Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupmnflem Structured version   Visualization version   GIF version

Theorem limsupmnflem 43951
Description: The superior limit of a function is -∞ if and only if every real number is the upper bound of the restriction of the function to an upper interval of real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupmnflem.a (𝜑𝐴 ⊆ ℝ)
limsupmnflem.f (𝜑𝐹:𝐴⟶ℝ*)
limsupmnflem.g 𝐺 = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ))
Assertion
Ref Expression
limsupmnflem (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐺(𝑥,𝑗,𝑘)

Proof of Theorem limsupmnflem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1917 . . . . 5 𝑘𝜑
2 reex 11142 . . . . . . 7 ℝ ∈ V
32a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
4 limsupmnflem.a . . . . . 6 (𝜑𝐴 ⊆ ℝ)
53, 4ssexd 5281 . . . . 5 (𝜑𝐴 ∈ V)
6 limsupmnflem.f . . . . 5 (𝜑𝐹:𝐴⟶ℝ*)
7 limsupmnflem.g . . . . 5 𝐺 = (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ))
81, 5, 6, 7limsupval3 43923 . . . 4 (𝜑 → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
97rneqi 5892 . . . . . 6 ran 𝐺 = ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ))
109infeq1i 9414 . . . . 5 inf(ran 𝐺, ℝ*, < ) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < )
1110a1i 11 . . . 4 (𝜑 → inf(ran 𝐺, ℝ*, < ) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ))
128, 11eqtrd 2776 . . 3 (𝜑 → (lim sup‘𝐹) = inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ))
1312eqeq1d 2738 . 2 (𝜑 → ((lim sup‘𝐹) = -∞ ↔ inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) = -∞))
14 nfv 1917 . . 3 𝑥𝜑
156fimassd 43443 . . . . 5 (𝜑 → (𝐹 “ (𝑘[,)+∞)) ⊆ ℝ*)
1615adantr 481 . . . 4 ((𝜑𝑘 ∈ ℝ) → (𝐹 “ (𝑘[,)+∞)) ⊆ ℝ*)
1716supxrcld 43307 . . 3 ((𝜑𝑘 ∈ ℝ) → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ∈ ℝ*)
181, 14, 17infxrunb3rnmpt 43653 . 2 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ inf(ran (𝑘 ∈ ℝ ↦ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < )), ℝ*, < ) = -∞))
1915adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (𝑘[,)+∞)) ⊆ ℝ*)
20 ressxr 11199 . . . . . . . . 9 ℝ ⊆ ℝ*
2120a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℝ*)
2221sselda 3944 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ*)
23 supxrleub 13245 . . . . . . 7 (((𝐹 “ (𝑘[,)+∞)) ⊆ ℝ*𝑥 ∈ ℝ*) → (sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥))
2419, 22, 23syl2anc 584 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥))
2524adantr 481 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥))
266ffnd 6669 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn 𝐴)
2726ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝐹 Fn 𝐴)
28 simplr 767 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗𝐴)
2920sseli 3940 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℝ → 𝑘 ∈ ℝ*)
3029ad3antlr 729 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑘 ∈ ℝ*)
31 pnfxr 11209 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
3231a1i 11 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → +∞ ∈ ℝ*)
3320a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐴) → ℝ ⊆ ℝ*)
344sselda 3944 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐴) → 𝑗 ∈ ℝ)
3533, 34sseldd 3945 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝐴) → 𝑗 ∈ ℝ*)
3635ad4ant13 749 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗 ∈ ℝ*)
37 simpr 485 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑘𝑗)
3834ltpnfd 13042 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝐴) → 𝑗 < +∞)
3938ad4ant13 749 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗 < +∞)
4030, 32, 36, 37, 39elicod 13314 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → 𝑗 ∈ (𝑘[,)+∞))
4127, 28, 40fnfvimad 7184 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ∈ (𝐹 “ (𝑘[,)+∞)))
4241adantllr 717 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ∈ (𝐹 “ (𝑘[,)+∞)))
43 simpllr 774 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥)
44 breq1 5108 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑗) → (𝑦𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
4544rspcva 3579 . . . . . . . . . . 11 (((𝐹𝑗) ∈ (𝐹 “ (𝑘[,)+∞)) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) → (𝐹𝑗) ≤ 𝑥)
4642, 43, 45syl2anc 584 . . . . . . . . . 10 (((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ≤ 𝑥)
4746adantl4r 753 . . . . . . . . 9 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) ∧ 𝑗𝐴) ∧ 𝑘𝑗) → (𝐹𝑗) ≤ 𝑥)
4847ex 413 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) ∧ 𝑗𝐴) → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
4948ralrimiva 3143 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥) → ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
5049ex 413 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥 → ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
51 nfcv 2907 . . . . . . . . . . . . . 14 𝑗𝐹
5226adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → 𝐹 Fn 𝐴)
53 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → 𝑦 ∈ (𝐹 “ (𝑘[,)+∞)))
5451, 52, 53fvelimad 6909 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → ∃𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑗) = 𝑦)
5554ad4ant14 750 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → ∃𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑗) = 𝑦)
56 nfv 1917 . . . . . . . . . . . . . . 15 𝑗(𝜑𝑘 ∈ ℝ)
57 nfra1 3267 . . . . . . . . . . . . . . 15 𝑗𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)
5856, 57nfan 1902 . . . . . . . . . . . . . 14 𝑗((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
59 nfv 1917 . . . . . . . . . . . . . 14 𝑗 𝑦𝑥
6029adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℝ ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑘 ∈ ℝ*)
6131a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℝ ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → +∞ ∈ ℝ*)
62 elinel2 4156 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞)) → 𝑗 ∈ (𝑘[,)+∞))
6362adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℝ ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑗 ∈ (𝑘[,)+∞))
6460, 61, 63icogelbd 43786 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℝ ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑘𝑗)
6564adantlr 713 . . . . . . . . . . . . . . . . . 18 (((𝑘 ∈ ℝ ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑘𝑗)
66 elinel1 4155 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞)) → 𝑗𝐴)
6766adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑗𝐴)
68 rspa 3231 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ∧ 𝑗𝐴) → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
6967, 68syldan 591 . . . . . . . . . . . . . . . . . . 19 ((∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
7069adantll 712 . . . . . . . . . . . . . . . . . 18 (((𝑘 ∈ ℝ ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
7165, 70mpd 15 . . . . . . . . . . . . . . . . 17 (((𝑘 ∈ ℝ ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝐹𝑗) ≤ 𝑥)
72 id 22 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑗) = 𝑦 → (𝐹𝑗) = 𝑦)
7372eqcomd 2742 . . . . . . . . . . . . . . . . . . . 20 ((𝐹𝑗) = 𝑦𝑦 = (𝐹𝑗))
7473adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝐹𝑗) ≤ 𝑥 ∧ (𝐹𝑗) = 𝑦) → 𝑦 = (𝐹𝑗))
75 simpl 483 . . . . . . . . . . . . . . . . . . 19 (((𝐹𝑗) ≤ 𝑥 ∧ (𝐹𝑗) = 𝑦) → (𝐹𝑗) ≤ 𝑥)
7674, 75eqbrtrd 5127 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑗) ≤ 𝑥 ∧ (𝐹𝑗) = 𝑦) → 𝑦𝑥)
7776ex 413 . . . . . . . . . . . . . . . . 17 ((𝐹𝑗) ≤ 𝑥 → ((𝐹𝑗) = 𝑦𝑦𝑥))
7871, 77syl 17 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ℝ ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → ((𝐹𝑗) = 𝑦𝑦𝑥))
7978adantlll 716 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))) → ((𝐹𝑗) = 𝑦𝑦𝑥))
8079ex 413 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞)) → ((𝐹𝑗) = 𝑦𝑦𝑥)))
8158, 59, 80rexlimd 3249 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (∃𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑗) = 𝑦𝑦𝑥))
8281imp 407 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ ∃𝑗 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑗) = 𝑦) → 𝑦𝑥)
8355, 82syldan 591 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑦 ∈ (𝐹 “ (𝑘[,)+∞))) → 𝑦𝑥)
8483ralrimiva 3143 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥)
8584adantllr 717 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥)
8624ad2antrr 724 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥))
8785, 86mpbird 256 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥)
8887ex 413 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥))
8988, 25sylibd 238 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥))
9050, 89impbid 211 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑦 ∈ (𝐹 “ (𝑘[,)+∞))𝑦𝑥 ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9125, 90bitrd 278 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9291rexbidva 3173 . . 3 ((𝜑𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9392ralbidva 3172 . 2 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ sup((𝐹 “ (𝑘[,)+∞)), ℝ*, < ) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
9413, 18, 933bitr2d 306 1 (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  cin 3909  wss 3910   class class class wbr 5105  cmpt 5188  ran crn 5634  cima 5636   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  supcsup 9376  infcinf 9377  cr 11050  +∞cpnf 11186  -∞cmnf 11187  *cxr 11188   < clt 11189  cle 11190  [,)cico 13266  lim supclsp 15352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-ico 13270  df-limsup 15353
This theorem is referenced by:  limsupmnf  43952
  Copyright terms: Public domain W3C validator