Step | Hyp | Ref
| Expression |
1 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑘𝜑 |
2 | | reex 10893 |
. . . . . . 7
⊢ ℝ
∈ V |
3 | 2 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ℝ ∈
V) |
4 | | limsupmnflem.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
5 | 3, 4 | ssexd 5243 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ V) |
6 | | limsupmnflem.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
7 | | limsupmnflem.g |
. . . . 5
⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, <
)) |
8 | 1, 5, 6, 7 | limsupval3 43123 |
. . . 4
⊢ (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, <
)) |
9 | 7 | rneqi 5835 |
. . . . . 6
⊢ ran 𝐺 = ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, <
)) |
10 | 9 | infeq1i 9167 |
. . . . 5
⊢ inf(ran
𝐺, ℝ*,
< ) = inf(ran (𝑘 ∈
ℝ ↦ sup((𝐹
“ (𝑘[,)+∞)),
ℝ*, < )), ℝ*, < ) |
11 | 10 | a1i 11 |
. . . 4
⊢ (𝜑 → inf(ran 𝐺, ℝ*, < ) = inf(ran
(𝑘 ∈ ℝ ↦
sup((𝐹 “ (𝑘[,)+∞)),
ℝ*, < )), ℝ*, < )) |
12 | 8, 11 | eqtrd 2778 |
. . 3
⊢ (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )),
ℝ*, < )) |
13 | 12 | eqeq1d 2740 |
. 2
⊢ (𝜑 → ((lim sup‘𝐹) = -∞ ↔ inf(ran
(𝑘 ∈ ℝ ↦
sup((𝐹 “ (𝑘[,)+∞)),
ℝ*, < )), ℝ*, < ) =
-∞)) |
14 | | nfv 1918 |
. . 3
⊢
Ⅎ𝑥𝜑 |
15 | 6 | fimassd 42660 |
. . . . 5
⊢ (𝜑 → (𝐹 “ (𝑘[,)+∞)) ⊆
ℝ*) |
16 | 15 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → (𝐹 “ (𝑘[,)+∞)) ⊆
ℝ*) |
17 | 16 | supxrcld 42546 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℝ) → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )
∈ ℝ*) |
18 | 1, 14, 17 | infxrunb3rnmpt 42858 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )
≤ 𝑥 ↔ inf(ran
(𝑘 ∈ ℝ ↦
sup((𝐹 “ (𝑘[,)+∞)),
ℝ*, < )), ℝ*, < ) =
-∞)) |
19 | 15 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹 “ (𝑘[,)+∞)) ⊆
ℝ*) |
20 | | ressxr 10950 |
. . . . . . . . 9
⊢ ℝ
⊆ ℝ* |
21 | 20 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ℝ ⊆
ℝ*) |
22 | 21 | sselda 3917 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ*) |
23 | | supxrleub 12989 |
. . . . . . 7
⊢ (((𝐹 “ (𝑘[,)+∞)) ⊆ ℝ*
∧ 𝑥 ∈
ℝ*) → (sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )
≤ 𝑥 ↔ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦 ≤ 𝑥)) |
24 | 19, 22, 23 | syl2anc 583 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )
≤ 𝑥 ↔ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦 ≤ 𝑥)) |
25 | 24 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )
≤ 𝑥 ↔ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦 ≤ 𝑥)) |
26 | 6 | ffnd 6585 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 Fn 𝐴) |
27 | 26 | ad3antrrr 726 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ≤ 𝑗) → 𝐹 Fn 𝐴) |
28 | | simplr 765 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ≤ 𝑗) → 𝑗 ∈ 𝐴) |
29 | 20 | sseli 3913 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℝ → 𝑘 ∈
ℝ*) |
30 | 29 | ad3antlr 727 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ≤ 𝑗) → 𝑘 ∈ ℝ*) |
31 | | pnfxr 10960 |
. . . . . . . . . . . . . . 15
⊢ +∞
∈ ℝ* |
32 | 31 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ≤ 𝑗) → +∞ ∈
ℝ*) |
33 | 20 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ℝ ⊆
ℝ*) |
34 | 4 | sselda 3917 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝑗 ∈ ℝ) |
35 | 33, 34 | sseldd 3918 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝑗 ∈ ℝ*) |
36 | 35 | ad4ant13 747 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ≤ 𝑗) → 𝑗 ∈ ℝ*) |
37 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ≤ 𝑗) → 𝑘 ≤ 𝑗) |
38 | 34 | ltpnfd 12786 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝑗 < +∞) |
39 | 38 | ad4ant13 747 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ≤ 𝑗) → 𝑗 < +∞) |
40 | 30, 32, 36, 37, 39 | elicod 13058 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ≤ 𝑗) → 𝑗 ∈ (𝑘[,)+∞)) |
41 | 27, 28, 40 | fnfvimad 7092 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ≤ 𝑗) → (𝐹‘𝑗) ∈ (𝐹 “ (𝑘[,)+∞))) |
42 | 41 | adantllr 715 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑘 ∈ ℝ) ∧
∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦 ≤ 𝑥) ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ≤ 𝑗) → (𝐹‘𝑗) ∈ (𝐹 “ (𝑘[,)+∞))) |
43 | | simpllr 772 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑘 ∈ ℝ) ∧
∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦 ≤ 𝑥) ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ≤ 𝑗) → ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦 ≤ 𝑥) |
44 | | breq1 5073 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐹‘𝑗) → (𝑦 ≤ 𝑥 ↔ (𝐹‘𝑗) ≤ 𝑥)) |
45 | 44 | rspcva 3550 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑗) ∈ (𝐹 “ (𝑘[,)+∞)) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦 ≤ 𝑥) → (𝐹‘𝑗) ≤ 𝑥) |
46 | 42, 43, 45 | syl2anc 583 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑘 ∈ ℝ) ∧
∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦 ≤ 𝑥) ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ≤ 𝑗) → (𝐹‘𝑗) ≤ 𝑥) |
47 | 46 | adantl4r 751 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧
∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦 ≤ 𝑥) ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ≤ 𝑗) → (𝐹‘𝑗) ≤ 𝑥) |
48 | 47 | ex 412 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧
∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦 ≤ 𝑥) ∧ 𝑗 ∈ 𝐴) → (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
49 | 48 | ralrimiva 3107 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦 ≤ 𝑥) → ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
50 | 49 | ex 412 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦 ≤ 𝑥 → ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
51 | | nfcv 2906 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗𝐹 |
52 | 26 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → 𝐹 Fn 𝐴) |
53 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → 𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) |
54 | 51, 52, 53 | fvelimad 6818 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → ∃𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹‘𝑗) = 𝑦) |
55 | 54 | ad4ant14 748 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ ℝ) ∧ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) ∧ 𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → ∃𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹‘𝑗) = 𝑦) |
56 | | nfv 1918 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑗(𝜑 ∧ 𝑘 ∈ ℝ) |
57 | | nfra1 3142 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑗∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) |
58 | 56, 57 | nfan 1903 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗((𝜑 ∧ 𝑘 ∈ ℝ) ∧ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
59 | | nfv 1918 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗 𝑦 ≤ 𝑥 |
60 | 29 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ ℝ ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑘 ∈ ℝ*) |
61 | 31 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ ℝ ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → +∞ ∈
ℝ*) |
62 | | elinel2 4126 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞)) → 𝑗 ∈ (𝑘[,)+∞)) |
63 | 62 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ ℝ ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑗 ∈ (𝑘[,)+∞)) |
64 | 60, 61, 63 | icogelbd 42986 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℝ ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑘 ≤ 𝑗) |
65 | 64 | adantlr 711 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑘 ∈ ℝ ∧
∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑘 ≤ 𝑗) |
66 | | elinel1 4125 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞)) → 𝑗 ∈ 𝐴) |
67 | 66 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((∀𝑗 ∈
𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑗 ∈ 𝐴) |
68 | | rspa 3130 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((∀𝑗 ∈
𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) ∧ 𝑗 ∈ 𝐴) → (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
69 | 67, 68 | syldan 590 |
. . . . . . . . . . . . . . . . . . 19
⊢
((∀𝑗 ∈
𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
70 | 69 | adantll 710 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑘 ∈ ℝ ∧
∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
71 | 65, 70 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑘 ∈ ℝ ∧
∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝐹‘𝑗) ≤ 𝑥) |
72 | | id 22 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹‘𝑗) = 𝑦 → (𝐹‘𝑗) = 𝑦) |
73 | 72 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹‘𝑗) = 𝑦 → 𝑦 = (𝐹‘𝑗)) |
74 | 73 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹‘𝑗) ≤ 𝑥 ∧ (𝐹‘𝑗) = 𝑦) → 𝑦 = (𝐹‘𝑗)) |
75 | | simpl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹‘𝑗) ≤ 𝑥 ∧ (𝐹‘𝑗) = 𝑦) → (𝐹‘𝑗) ≤ 𝑥) |
76 | 74, 75 | eqbrtrd 5092 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹‘𝑗) ≤ 𝑥 ∧ (𝐹‘𝑗) = 𝑦) → 𝑦 ≤ 𝑥) |
77 | 76 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝑗) ≤ 𝑥 → ((𝐹‘𝑗) = 𝑦 → 𝑦 ≤ 𝑥)) |
78 | 71, 77 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑘 ∈ ℝ ∧
∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → ((𝐹‘𝑗) = 𝑦 → 𝑦 ≤ 𝑥)) |
79 | 78 | adantlll 714 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑘 ∈ ℝ) ∧ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → ((𝐹‘𝑗) = 𝑦 → 𝑦 ≤ 𝑥)) |
80 | 79 | ex 412 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℝ) ∧ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → (𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞)) → ((𝐹‘𝑗) = 𝑦 → 𝑦 ≤ 𝑥))) |
81 | 58, 59, 80 | rexlimd 3245 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℝ) ∧ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → (∃𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹‘𝑗) = 𝑦 → 𝑦 ≤ 𝑥)) |
82 | 81 | imp 406 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ ℝ) ∧ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) ∧ ∃𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹‘𝑗) = 𝑦) → 𝑦 ≤ 𝑥) |
83 | 55, 82 | syldan 590 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ ℝ) ∧ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) ∧ 𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → 𝑦 ≤ 𝑥) |
84 | 83 | ralrimiva 3107 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℝ) ∧ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦 ≤ 𝑥) |
85 | 84 | adantllr 715 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦 ≤ 𝑥) |
86 | 24 | ad2antrr 722 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → (sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )
≤ 𝑥 ↔ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦 ≤ 𝑥)) |
87 | 85, 86 | mpbird 256 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )
≤ 𝑥) |
88 | 87 | ex 412 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )
≤ 𝑥)) |
89 | 88, 25 | sylibd 238 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) → ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦 ≤ 𝑥)) |
90 | 50, 89 | impbid 211 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦 ≤ 𝑥 ↔ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
91 | 25, 90 | bitrd 278 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )
≤ 𝑥 ↔ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
92 | 91 | rexbidva 3224 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )
≤ 𝑥 ↔ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
93 | 92 | ralbidva 3119 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )
≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
94 | 13, 18, 93 | 3bitr2d 306 |
1
⊢ (𝜑 → ((lim sup‘𝐹) = -∞ ↔
∀𝑥 ∈ ℝ
∃𝑘 ∈ ℝ
∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |