Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupmnflem Structured version   Visualization version   GIF version

Theorem limsupmnflem 42890
Description: The superior limit of a function is -∞ if and only if every real number is the upper bound of the restriction of the function to an upper interval of real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupmnflem.a (𝜑𝐴 ⊆ ℝ)
limsupmnflem.f (𝜑𝐹:𝐴⟶ℝ*)
limsupmnflem.g 𝐺 = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ))
Assertion
Ref Expression
limsupmnflem (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐺(𝑥,𝑗,𝑘)

Proof of Theorem limsupmnflem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1922 . . . . 5 𝑘𝜑
2 reex 10803 . . . . . . 7 ℝ ∈ V
32a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
4 limsupmnflem.a . . . . . 6 (𝜑𝐴 ⊆ ℝ)
53, 4ssexd 5206 . . . . 5 (𝜑𝐴 ∈ V)
6 limsupmnflem.f . . . . 5 (𝜑𝐹:𝐴⟶ℝ*)
7 limsupmnflem.g . . . . 5 𝐺 = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ))
81, 5, 6, 7limsupval3 42862 . . . 4 (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
97rneqi 5795 . . . . . 6 ran 𝐺 = ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ))
109infeq1i 9083 . . . . 5 inf(ran 𝐺, ℝ*, < ) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < )
1110a1i 11 . . . 4 (𝜑 → inf(ran 𝐺, ℝ*, < ) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ))
128, 11eqtrd 2774 . . 3 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ))
1312eqeq1d 2736 . 2 (𝜑 → ((lim sup‘𝐹) = -∞ ↔ inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) = -∞))
14 nfv 1922 . . 3 𝑥𝜑
156fimassd 42396 . . . . 5 (𝜑 → (𝐹 “ (𝑘[,)+∞)) ⊆ ℝ*)
1615adantr 484 . . . 4 ((𝜑𝑘 ∈ ℝ) → (𝐹 “ (𝑘[,)+∞)) ⊆ ℝ*)
1716supxrcld 42282 . . 3 ((𝜑𝑘 ∈ ℝ) → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ∈ ℝ*)
181, 14, 17infxrunb3rnmpt 42593 . 2 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) = -∞))
1915adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (𝑘[,)+∞)) ⊆ ℝ*)
20 ressxr 10860 . . . . . . . . 9 ℝ ⊆ ℝ*
2120a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℝ*)
2221sselda 3891 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ*)
23 supxrleub 12899 . . . . . . 7 (((𝐹 “ (𝑘[,)+∞)) ⊆ ℝ*𝑥 ∈ ℝ*) → (sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥))
2419, 22, 23syl2anc 587 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥))
2524adantr 484 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥))
266ffnd 6535 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn 𝐴)
2726ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝐹 Fn 𝐴)
28 simplr 769 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗𝐴)
2920sseli 3887 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℝ → 𝑘 ∈ ℝ*)
3029ad3antlr 731 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑘 ∈ ℝ*)
31 pnfxr 10870 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
3231a1i 11 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → +∞ ∈ ℝ*)
3320a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐴) → ℝ ⊆ ℝ*)
344sselda 3891 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐴) → 𝑗 ∈ ℝ)
3533, 34sseldd 3892 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝐴) → 𝑗 ∈ ℝ*)
3635ad4ant13 751 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗 ∈ ℝ*)
37 simpr 488 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑘𝑗)
3834ltpnfd 12696 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝐴) → 𝑗 < +∞)
3938ad4ant13 751 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗 < +∞)
4030, 32, 36, 37, 39elicod 12968 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗 ∈ (𝑘[,)+∞))
4127, 28, 40fnfvimad 7039 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ∈ (𝐹 “ (𝑘[,)+∞)))
4241adantllr 719 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ∈ (𝐹 “ (𝑘[,)+∞)))
43 simpllr 776 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥)
44 breq1 5046 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑗) → (𝑦𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
4544rspcva 3528 . . . . . . . . . . 11 (((𝐹𝑗) ∈ (𝐹 “ (𝑘[,)+∞)) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) → (𝐹𝑗) ≤ 𝑥)
4642, 43, 45syl2anc 587 . . . . . . . . . 10 (((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ≤ 𝑥)
4746adantl4r 755 . . . . . . . . 9 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ≤ 𝑥)
4847ex 416 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) ∧ 𝑗𝐴) → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
4948ralrimiva 3098 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) → ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
5049ex 416 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥 → ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
51 nfcv 2900 . . . . . . . . . . . . . 14 𝑗𝐹
5226adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → 𝐹 Fn 𝐴)
53 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → 𝑦 ∈ (𝐹 “ (𝑘[,)+∞)))
5451, 52, 53fvelimad 6768 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → ∃𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑗) = 𝑦)
5554ad4ant14 752 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → ∃𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑗) = 𝑦)
56 nfv 1922 . . . . . . . . . . . . . . 15 𝑗(𝜑𝑘 ∈ ℝ)
57 nfra1 3133 . . . . . . . . . . . . . . 15 𝑗𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)
5856, 57nfan 1907 . . . . . . . . . . . . . 14 𝑗((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
59 nfv 1922 . . . . . . . . . . . . . 14 𝑗 𝑦𝑥
6029adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℝ ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑘 ∈ ℝ*)
6131a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℝ ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → +∞ ∈ ℝ*)
62 elinel2 4100 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞)) → 𝑗 ∈ (𝑘[,)+∞))
6362adantl 485 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℝ ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑗 ∈ (𝑘[,)+∞))
6460, 61, 63icogelbd 42723 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℝ ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑘𝑗)
6564adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝑘 ∈ ℝ ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑘𝑗)
66 elinel1 4099 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞)) → 𝑗𝐴)
6766adantl 485 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑗𝐴)
68 rspa 3121 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ∧ 𝑗𝐴) → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
6967, 68syldan 594 . . . . . . . . . . . . . . . . . . 19 ((∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
7069adantll 714 . . . . . . . . . . . . . . . . . 18 (((𝑘 ∈ ℝ ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
7165, 70mpd 15 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℝ ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝐹𝑗) ≤ 𝑥)
72 id 22 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑗) = 𝑦 → (𝐹𝑗) = 𝑦)
7372eqcomd 2740 . . . . . . . . . . . . . . . . . . . 20 ((𝐹𝑗) = 𝑦𝑦 = (𝐹𝑗))
7473adantl 485 . . . . . . . . . . . . . . . . . . 19 (((𝐹𝑗) ≤ 𝑥 ∧ (𝐹𝑗) = 𝑦) → 𝑦 = (𝐹𝑗))
75 simpl 486 . . . . . . . . . . . . . . . . . . 19 (((𝐹𝑗) ≤ 𝑥 ∧ (𝐹𝑗) = 𝑦) → (𝐹𝑗) ≤ 𝑥)
7674, 75eqbrtrd 5065 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑗) ≤ 𝑥 ∧ (𝐹𝑗) = 𝑦) → 𝑦𝑥)
7776ex 416 . . . . . . . . . . . . . . . . 17 ((𝐹𝑗) ≤ 𝑥 → ((𝐹𝑗) = 𝑦𝑦𝑥))
7871, 77syl 17 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℝ ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → ((𝐹𝑗) = 𝑦𝑦𝑥))
7978adantlll 718 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → ((𝐹𝑗) = 𝑦𝑦𝑥))
8079ex 416 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞)) → ((𝐹𝑗) = 𝑦𝑦𝑥)))
8158, 59, 80rexlimd 3229 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (∃𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑗) = 𝑦𝑦𝑥))
8281imp 410 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ ∃𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑗) = 𝑦) → 𝑦𝑥)
8355, 82syldan 594 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → 𝑦𝑥)
8483ralrimiva 3098 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥)
8584adantllr 719 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥)
8624ad2antrr 726 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥))
8785, 86mpbird 260 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥)
8887ex 416 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥))
8988, 25sylibd 242 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥))
9050, 89impbid 215 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥 ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9125, 90bitrd 282 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9291rexbidva 3208 . . 3 ((𝜑𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9392ralbidva 3110 . 2 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9413, 18, 933bitr2d 310 1 (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3054  wrex 3055  Vcvv 3401  cin 3856  wss 3857   class class class wbr 5043  cmpt 5124  ran crn 5541  cima 5543   Fn wfn 6364  wf 6365  cfv 6369  (class class class)co 7202  supcsup 9045  infcinf 9046  cr 10711  +∞cpnf 10847  -∞cmnf 10848  *cxr 10849   < clt 10850  cle 10851  [,)cico 12920  lim supclsp 15014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-id 5444  df-po 5457  df-so 5458  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-sup 9047  df-inf 9048  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-ico 12924  df-limsup 15015
This theorem is referenced by:  limsupmnf  42891
  Copyright terms: Public domain W3C validator