Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarclsun Structured version   Visualization version   GIF version

Theorem zarclsun 31820
Description: The union of two closed sets of the Zariski topology is closed. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypothesis
Ref Expression
zarclsx.1 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
Assertion
Ref Expression
zarclsun ((𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉𝑌 ∈ ran 𝑉) → (𝑋𝑌) ∈ ran 𝑉)
Distinct variable groups:   𝑅,𝑖,𝑗   𝑖,𝑋   𝑖,𝑌
Allowed substitution hints:   𝑉(𝑖,𝑗)   𝑋(𝑗)   𝑌(𝑗)

Proof of Theorem zarclsun
Dummy variables 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpllr 773 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) → 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
2 simpr 485 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) → 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})
31, 2uneq12d 4098 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) → (𝑋𝑌) = ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∪ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}))
4 unrab 4239 . . . . . . . . . 10 ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∪ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)}
5 zarclsx.1 . . . . . . . . . . 11 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
6 eqid 2738 . . . . . . . . . . . . 13 (IDLsrg‘𝑅) = (IDLsrg‘𝑅)
7 eqid 2738 . . . . . . . . . . . . 13 (LIdeal‘𝑅) = (LIdeal‘𝑅)
8 eqid 2738 . . . . . . . . . . . . 13 (.r‘(IDLsrg‘𝑅)) = (.r‘(IDLsrg‘𝑅))
9 simpll 764 . . . . . . . . . . . . . 14 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → 𝑅 ∈ CRing)
109crngringd 19796 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → 𝑅 ∈ Ring)
11 simplr 766 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → 𝑙 ∈ (LIdeal‘𝑅))
12 simpr 485 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → 𝑘 ∈ (LIdeal‘𝑅))
136, 7, 8, 10, 11, 12idlsrgmulrcl 31655 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ∈ (LIdeal‘𝑅))
14 sseq1 3946 . . . . . . . . . . . . . . 15 (𝑖 = (𝑙(.r‘(IDLsrg‘𝑅))𝑘) → (𝑖𝑗 ↔ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗))
1514rabbidv 3414 . . . . . . . . . . . . . 14 (𝑖 = (𝑙(.r‘(IDLsrg‘𝑅))𝑘) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗})
1615eqeq2d 2749 . . . . . . . . . . . . 13 (𝑖 = (𝑙(.r‘(IDLsrg‘𝑅))𝑘) → ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗}))
1716adantl 482 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑖 = (𝑙(.r‘(IDLsrg‘𝑅))𝑘)) → ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗}))
18 eqid 2738 . . . . . . . . . . . . . . . . 17 (.r𝑅) = (.r𝑅)
199ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑙𝑗) → 𝑅 ∈ CRing)
2011ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑙𝑗) → 𝑙 ∈ (LIdeal‘𝑅))
2112ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑙𝑗) → 𝑘 ∈ (LIdeal‘𝑅))
226, 7, 8, 18, 19, 20, 21idlsrgmulrss1 31656 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑙𝑗) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑙)
23 simpr 485 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑙𝑗) → 𝑙𝑗)
2422, 23sstrd 3931 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑙𝑗) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗)
2510ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑘𝑗) → 𝑅 ∈ Ring)
2611ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑘𝑗) → 𝑙 ∈ (LIdeal‘𝑅))
2712ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑘𝑗) → 𝑘 ∈ (LIdeal‘𝑅))
286, 7, 8, 18, 25, 26, 27idlsrgmulrss2 31657 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑘𝑗) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑘)
29 simpr 485 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑘𝑗) → 𝑘𝑗)
3028, 29sstrd 3931 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑘𝑗) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗)
3124, 30jaodan 955 . . . . . . . . . . . . . 14 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙𝑗𝑘𝑗)) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗)
32 eqid 2738 . . . . . . . . . . . . . . 15 (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅))
3310ad2antrr 723 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → 𝑅 ∈ Ring)
34 simplr 766 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → 𝑗 ∈ (PrmIdeal‘𝑅))
3511ad2antrr 723 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → 𝑙 ∈ (LIdeal‘𝑅))
3612ad2antrr 723 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → 𝑘 ∈ (LIdeal‘𝑅))
37 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑅) = (Base‘𝑅)
38 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3937, 7lidlss 20481 . . . . . . . . . . . . . . . . . . . 20 (𝑙 ∈ (LIdeal‘𝑅) → 𝑙 ⊆ (Base‘𝑅))
4035, 39syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → 𝑙 ⊆ (Base‘𝑅))
4137, 7lidlss 20481 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (LIdeal‘𝑅) → 𝑘 ⊆ (Base‘𝑅))
4236, 41syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → 𝑘 ⊆ (Base‘𝑅))
4337, 38, 32, 33, 40, 42ringlsmss 31583 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → (𝑙(LSSum‘(mulGrp‘𝑅))𝑘) ⊆ (Base‘𝑅))
44 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (RSpan‘𝑅) = (RSpan‘𝑅)
4544, 37rspssid 20494 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ (𝑙(LSSum‘(mulGrp‘𝑅))𝑘) ⊆ (Base‘𝑅)) → (𝑙(LSSum‘(mulGrp‘𝑅))𝑘) ⊆ ((RSpan‘𝑅)‘(𝑙(LSSum‘(mulGrp‘𝑅))𝑘)))
4633, 43, 45syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → (𝑙(LSSum‘(mulGrp‘𝑅))𝑘) ⊆ ((RSpan‘𝑅)‘(𝑙(LSSum‘(mulGrp‘𝑅))𝑘)))
476, 7, 8, 38, 32, 33, 35, 36idlsrgmulrval 31654 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) = ((RSpan‘𝑅)‘(𝑙(LSSum‘(mulGrp‘𝑅))𝑘)))
4846, 47sseqtrrd 3962 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → (𝑙(LSSum‘(mulGrp‘𝑅))𝑘) ⊆ (𝑙(.r‘(IDLsrg‘𝑅))𝑘))
49 simpr 485 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗)
5048, 49sstrd 3931 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → (𝑙(LSSum‘(mulGrp‘𝑅))𝑘) ⊆ 𝑗)
5132, 33, 34, 35, 36, 50idlmulssprm 31617 . . . . . . . . . . . . . 14 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → (𝑙𝑗𝑘𝑗))
5231, 51impbida 798 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → ((𝑙𝑗𝑘𝑗) ↔ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗))
5352rabbidva 3413 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗})
5413, 17, 53rspcedvd 3563 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → ∃𝑖 ∈ (LIdeal‘𝑅){𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
55 fvex 6787 . . . . . . . . . . . . 13 (PrmIdeal‘𝑅) ∈ V
5655rabex 5256 . . . . . . . . . . . 12 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} ∈ V
5756a1i 11 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} ∈ V)
585, 54, 57elrnmptd 5870 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} ∈ ran 𝑉)
594, 58eqeltrid 2843 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∪ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) ∈ ran 𝑉)
6059adantlr 712 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∪ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) ∈ ran 𝑉)
6160adantr 481 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) → ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∪ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) ∈ ran 𝑉)
623, 61eqeltrd 2839 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) → (𝑋𝑌) ∈ ran 𝑉)
6362adantl4r 752 . . . . 5 ((((((𝑅 ∈ CRing ∧ 𝑌 ∈ ran 𝑉) ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) → (𝑋𝑌) ∈ ran 𝑉)
6455rabex 5256 . . . . . . . . 9 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ∈ V
655, 64elrnmpti 5869 . . . . . . . 8 (𝑌 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
66 sseq1 3946 . . . . . . . . . . 11 (𝑖 = 𝑘 → (𝑖𝑗𝑘𝑗))
6766rabbidv 3414 . . . . . . . . . 10 (𝑖 = 𝑘 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})
6867eqeq2d 2749 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}))
6968cbvrexvw 3384 . . . . . . . 8 (∃𝑖 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ ∃𝑘 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})
70 biid 260 . . . . . . . 8 (∃𝑘 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗} ↔ ∃𝑘 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})
7165, 69, 703bitri 297 . . . . . . 7 (𝑌 ∈ ran 𝑉 ↔ ∃𝑘 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})
7271biimpi 215 . . . . . 6 (𝑌 ∈ ran 𝑉 → ∃𝑘 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})
7372ad3antlr 728 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑌 ∈ ran 𝑉) ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) → ∃𝑘 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})
7463, 73r19.29a 3218 . . . 4 ((((𝑅 ∈ CRing ∧ 𝑌 ∈ ran 𝑉) ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) → (𝑋𝑌) ∈ ran 𝑉)
7574adantl3r 747 . . 3 (((((𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉) ∧ 𝑌 ∈ ran 𝑉) ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) → (𝑋𝑌) ∈ ran 𝑉)
765, 64elrnmpti 5869 . . . . . 6 (𝑋 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
77 sseq1 3946 . . . . . . . . 9 (𝑖 = 𝑙 → (𝑖𝑗𝑙𝑗))
7877rabbidv 3414 . . . . . . . 8 (𝑖 = 𝑙 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
7978eqeq2d 2749 . . . . . . 7 (𝑖 = 𝑙 → (𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}))
8079cbvrexvw 3384 . . . . . 6 (∃𝑖 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ ∃𝑙 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
81 biid 260 . . . . . 6 (∃𝑙 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ↔ ∃𝑙 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
8276, 80, 813bitri 297 . . . . 5 (𝑋 ∈ ran 𝑉 ↔ ∃𝑙 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
8382biimpi 215 . . . 4 (𝑋 ∈ ran 𝑉 → ∃𝑙 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
8483ad2antlr 724 . . 3 (((𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉) ∧ 𝑌 ∈ ran 𝑉) → ∃𝑙 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
8575, 84r19.29a 3218 . 2 (((𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉) ∧ 𝑌 ∈ ran 𝑉) → (𝑋𝑌) ∈ ran 𝑉)
86853impa 1109 1 ((𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉𝑌 ∈ ran 𝑉) → (𝑋𝑌) ∈ ran 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  {crab 3068  Vcvv 3432  cun 3885  wss 3887  cmpt 5157  ran crn 5590  cfv 6433  (class class class)co 7275  Basecbs 16912  .rcmulr 16963  LSSumclsm 19239  mulGrpcmgp 19720  Ringcrg 19783  CRingccrg 19784  LIdealclidl 20432  RSpancrsp 20433  PrmIdealcprmidl 31610  IDLsrgcidlsrg 31645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-lsm 19241  df-cmn 19388  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-sra 20434  df-rgmod 20435  df-lidl 20436  df-rsp 20437  df-prmidl 31611  df-idlsrg 31646
This theorem is referenced by:  zartopn  31825
  Copyright terms: Public domain W3C validator