Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupmnflem Structured version   Visualization version   GIF version

Theorem limsupmnflem 44436
Description: The superior limit of a function is -∞ if and only if every real number is the upper bound of the restriction of the function to an upper interval of real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupmnflem.a (πœ‘ β†’ 𝐴 βŠ† ℝ)
limsupmnflem.f (πœ‘ β†’ 𝐹:π΄βŸΆβ„*)
limsupmnflem.g 𝐺 = (π‘˜ ∈ ℝ ↦ sup((𝐹 β€œ (π‘˜[,)+∞)), ℝ*, < ))
Assertion
Ref Expression
limsupmnflem (πœ‘ β†’ ((lim supβ€˜πΉ) = -∞ ↔ βˆ€π‘₯ ∈ ℝ βˆƒπ‘˜ ∈ ℝ βˆ€π‘— ∈ 𝐴 (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯)))
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,π‘˜,π‘₯   πœ‘,𝑗,π‘˜,π‘₯
Allowed substitution hints:   𝐴(π‘₯,π‘˜)   𝐺(π‘₯,𝑗,π‘˜)

Proof of Theorem limsupmnflem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1918 . . . . 5 β„²π‘˜πœ‘
2 reex 11201 . . . . . . 7 ℝ ∈ V
32a1i 11 . . . . . 6 (πœ‘ β†’ ℝ ∈ V)
4 limsupmnflem.a . . . . . 6 (πœ‘ β†’ 𝐴 βŠ† ℝ)
53, 4ssexd 5325 . . . . 5 (πœ‘ β†’ 𝐴 ∈ V)
6 limsupmnflem.f . . . . 5 (πœ‘ β†’ 𝐹:π΄βŸΆβ„*)
7 limsupmnflem.g . . . . 5 𝐺 = (π‘˜ ∈ ℝ ↦ sup((𝐹 β€œ (π‘˜[,)+∞)), ℝ*, < ))
81, 5, 6, 7limsupval3 44408 . . . 4 (πœ‘ β†’ (lim supβ€˜πΉ) = inf(ran 𝐺, ℝ*, < ))
97rneqi 5937 . . . . . 6 ran 𝐺 = ran (π‘˜ ∈ ℝ ↦ sup((𝐹 β€œ (π‘˜[,)+∞)), ℝ*, < ))
109infeq1i 9473 . . . . 5 inf(ran 𝐺, ℝ*, < ) = inf(ran (π‘˜ ∈ ℝ ↦ sup((𝐹 β€œ (π‘˜[,)+∞)), ℝ*, < )), ℝ*, < )
1110a1i 11 . . . 4 (πœ‘ β†’ inf(ran 𝐺, ℝ*, < ) = inf(ran (π‘˜ ∈ ℝ ↦ sup((𝐹 β€œ (π‘˜[,)+∞)), ℝ*, < )), ℝ*, < ))
128, 11eqtrd 2773 . . 3 (πœ‘ β†’ (lim supβ€˜πΉ) = inf(ran (π‘˜ ∈ ℝ ↦ sup((𝐹 β€œ (π‘˜[,)+∞)), ℝ*, < )), ℝ*, < ))
1312eqeq1d 2735 . 2 (πœ‘ β†’ ((lim supβ€˜πΉ) = -∞ ↔ inf(ran (π‘˜ ∈ ℝ ↦ sup((𝐹 β€œ (π‘˜[,)+∞)), ℝ*, < )), ℝ*, < ) = -∞))
14 nfv 1918 . . 3 β„²π‘₯πœ‘
156fimassd 43930 . . . . 5 (πœ‘ β†’ (𝐹 β€œ (π‘˜[,)+∞)) βŠ† ℝ*)
1615adantr 482 . . . 4 ((πœ‘ ∧ π‘˜ ∈ ℝ) β†’ (𝐹 β€œ (π‘˜[,)+∞)) βŠ† ℝ*)
1716supxrcld 43796 . . 3 ((πœ‘ ∧ π‘˜ ∈ ℝ) β†’ sup((𝐹 β€œ (π‘˜[,)+∞)), ℝ*, < ) ∈ ℝ*)
181, 14, 17infxrunb3rnmpt 44138 . 2 (πœ‘ β†’ (βˆ€π‘₯ ∈ ℝ βˆƒπ‘˜ ∈ ℝ sup((𝐹 β€œ (π‘˜[,)+∞)), ℝ*, < ) ≀ π‘₯ ↔ inf(ran (π‘˜ ∈ ℝ ↦ sup((𝐹 β€œ (π‘˜[,)+∞)), ℝ*, < )), ℝ*, < ) = -∞))
1915adantr 482 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ (𝐹 β€œ (π‘˜[,)+∞)) βŠ† ℝ*)
20 ressxr 11258 . . . . . . . . 9 ℝ βŠ† ℝ*
2120a1i 11 . . . . . . . 8 (πœ‘ β†’ ℝ βŠ† ℝ*)
2221sselda 3983 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ π‘₯ ∈ ℝ*)
23 supxrleub 13305 . . . . . . 7 (((𝐹 β€œ (π‘˜[,)+∞)) βŠ† ℝ* ∧ π‘₯ ∈ ℝ*) β†’ (sup((𝐹 β€œ (π‘˜[,)+∞)), ℝ*, < ) ≀ π‘₯ ↔ βˆ€π‘¦ ∈ (𝐹 β€œ (π‘˜[,)+∞))𝑦 ≀ π‘₯))
2419, 22, 23syl2anc 585 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ (sup((𝐹 β€œ (π‘˜[,)+∞)), ℝ*, < ) ≀ π‘₯ ↔ βˆ€π‘¦ ∈ (𝐹 β€œ (π‘˜[,)+∞))𝑦 ≀ π‘₯))
2524adantr 482 . . . . 5 (((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ π‘˜ ∈ ℝ) β†’ (sup((𝐹 β€œ (π‘˜[,)+∞)), ℝ*, < ) ≀ π‘₯ ↔ βˆ€π‘¦ ∈ (𝐹 β€œ (π‘˜[,)+∞))𝑦 ≀ π‘₯))
266ffnd 6719 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐹 Fn 𝐴)
2726ad3antrrr 729 . . . . . . . . . . . . 13 ((((πœ‘ ∧ π‘˜ ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ π‘˜ ≀ 𝑗) β†’ 𝐹 Fn 𝐴)
28 simplr 768 . . . . . . . . . . . . 13 ((((πœ‘ ∧ π‘˜ ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ π‘˜ ≀ 𝑗) β†’ 𝑗 ∈ 𝐴)
2920sseli 3979 . . . . . . . . . . . . . . 15 (π‘˜ ∈ ℝ β†’ π‘˜ ∈ ℝ*)
3029ad3antlr 730 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ π‘˜ ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ π‘˜ ≀ 𝑗) β†’ π‘˜ ∈ ℝ*)
31 pnfxr 11268 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
3231a1i 11 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ π‘˜ ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ π‘˜ ≀ 𝑗) β†’ +∞ ∈ ℝ*)
3320a1i 11 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑗 ∈ 𝐴) β†’ ℝ βŠ† ℝ*)
344sselda 3983 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑗 ∈ 𝐴) β†’ 𝑗 ∈ ℝ)
3533, 34sseldd 3984 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑗 ∈ 𝐴) β†’ 𝑗 ∈ ℝ*)
3635ad4ant13 750 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ π‘˜ ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ π‘˜ ≀ 𝑗) β†’ 𝑗 ∈ ℝ*)
37 simpr 486 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ π‘˜ ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ π‘˜ ≀ 𝑗) β†’ π‘˜ ≀ 𝑗)
3834ltpnfd 13101 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑗 ∈ 𝐴) β†’ 𝑗 < +∞)
3938ad4ant13 750 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ π‘˜ ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ π‘˜ ≀ 𝑗) β†’ 𝑗 < +∞)
4030, 32, 36, 37, 39elicod 13374 . . . . . . . . . . . . 13 ((((πœ‘ ∧ π‘˜ ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ π‘˜ ≀ 𝑗) β†’ 𝑗 ∈ (π‘˜[,)+∞))
4127, 28, 40fnfvimad 7236 . . . . . . . . . . . 12 ((((πœ‘ ∧ π‘˜ ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ π‘˜ ≀ 𝑗) β†’ (πΉβ€˜π‘—) ∈ (𝐹 β€œ (π‘˜[,)+∞)))
4241adantllr 718 . . . . . . . . . . 11 (((((πœ‘ ∧ π‘˜ ∈ ℝ) ∧ βˆ€π‘¦ ∈ (𝐹 β€œ (π‘˜[,)+∞))𝑦 ≀ π‘₯) ∧ 𝑗 ∈ 𝐴) ∧ π‘˜ ≀ 𝑗) β†’ (πΉβ€˜π‘—) ∈ (𝐹 β€œ (π‘˜[,)+∞)))
43 simpllr 775 . . . . . . . . . . 11 (((((πœ‘ ∧ π‘˜ ∈ ℝ) ∧ βˆ€π‘¦ ∈ (𝐹 β€œ (π‘˜[,)+∞))𝑦 ≀ π‘₯) ∧ 𝑗 ∈ 𝐴) ∧ π‘˜ ≀ 𝑗) β†’ βˆ€π‘¦ ∈ (𝐹 β€œ (π‘˜[,)+∞))𝑦 ≀ π‘₯)
44 breq1 5152 . . . . . . . . . . . 12 (𝑦 = (πΉβ€˜π‘—) β†’ (𝑦 ≀ π‘₯ ↔ (πΉβ€˜π‘—) ≀ π‘₯))
4544rspcva 3611 . . . . . . . . . . 11 (((πΉβ€˜π‘—) ∈ (𝐹 β€œ (π‘˜[,)+∞)) ∧ βˆ€π‘¦ ∈ (𝐹 β€œ (π‘˜[,)+∞))𝑦 ≀ π‘₯) β†’ (πΉβ€˜π‘—) ≀ π‘₯)
4642, 43, 45syl2anc 585 . . . . . . . . . 10 (((((πœ‘ ∧ π‘˜ ∈ ℝ) ∧ βˆ€π‘¦ ∈ (𝐹 β€œ (π‘˜[,)+∞))𝑦 ≀ π‘₯) ∧ 𝑗 ∈ 𝐴) ∧ π‘˜ ≀ 𝑗) β†’ (πΉβ€˜π‘—) ≀ π‘₯)
4746adantl4r 754 . . . . . . . . 9 ((((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ π‘˜ ∈ ℝ) ∧ βˆ€π‘¦ ∈ (𝐹 β€œ (π‘˜[,)+∞))𝑦 ≀ π‘₯) ∧ 𝑗 ∈ 𝐴) ∧ π‘˜ ≀ 𝑗) β†’ (πΉβ€˜π‘—) ≀ π‘₯)
4847ex 414 . . . . . . . 8 (((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ π‘˜ ∈ ℝ) ∧ βˆ€π‘¦ ∈ (𝐹 β€œ (π‘˜[,)+∞))𝑦 ≀ π‘₯) ∧ 𝑗 ∈ 𝐴) β†’ (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯))
4948ralrimiva 3147 . . . . . . 7 ((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ π‘˜ ∈ ℝ) ∧ βˆ€π‘¦ ∈ (𝐹 β€œ (π‘˜[,)+∞))𝑦 ≀ π‘₯) β†’ βˆ€π‘— ∈ 𝐴 (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯))
5049ex 414 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ π‘˜ ∈ ℝ) β†’ (βˆ€π‘¦ ∈ (𝐹 β€œ (π‘˜[,)+∞))𝑦 ≀ π‘₯ β†’ βˆ€π‘— ∈ 𝐴 (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯)))
51 nfcv 2904 . . . . . . . . . . . . . 14 Ⅎ𝑗𝐹
5226adantr 482 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑦 ∈ (𝐹 β€œ (π‘˜[,)+∞))) β†’ 𝐹 Fn 𝐴)
53 simpr 486 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑦 ∈ (𝐹 β€œ (π‘˜[,)+∞))) β†’ 𝑦 ∈ (𝐹 β€œ (π‘˜[,)+∞)))
5451, 52, 53fvelimad 6960 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑦 ∈ (𝐹 β€œ (π‘˜[,)+∞))) β†’ βˆƒπ‘— ∈ (𝐴 ∩ (π‘˜[,)+∞))(πΉβ€˜π‘—) = 𝑦)
5554ad4ant14 751 . . . . . . . . . . . 12 ((((πœ‘ ∧ π‘˜ ∈ ℝ) ∧ βˆ€π‘— ∈ 𝐴 (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯)) ∧ 𝑦 ∈ (𝐹 β€œ (π‘˜[,)+∞))) β†’ βˆƒπ‘— ∈ (𝐴 ∩ (π‘˜[,)+∞))(πΉβ€˜π‘—) = 𝑦)
56 nfv 1918 . . . . . . . . . . . . . . 15 Ⅎ𝑗(πœ‘ ∧ π‘˜ ∈ ℝ)
57 nfra1 3282 . . . . . . . . . . . . . . 15 β„²π‘—βˆ€π‘— ∈ 𝐴 (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯)
5856, 57nfan 1903 . . . . . . . . . . . . . 14 Ⅎ𝑗((πœ‘ ∧ π‘˜ ∈ ℝ) ∧ βˆ€π‘— ∈ 𝐴 (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯))
59 nfv 1918 . . . . . . . . . . . . . 14 Ⅎ𝑗 𝑦 ≀ π‘₯
6029adantr 482 . . . . . . . . . . . . . . . . . . . 20 ((π‘˜ ∈ ℝ ∧ 𝑗 ∈ (𝐴 ∩ (π‘˜[,)+∞))) β†’ π‘˜ ∈ ℝ*)
6131a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((π‘˜ ∈ ℝ ∧ 𝑗 ∈ (𝐴 ∩ (π‘˜[,)+∞))) β†’ +∞ ∈ ℝ*)
62 elinel2 4197 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (𝐴 ∩ (π‘˜[,)+∞)) β†’ 𝑗 ∈ (π‘˜[,)+∞))
6362adantl 483 . . . . . . . . . . . . . . . . . . . 20 ((π‘˜ ∈ ℝ ∧ 𝑗 ∈ (𝐴 ∩ (π‘˜[,)+∞))) β†’ 𝑗 ∈ (π‘˜[,)+∞))
6460, 61, 63icogelbd 44271 . . . . . . . . . . . . . . . . . . 19 ((π‘˜ ∈ ℝ ∧ 𝑗 ∈ (𝐴 ∩ (π‘˜[,)+∞))) β†’ π‘˜ ≀ 𝑗)
6564adantlr 714 . . . . . . . . . . . . . . . . . 18 (((π‘˜ ∈ ℝ ∧ βˆ€π‘— ∈ 𝐴 (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯)) ∧ 𝑗 ∈ (𝐴 ∩ (π‘˜[,)+∞))) β†’ π‘˜ ≀ 𝑗)
66 elinel1 4196 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (𝐴 ∩ (π‘˜[,)+∞)) β†’ 𝑗 ∈ 𝐴)
6766adantl 483 . . . . . . . . . . . . . . . . . . . 20 ((βˆ€π‘— ∈ 𝐴 (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯) ∧ 𝑗 ∈ (𝐴 ∩ (π‘˜[,)+∞))) β†’ 𝑗 ∈ 𝐴)
68 rspa 3246 . . . . . . . . . . . . . . . . . . . 20 ((βˆ€π‘— ∈ 𝐴 (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯) ∧ 𝑗 ∈ 𝐴) β†’ (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯))
6967, 68syldan 592 . . . . . . . . . . . . . . . . . . 19 ((βˆ€π‘— ∈ 𝐴 (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯) ∧ 𝑗 ∈ (𝐴 ∩ (π‘˜[,)+∞))) β†’ (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯))
7069adantll 713 . . . . . . . . . . . . . . . . . 18 (((π‘˜ ∈ ℝ ∧ βˆ€π‘— ∈ 𝐴 (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯)) ∧ 𝑗 ∈ (𝐴 ∩ (π‘˜[,)+∞))) β†’ (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯))
7165, 70mpd 15 . . . . . . . . . . . . . . . . 17 (((π‘˜ ∈ ℝ ∧ βˆ€π‘— ∈ 𝐴 (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯)) ∧ 𝑗 ∈ (𝐴 ∩ (π‘˜[,)+∞))) β†’ (πΉβ€˜π‘—) ≀ π‘₯)
72 id 22 . . . . . . . . . . . . . . . . . . . . 21 ((πΉβ€˜π‘—) = 𝑦 β†’ (πΉβ€˜π‘—) = 𝑦)
7372eqcomd 2739 . . . . . . . . . . . . . . . . . . . 20 ((πΉβ€˜π‘—) = 𝑦 β†’ 𝑦 = (πΉβ€˜π‘—))
7473adantl 483 . . . . . . . . . . . . . . . . . . 19 (((πΉβ€˜π‘—) ≀ π‘₯ ∧ (πΉβ€˜π‘—) = 𝑦) β†’ 𝑦 = (πΉβ€˜π‘—))
75 simpl 484 . . . . . . . . . . . . . . . . . . 19 (((πΉβ€˜π‘—) ≀ π‘₯ ∧ (πΉβ€˜π‘—) = 𝑦) β†’ (πΉβ€˜π‘—) ≀ π‘₯)
7674, 75eqbrtrd 5171 . . . . . . . . . . . . . . . . . 18 (((πΉβ€˜π‘—) ≀ π‘₯ ∧ (πΉβ€˜π‘—) = 𝑦) β†’ 𝑦 ≀ π‘₯)
7776ex 414 . . . . . . . . . . . . . . . . 17 ((πΉβ€˜π‘—) ≀ π‘₯ β†’ ((πΉβ€˜π‘—) = 𝑦 β†’ 𝑦 ≀ π‘₯))
7871, 77syl 17 . . . . . . . . . . . . . . . 16 (((π‘˜ ∈ ℝ ∧ βˆ€π‘— ∈ 𝐴 (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯)) ∧ 𝑗 ∈ (𝐴 ∩ (π‘˜[,)+∞))) β†’ ((πΉβ€˜π‘—) = 𝑦 β†’ 𝑦 ≀ π‘₯))
7978adantlll 717 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ π‘˜ ∈ ℝ) ∧ βˆ€π‘— ∈ 𝐴 (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯)) ∧ 𝑗 ∈ (𝐴 ∩ (π‘˜[,)+∞))) β†’ ((πΉβ€˜π‘—) = 𝑦 β†’ 𝑦 ≀ π‘₯))
8079ex 414 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘˜ ∈ ℝ) ∧ βˆ€π‘— ∈ 𝐴 (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯)) β†’ (𝑗 ∈ (𝐴 ∩ (π‘˜[,)+∞)) β†’ ((πΉβ€˜π‘—) = 𝑦 β†’ 𝑦 ≀ π‘₯)))
8158, 59, 80rexlimd 3264 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘˜ ∈ ℝ) ∧ βˆ€π‘— ∈ 𝐴 (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯)) β†’ (βˆƒπ‘— ∈ (𝐴 ∩ (π‘˜[,)+∞))(πΉβ€˜π‘—) = 𝑦 β†’ 𝑦 ≀ π‘₯))
8281imp 408 . . . . . . . . . . . 12 ((((πœ‘ ∧ π‘˜ ∈ ℝ) ∧ βˆ€π‘— ∈ 𝐴 (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯)) ∧ βˆƒπ‘— ∈ (𝐴 ∩ (π‘˜[,)+∞))(πΉβ€˜π‘—) = 𝑦) β†’ 𝑦 ≀ π‘₯)
8355, 82syldan 592 . . . . . . . . . . 11 ((((πœ‘ ∧ π‘˜ ∈ ℝ) ∧ βˆ€π‘— ∈ 𝐴 (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯)) ∧ 𝑦 ∈ (𝐹 β€œ (π‘˜[,)+∞))) β†’ 𝑦 ≀ π‘₯)
8483ralrimiva 3147 . . . . . . . . . 10 (((πœ‘ ∧ π‘˜ ∈ ℝ) ∧ βˆ€π‘— ∈ 𝐴 (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯)) β†’ βˆ€π‘¦ ∈ (𝐹 β€œ (π‘˜[,)+∞))𝑦 ≀ π‘₯)
8584adantllr 718 . . . . . . . . 9 ((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ π‘˜ ∈ ℝ) ∧ βˆ€π‘— ∈ 𝐴 (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯)) β†’ βˆ€π‘¦ ∈ (𝐹 β€œ (π‘˜[,)+∞))𝑦 ≀ π‘₯)
8624ad2antrr 725 . . . . . . . . 9 ((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ π‘˜ ∈ ℝ) ∧ βˆ€π‘— ∈ 𝐴 (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯)) β†’ (sup((𝐹 β€œ (π‘˜[,)+∞)), ℝ*, < ) ≀ π‘₯ ↔ βˆ€π‘¦ ∈ (𝐹 β€œ (π‘˜[,)+∞))𝑦 ≀ π‘₯))
8785, 86mpbird 257 . . . . . . . 8 ((((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ π‘˜ ∈ ℝ) ∧ βˆ€π‘— ∈ 𝐴 (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯)) β†’ sup((𝐹 β€œ (π‘˜[,)+∞)), ℝ*, < ) ≀ π‘₯)
8887ex 414 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ π‘˜ ∈ ℝ) β†’ (βˆ€π‘— ∈ 𝐴 (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯) β†’ sup((𝐹 β€œ (π‘˜[,)+∞)), ℝ*, < ) ≀ π‘₯))
8988, 25sylibd 238 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ π‘˜ ∈ ℝ) β†’ (βˆ€π‘— ∈ 𝐴 (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯) β†’ βˆ€π‘¦ ∈ (𝐹 β€œ (π‘˜[,)+∞))𝑦 ≀ π‘₯))
9050, 89impbid 211 . . . . 5 (((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ π‘˜ ∈ ℝ) β†’ (βˆ€π‘¦ ∈ (𝐹 β€œ (π‘˜[,)+∞))𝑦 ≀ π‘₯ ↔ βˆ€π‘— ∈ 𝐴 (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯)))
9125, 90bitrd 279 . . . 4 (((πœ‘ ∧ π‘₯ ∈ ℝ) ∧ π‘˜ ∈ ℝ) β†’ (sup((𝐹 β€œ (π‘˜[,)+∞)), ℝ*, < ) ≀ π‘₯ ↔ βˆ€π‘— ∈ 𝐴 (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯)))
9291rexbidva 3177 . . 3 ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ (βˆƒπ‘˜ ∈ ℝ sup((𝐹 β€œ (π‘˜[,)+∞)), ℝ*, < ) ≀ π‘₯ ↔ βˆƒπ‘˜ ∈ ℝ βˆ€π‘— ∈ 𝐴 (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯)))
9392ralbidva 3176 . 2 (πœ‘ β†’ (βˆ€π‘₯ ∈ ℝ βˆƒπ‘˜ ∈ ℝ sup((𝐹 β€œ (π‘˜[,)+∞)), ℝ*, < ) ≀ π‘₯ ↔ βˆ€π‘₯ ∈ ℝ βˆƒπ‘˜ ∈ ℝ βˆ€π‘— ∈ 𝐴 (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯)))
9413, 18, 933bitr2d 307 1 (πœ‘ β†’ ((lim supβ€˜πΉ) = -∞ ↔ βˆ€π‘₯ ∈ ℝ βˆƒπ‘˜ ∈ ℝ βˆ€π‘— ∈ 𝐴 (π‘˜ ≀ 𝑗 β†’ (πΉβ€˜π‘—) ≀ π‘₯)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  βˆƒwrex 3071  Vcvv 3475   ∩ cin 3948   βŠ† wss 3949   class class class wbr 5149   ↦ cmpt 5232  ran crn 5678   β€œ cima 5680   Fn wfn 6539  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409  supcsup 9435  infcinf 9436  β„cr 11109  +∞cpnf 11245  -∞cmnf 11246  β„*cxr 11247   < clt 11248   ≀ cle 11249  [,)cico 13326  lim supclsp 15414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-inf 9438  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-ico 13330  df-limsup 15415
This theorem is referenced by:  limsupmnf  44437
  Copyright terms: Public domain W3C validator