Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarclsun Structured version   Visualization version   GIF version

Theorem zarclsun 33837
Description: The union of two closed sets of the Zariski topology is closed. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypothesis
Ref Expression
zarclsx.1 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
Assertion
Ref Expression
zarclsun ((𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉𝑌 ∈ ran 𝑉) → (𝑋𝑌) ∈ ran 𝑉)
Distinct variable groups:   𝑅,𝑖,𝑗   𝑖,𝑋   𝑖,𝑌
Allowed substitution hints:   𝑉(𝑖,𝑗)   𝑋(𝑗)   𝑌(𝑗)

Proof of Theorem zarclsun
Dummy variables 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpllr 775 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) → 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
2 simpr 484 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) → 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})
31, 2uneq12d 4120 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) → (𝑋𝑌) = ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∪ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}))
4 unrab 4266 . . . . . . . . . 10 ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∪ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)}
5 zarclsx.1 . . . . . . . . . . 11 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
6 eqid 2729 . . . . . . . . . . . . 13 (IDLsrg‘𝑅) = (IDLsrg‘𝑅)
7 eqid 2729 . . . . . . . . . . . . 13 (LIdeal‘𝑅) = (LIdeal‘𝑅)
8 eqid 2729 . . . . . . . . . . . . 13 (.r‘(IDLsrg‘𝑅)) = (.r‘(IDLsrg‘𝑅))
9 simpll 766 . . . . . . . . . . . . . 14 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → 𝑅 ∈ CRing)
109crngringd 20131 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → 𝑅 ∈ Ring)
11 simplr 768 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → 𝑙 ∈ (LIdeal‘𝑅))
12 simpr 484 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → 𝑘 ∈ (LIdeal‘𝑅))
136, 7, 8, 10, 11, 12idlsrgmulrcl 33447 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ∈ (LIdeal‘𝑅))
14 sseq1 3961 . . . . . . . . . . . . . . 15 (𝑖 = (𝑙(.r‘(IDLsrg‘𝑅))𝑘) → (𝑖𝑗 ↔ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗))
1514rabbidv 3402 . . . . . . . . . . . . . 14 (𝑖 = (𝑙(.r‘(IDLsrg‘𝑅))𝑘) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗})
1615eqeq2d 2740 . . . . . . . . . . . . 13 (𝑖 = (𝑙(.r‘(IDLsrg‘𝑅))𝑘) → ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗}))
1716adantl 481 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑖 = (𝑙(.r‘(IDLsrg‘𝑅))𝑘)) → ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗}))
18 eqid 2729 . . . . . . . . . . . . . . . . 17 (.r𝑅) = (.r𝑅)
199ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑙𝑗) → 𝑅 ∈ CRing)
2011ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑙𝑗) → 𝑙 ∈ (LIdeal‘𝑅))
2112ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑙𝑗) → 𝑘 ∈ (LIdeal‘𝑅))
226, 7, 8, 18, 19, 20, 21idlsrgmulrss1 33448 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑙𝑗) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑙)
23 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑙𝑗) → 𝑙𝑗)
2422, 23sstrd 3946 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑙𝑗) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗)
2510ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑘𝑗) → 𝑅 ∈ Ring)
2611ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑘𝑗) → 𝑙 ∈ (LIdeal‘𝑅))
2712ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑘𝑗) → 𝑘 ∈ (LIdeal‘𝑅))
286, 7, 8, 18, 25, 26, 27idlsrgmulrss2 33449 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑘𝑗) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑘)
29 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑘𝑗) → 𝑘𝑗)
3028, 29sstrd 3946 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑘𝑗) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗)
3124, 30jaodan 959 . . . . . . . . . . . . . 14 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙𝑗𝑘𝑗)) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗)
32 eqid 2729 . . . . . . . . . . . . . . 15 (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅))
3310ad2antrr 726 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → 𝑅 ∈ Ring)
34 simplr 768 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → 𝑗 ∈ (PrmIdeal‘𝑅))
3511ad2antrr 726 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → 𝑙 ∈ (LIdeal‘𝑅))
3612ad2antrr 726 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → 𝑘 ∈ (LIdeal‘𝑅))
37 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑅) = (Base‘𝑅)
38 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3937, 7lidlss 21119 . . . . . . . . . . . . . . . . . . . 20 (𝑙 ∈ (LIdeal‘𝑅) → 𝑙 ⊆ (Base‘𝑅))
4035, 39syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → 𝑙 ⊆ (Base‘𝑅))
4137, 7lidlss 21119 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (LIdeal‘𝑅) → 𝑘 ⊆ (Base‘𝑅))
4236, 41syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → 𝑘 ⊆ (Base‘𝑅))
4337, 38, 32, 33, 40, 42ringlsmss 33332 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → (𝑙(LSSum‘(mulGrp‘𝑅))𝑘) ⊆ (Base‘𝑅))
44 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (RSpan‘𝑅) = (RSpan‘𝑅)
4544, 37rspssid 21143 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ (𝑙(LSSum‘(mulGrp‘𝑅))𝑘) ⊆ (Base‘𝑅)) → (𝑙(LSSum‘(mulGrp‘𝑅))𝑘) ⊆ ((RSpan‘𝑅)‘(𝑙(LSSum‘(mulGrp‘𝑅))𝑘)))
4633, 43, 45syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → (𝑙(LSSum‘(mulGrp‘𝑅))𝑘) ⊆ ((RSpan‘𝑅)‘(𝑙(LSSum‘(mulGrp‘𝑅))𝑘)))
476, 7, 8, 38, 32, 33, 35, 36idlsrgmulrval 33446 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) = ((RSpan‘𝑅)‘(𝑙(LSSum‘(mulGrp‘𝑅))𝑘)))
4846, 47sseqtrrd 3973 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → (𝑙(LSSum‘(mulGrp‘𝑅))𝑘) ⊆ (𝑙(.r‘(IDLsrg‘𝑅))𝑘))
49 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗)
5048, 49sstrd 3946 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → (𝑙(LSSum‘(mulGrp‘𝑅))𝑘) ⊆ 𝑗)
5132, 33, 34, 35, 36, 50idlmulssprm 33379 . . . . . . . . . . . . . 14 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → (𝑙𝑗𝑘𝑗))
5231, 51impbida 800 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → ((𝑙𝑗𝑘𝑗) ↔ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗))
5352rabbidva 3401 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗})
5413, 17, 53rspcedvd 3579 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → ∃𝑖 ∈ (LIdeal‘𝑅){𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
55 fvex 6835 . . . . . . . . . . . . 13 (PrmIdeal‘𝑅) ∈ V
5655rabex 5278 . . . . . . . . . . . 12 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} ∈ V
5756a1i 11 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} ∈ V)
585, 54, 57elrnmptd 5905 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} ∈ ran 𝑉)
594, 58eqeltrid 2832 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∪ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) ∈ ran 𝑉)
6059adantlr 715 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∪ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) ∈ ran 𝑉)
6160adantr 480 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) → ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∪ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) ∈ ran 𝑉)
623, 61eqeltrd 2828 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) → (𝑋𝑌) ∈ ran 𝑉)
6362adantl4r 755 . . . . 5 ((((((𝑅 ∈ CRing ∧ 𝑌 ∈ ran 𝑉) ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) → (𝑋𝑌) ∈ ran 𝑉)
6455rabex 5278 . . . . . . . . 9 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ∈ V
655, 64elrnmpti 5904 . . . . . . . 8 (𝑌 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
66 sseq1 3961 . . . . . . . . . . 11 (𝑖 = 𝑘 → (𝑖𝑗𝑘𝑗))
6766rabbidv 3402 . . . . . . . . . 10 (𝑖 = 𝑘 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})
6867eqeq2d 2740 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}))
6968cbvrexvw 3208 . . . . . . . 8 (∃𝑖 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ ∃𝑘 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})
70 biid 261 . . . . . . . 8 (∃𝑘 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗} ↔ ∃𝑘 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})
7165, 69, 703bitri 297 . . . . . . 7 (𝑌 ∈ ran 𝑉 ↔ ∃𝑘 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})
7271biimpi 216 . . . . . 6 (𝑌 ∈ ran 𝑉 → ∃𝑘 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})
7372ad3antlr 731 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑌 ∈ ran 𝑉) ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) → ∃𝑘 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})
7463, 73r19.29a 3137 . . . 4 ((((𝑅 ∈ CRing ∧ 𝑌 ∈ ran 𝑉) ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) → (𝑋𝑌) ∈ ran 𝑉)
7574adantl3r 750 . . 3 (((((𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉) ∧ 𝑌 ∈ ran 𝑉) ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) → (𝑋𝑌) ∈ ran 𝑉)
765, 64elrnmpti 5904 . . . . . 6 (𝑋 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
77 sseq1 3961 . . . . . . . . 9 (𝑖 = 𝑙 → (𝑖𝑗𝑙𝑗))
7877rabbidv 3402 . . . . . . . 8 (𝑖 = 𝑙 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
7978eqeq2d 2740 . . . . . . 7 (𝑖 = 𝑙 → (𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}))
8079cbvrexvw 3208 . . . . . 6 (∃𝑖 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ ∃𝑙 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
81 biid 261 . . . . . 6 (∃𝑙 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ↔ ∃𝑙 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
8276, 80, 813bitri 297 . . . . 5 (𝑋 ∈ ran 𝑉 ↔ ∃𝑙 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
8382biimpi 216 . . . 4 (𝑋 ∈ ran 𝑉 → ∃𝑙 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
8483ad2antlr 727 . . 3 (((𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉) ∧ 𝑌 ∈ ran 𝑉) → ∃𝑙 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
8575, 84r19.29a 3137 . 2 (((𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉) ∧ 𝑌 ∈ ran 𝑉) → (𝑋𝑌) ∈ ran 𝑉)
86853impa 1109 1 ((𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉𝑌 ∈ ran 𝑉) → (𝑋𝑌) ∈ ran 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  {crab 3394  Vcvv 3436  cun 3901  wss 3903  cmpt 5173  ran crn 5620  cfv 6482  (class class class)co 7349  Basecbs 17120  .rcmulr 17162  LSSumclsm 19513  mulGrpcmgp 20025  Ringcrg 20118  CRingccrg 20119  LIdealclidl 21113  RSpancrsp 21114  PrmIdealcprmidl 33372  IDLsrgcidlsrg 33437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-lsm 19515  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-subrg 20455  df-lmod 20765  df-lss 20835  df-lsp 20875  df-sra 21077  df-rgmod 21078  df-lidl 21115  df-rsp 21116  df-prmidl 33373  df-idlsrg 33438
This theorem is referenced by:  zartopn  33842
  Copyright terms: Public domain W3C validator