) = 𝑦) → (𝐹𝑗) ≤ 𝑥)
7674, 75eqbrtrd 5170 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑗) ≤ 𝑥 ∧ (𝐹𝑗) = 𝑦) → 𝑦𝑥)
7776ex 412 . . . . . . . . . . . . . . . . 17 ((𝐹𝑗) ≤ 𝑥 → ((𝐹𝑗) = 𝑦𝑦𝑥))
7871, 77syl 17 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℝ ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → ((𝐹𝑗) = 𝑦𝑦𝑥))
7978adantlll 718 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → ((𝐹𝑗) = 𝑦𝑦𝑥))
8079ex 412 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞)) → ((𝐹𝑗) = 𝑦𝑦𝑥)))
8158, 59, 80rexlimd 3264 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (∃𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑗) = 𝑦𝑦𝑥))
8281imp 406 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ ∃𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑗) = 𝑦) → 𝑦𝑥)
8355, 82syldan 591 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → 𝑦𝑥)
8483ralrimiva 3144 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥)
8584adantllr 719 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥)
8624ad2antrr 726 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥))
8785, 86mpbird 257 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥)
8887ex 412 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥))
8988, 25sylibd 239 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥))
9050, 89impbid 212 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥 ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9125, 90bitrd 279 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9291rexbidva 3175 . . 3 ((𝜑𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9392ralbidva 3174 . 2 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9413, 18, 933bitr2d 307 1 (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  Vcvv 3478  cin 3962  wss 3963   class class class wbr 5148  cmpt 5231  ran crn 5690  cima 5692   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  supcsup 9478  infcinf 9479  cr 11152  +∞cpnf 11290  -∞cmnf 11291  *cxr 11292   < clt 11293  cle 11294  [,)cico 13386  lim supclsp 15503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-ico 13390  df-limsup 15504
This theorem is referenced by:  limsupmnf  45677
  Copyright terms: Public domain W3C validator