Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupmnflem Structured version   Visualization version   GIF version

Theorem limsupmnflem 42355
 Description: The superior limit of a function is -∞ if and only if every real number is the upper bound of the restriction of the function to an upper interval of real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupmnflem.a (𝜑𝐴 ⊆ ℝ)
limsupmnflem.f (𝜑𝐹:𝐴⟶ℝ*)
limsupmnflem.g 𝐺 = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ))
Assertion
Ref Expression
limsupmnflem (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐺(𝑥,𝑗,𝑘)

Proof of Theorem limsupmnflem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . . . 5 𝑘𝜑
2 reex 10621 . . . . . . 7 ℝ ∈ V
32a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
4 limsupmnflem.a . . . . . 6 (𝜑𝐴 ⊆ ℝ)
53, 4ssexd 5195 . . . . 5 (𝜑𝐴 ∈ V)
6 limsupmnflem.f . . . . 5 (𝜑𝐹:𝐴⟶ℝ*)
7 limsupmnflem.g . . . . 5 𝐺 = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ))
81, 5, 6, 7limsupval3 42327 . . . 4 (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
97rneqi 5775 . . . . . 6 ran 𝐺 = ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ))
109infeq1i 8930 . . . . 5 inf(ran 𝐺, ℝ*, < ) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < )
1110a1i 11 . . . 4 (𝜑 → inf(ran 𝐺, ℝ*, < ) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ))
128, 11eqtrd 2836 . . 3 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ))
1312eqeq1d 2803 . 2 (𝜑 → ((lim sup‘𝐹) = -∞ ↔ inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) = -∞))
14 nfv 1915 . . 3 𝑥𝜑
156fimassd 41857 . . . . 5 (𝜑 → (𝐹 “ (𝑘[,)+∞)) ⊆ ℝ*)
1615adantr 484 . . . 4 ((𝜑𝑘 ∈ ℝ) → (𝐹 “ (𝑘[,)+∞)) ⊆ ℝ*)
1716supxrcld 41736 . . 3 ((𝜑𝑘 ∈ ℝ) → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ∈ ℝ*)
181, 14, 17infxrunb3rnmpt 42058 . 2 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) = -∞))
1915adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (𝑘[,)+∞)) ⊆ ℝ*)
20 ressxr 10678 . . . . . . . . 9 ℝ ⊆ ℝ*
2120a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℝ*)
2221sselda 3918 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ*)
23 supxrleub 12711 . . . . . . 7 (((𝐹 “ (𝑘[,)+∞)) ⊆ ℝ*𝑥 ∈ ℝ*) → (sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥))
2419, 22, 23syl2anc 587 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥))
2524adantr 484 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥))
266ffnd 6492 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn 𝐴)
2726ad3antrrr 729 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝐹 Fn 𝐴)
28 simplr 768 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗𝐴)
2920sseli 3914 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℝ → 𝑘 ∈ ℝ*)
3029ad3antlr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑘 ∈ ℝ*)
31 pnfxr 10688 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
3231a1i 11 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → +∞ ∈ ℝ*)
3320a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐴) → ℝ ⊆ ℝ*)
344sselda 3918 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐴) → 𝑗 ∈ ℝ)
3533, 34sseldd 3919 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝐴) → 𝑗 ∈ ℝ*)
3635ad4ant13 750 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗 ∈ ℝ*)
37 simpr 488 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑘𝑗)
3834ltpnfd 12508 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝐴) → 𝑗 < +∞)
3938ad4ant13 750 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗 < +∞)
4030, 32, 36, 37, 39elicod 12779 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗 ∈ (𝑘[,)+∞))
4127, 28, 40fnfvimad 6978 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ∈ (𝐹 “ (𝑘[,)+∞)))
4241adantllr 718 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ∈ (𝐹 “ (𝑘[,)+∞)))
43 simpllr 775 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥)
44 breq1 5036 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑗) → (𝑦𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
4544rspcva 3572 . . . . . . . . . . 11 (((𝐹𝑗) ∈ (𝐹 “ (𝑘[,)+∞)) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) → (𝐹𝑗) ≤ 𝑥)
4642, 43, 45syl2anc 587 . . . . . . . . . 10 (((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ≤ 𝑥)
4746adantl4r 754 . . . . . . . . 9 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ≤ 𝑥)
4847ex 416 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) ∧ 𝑗𝐴) → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
4948ralrimiva 3152 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) → ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
5049ex 416 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥 → ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
51 nfcv 2958 . . . . . . . . . . . . . 14 𝑗𝐹
5226adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → 𝐹 Fn 𝐴)
53 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → 𝑦 ∈ (𝐹 “ (𝑘[,)+∞)))
5451, 52, 53fvelimad 6711 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → ∃𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑗) = 𝑦)
5554ad4ant14 751 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → ∃𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑗) = 𝑦)
56 nfv 1915 . . . . . . . . . . . . . . 15 𝑗(𝜑𝑘 ∈ ℝ)
57 nfra1 3186 . . . . . . . . . . . . . . 15 𝑗𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)
5856, 57nfan 1900 . . . . . . . . . . . . . 14 𝑗((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
59 nfv 1915 . . . . . . . . . . . . . 14 𝑗 𝑦𝑥
6029adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℝ ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑘 ∈ ℝ*)
6131a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℝ ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → +∞ ∈ ℝ*)
62 elinel2 4126 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞)) → 𝑗 ∈ (𝑘[,)+∞))
6362adantl 485 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℝ ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑗 ∈ (𝑘[,)+∞))
6460, 61, 63icogelbd 42188 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℝ ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑘𝑗)
6564adantlr 714 . . . . . . . . . . . . . . . . . 18 (((𝑘 ∈ ℝ ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑘𝑗)
66 elinel1 4125 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞)) → 𝑗𝐴)
6766adantl 485 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑗𝐴)
68 rspa 3174 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ∧ 𝑗𝐴) → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
6967, 68syldan 594 . . . . . . . . . . . . . . . . . . 19 ((∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
7069adantll 713 . . . . . . . . . . . . . . . . . 18 (((𝑘 ∈ ℝ ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
7165, 70mpd 15 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℝ ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝐹𝑗) ≤ 𝑥)
72 id 22 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑗) = 𝑦 → (𝐹𝑗) = 𝑦)
7372eqcomd 2807 . . . . . . . . . . . . . . . . . . . 20 ((𝐹𝑗) = 𝑦𝑦 = (𝐹𝑗))
7473adantl 485 . . . . . . . . . . . . . . . . . . 19 (((𝐹𝑗) ≤ 𝑥 ∧ (𝐹𝑗) = 𝑦) → 𝑦 = (𝐹𝑗))
75 simpl 486 . . . . . . . . . . . . . . . . . . 19 (((𝐹𝑗) ≤ 𝑥 ∧ (𝐹𝑗) = 𝑦) → (𝐹𝑗) ≤ 𝑥)
7674, 75eqbrtrd 5055 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑗) ≤ 𝑥 ∧ (𝐹𝑗) = 𝑦) → 𝑦𝑥)
7776ex 416 . . . . . . . . . . . . . . . . 17 ((𝐹𝑗) ≤ 𝑥 → ((𝐹𝑗) = 𝑦𝑦𝑥))
7871, 77syl 17 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℝ ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → ((𝐹𝑗) = 𝑦𝑦𝑥))
7978adantlll 717 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → ((𝐹𝑗) = 𝑦𝑦𝑥))
8079ex 416 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞)) → ((𝐹𝑗) = 𝑦𝑦𝑥)))
8158, 59, 80rexlimd 3279 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (∃𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑗) = 𝑦𝑦𝑥))
8281imp 410 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ ∃𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑗) = 𝑦) → 𝑦𝑥)
8355, 82syldan 594 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → 𝑦𝑥)
8483ralrimiva 3152 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥)
8584adantllr 718 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥)
8624ad2antrr 725 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥))
8785, 86mpbird 260 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥)
8887ex 416 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥))
8988, 25sylibd 242 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥))
9050, 89impbid 215 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥 ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9125, 90bitrd 282 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9291rexbidva 3258 . . 3 ((𝜑𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9392ralbidva 3164 . 2 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9413, 18, 933bitr2d 310 1 (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2112  ∀wral 3109  ∃wrex 3110  Vcvv 3444   ∩ cin 3883   ⊆ wss 3884   class class class wbr 5033   ↦ cmpt 5113  ran crn 5524   “ cima 5526   Fn wfn 6323  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139  supcsup 8892  infcinf 8893  ℝcr 10529  +∞cpnf 10665  -∞cmnf 10666  ℝ*cxr 10667   < clt 10668   ≤ cle 10669  [,)cico 12732  lim supclsp 14823 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-po 5442  df-so 5443  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-ico 12736  df-limsup 14824 This theorem is referenced by:  limsupmnf  42356
 Copyright terms: Public domain W3C validator