Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarclsun Structured version   Visualization version   GIF version

Theorem zarclsun 33816
Description: The union of two closed sets of the Zariski topology is closed. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypothesis
Ref Expression
zarclsx.1 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
Assertion
Ref Expression
zarclsun ((𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉𝑌 ∈ ran 𝑉) → (𝑋𝑌) ∈ ran 𝑉)
Distinct variable groups:   𝑅,𝑖,𝑗   𝑖,𝑋   𝑖,𝑌
Allowed substitution hints:   𝑉(𝑖,𝑗)   𝑋(𝑗)   𝑌(𝑗)

Proof of Theorem zarclsun
Dummy variables 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpllr 775 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) → 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
2 simpr 484 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) → 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})
31, 2uneq12d 4192 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) → (𝑋𝑌) = ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∪ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}))
4 unrab 4334 . . . . . . . . . 10 ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∪ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)}
5 zarclsx.1 . . . . . . . . . . 11 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
6 eqid 2740 . . . . . . . . . . . . 13 (IDLsrg‘𝑅) = (IDLsrg‘𝑅)
7 eqid 2740 . . . . . . . . . . . . 13 (LIdeal‘𝑅) = (LIdeal‘𝑅)
8 eqid 2740 . . . . . . . . . . . . 13 (.r‘(IDLsrg‘𝑅)) = (.r‘(IDLsrg‘𝑅))
9 simpll 766 . . . . . . . . . . . . . 14 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → 𝑅 ∈ CRing)
109crngringd 20273 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → 𝑅 ∈ Ring)
11 simplr 768 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → 𝑙 ∈ (LIdeal‘𝑅))
12 simpr 484 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → 𝑘 ∈ (LIdeal‘𝑅))
136, 7, 8, 10, 11, 12idlsrgmulrcl 33503 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ∈ (LIdeal‘𝑅))
14 sseq1 4034 . . . . . . . . . . . . . . 15 (𝑖 = (𝑙(.r‘(IDLsrg‘𝑅))𝑘) → (𝑖𝑗 ↔ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗))
1514rabbidv 3451 . . . . . . . . . . . . . 14 (𝑖 = (𝑙(.r‘(IDLsrg‘𝑅))𝑘) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗})
1615eqeq2d 2751 . . . . . . . . . . . . 13 (𝑖 = (𝑙(.r‘(IDLsrg‘𝑅))𝑘) → ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗}))
1716adantl 481 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑖 = (𝑙(.r‘(IDLsrg‘𝑅))𝑘)) → ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗}))
18 eqid 2740 . . . . . . . . . . . . . . . . 17 (.r𝑅) = (.r𝑅)
199ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑙𝑗) → 𝑅 ∈ CRing)
2011ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑙𝑗) → 𝑙 ∈ (LIdeal‘𝑅))
2112ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑙𝑗) → 𝑘 ∈ (LIdeal‘𝑅))
226, 7, 8, 18, 19, 20, 21idlsrgmulrss1 33504 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑙𝑗) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑙)
23 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑙𝑗) → 𝑙𝑗)
2422, 23sstrd 4019 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑙𝑗) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗)
2510ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑘𝑗) → 𝑅 ∈ Ring)
2611ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑘𝑗) → 𝑙 ∈ (LIdeal‘𝑅))
2712ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑘𝑗) → 𝑘 ∈ (LIdeal‘𝑅))
286, 7, 8, 18, 25, 26, 27idlsrgmulrss2 33505 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑘𝑗) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑘)
29 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑘𝑗) → 𝑘𝑗)
3028, 29sstrd 4019 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑘𝑗) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗)
3124, 30jaodan 958 . . . . . . . . . . . . . 14 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙𝑗𝑘𝑗)) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗)
32 eqid 2740 . . . . . . . . . . . . . . 15 (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅))
3310ad2antrr 725 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → 𝑅 ∈ Ring)
34 simplr 768 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → 𝑗 ∈ (PrmIdeal‘𝑅))
3511ad2antrr 725 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → 𝑙 ∈ (LIdeal‘𝑅))
3612ad2antrr 725 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → 𝑘 ∈ (LIdeal‘𝑅))
37 eqid 2740 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑅) = (Base‘𝑅)
38 eqid 2740 . . . . . . . . . . . . . . . . . . 19 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3937, 7lidlss 21245 . . . . . . . . . . . . . . . . . . . 20 (𝑙 ∈ (LIdeal‘𝑅) → 𝑙 ⊆ (Base‘𝑅))
4035, 39syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → 𝑙 ⊆ (Base‘𝑅))
4137, 7lidlss 21245 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (LIdeal‘𝑅) → 𝑘 ⊆ (Base‘𝑅))
4236, 41syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → 𝑘 ⊆ (Base‘𝑅))
4337, 38, 32, 33, 40, 42ringlsmss 33388 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → (𝑙(LSSum‘(mulGrp‘𝑅))𝑘) ⊆ (Base‘𝑅))
44 eqid 2740 . . . . . . . . . . . . . . . . . . 19 (RSpan‘𝑅) = (RSpan‘𝑅)
4544, 37rspssid 21269 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ (𝑙(LSSum‘(mulGrp‘𝑅))𝑘) ⊆ (Base‘𝑅)) → (𝑙(LSSum‘(mulGrp‘𝑅))𝑘) ⊆ ((RSpan‘𝑅)‘(𝑙(LSSum‘(mulGrp‘𝑅))𝑘)))
4633, 43, 45syl2anc 583 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → (𝑙(LSSum‘(mulGrp‘𝑅))𝑘) ⊆ ((RSpan‘𝑅)‘(𝑙(LSSum‘(mulGrp‘𝑅))𝑘)))
476, 7, 8, 38, 32, 33, 35, 36idlsrgmulrval 33502 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) = ((RSpan‘𝑅)‘(𝑙(LSSum‘(mulGrp‘𝑅))𝑘)))
4846, 47sseqtrrd 4050 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → (𝑙(LSSum‘(mulGrp‘𝑅))𝑘) ⊆ (𝑙(.r‘(IDLsrg‘𝑅))𝑘))
49 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗)
5048, 49sstrd 4019 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → (𝑙(LSSum‘(mulGrp‘𝑅))𝑘) ⊆ 𝑗)
5132, 33, 34, 35, 36, 50idlmulssprm 33435 . . . . . . . . . . . . . 14 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → (𝑙𝑗𝑘𝑗))
5231, 51impbida 800 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → ((𝑙𝑗𝑘𝑗) ↔ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗))
5352rabbidva 3450 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗})
5413, 17, 53rspcedvd 3637 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → ∃𝑖 ∈ (LIdeal‘𝑅){𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
55 fvex 6933 . . . . . . . . . . . . 13 (PrmIdeal‘𝑅) ∈ V
5655rabex 5357 . . . . . . . . . . . 12 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} ∈ V
5756a1i 11 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} ∈ V)
585, 54, 57elrnmptd 5986 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} ∈ ran 𝑉)
594, 58eqeltrid 2848 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∪ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) ∈ ran 𝑉)
6059adantlr 714 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∪ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) ∈ ran 𝑉)
6160adantr 480 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) → ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∪ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) ∈ ran 𝑉)
623, 61eqeltrd 2844 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) → (𝑋𝑌) ∈ ran 𝑉)
6362adantl4r 754 . . . . 5 ((((((𝑅 ∈ CRing ∧ 𝑌 ∈ ran 𝑉) ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) → (𝑋𝑌) ∈ ran 𝑉)
6455rabex 5357 . . . . . . . . 9 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ∈ V
655, 64elrnmpti 5985 . . . . . . . 8 (𝑌 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
66 sseq1 4034 . . . . . . . . . . 11 (𝑖 = 𝑘 → (𝑖𝑗𝑘𝑗))
6766rabbidv 3451 . . . . . . . . . 10 (𝑖 = 𝑘 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})
6867eqeq2d 2751 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}))
6968cbvrexvw 3244 . . . . . . . 8 (∃𝑖 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ ∃𝑘 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})
70 biid 261 . . . . . . . 8 (∃𝑘 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗} ↔ ∃𝑘 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})
7165, 69, 703bitri 297 . . . . . . 7 (𝑌 ∈ ran 𝑉 ↔ ∃𝑘 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})
7271biimpi 216 . . . . . 6 (𝑌 ∈ ran 𝑉 → ∃𝑘 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})
7372ad3antlr 730 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑌 ∈ ran 𝑉) ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) → ∃𝑘 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})
7463, 73r19.29a 3168 . . . 4 ((((𝑅 ∈ CRing ∧ 𝑌 ∈ ran 𝑉) ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) → (𝑋𝑌) ∈ ran 𝑉)
7574adantl3r 749 . . 3 (((((𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉) ∧ 𝑌 ∈ ran 𝑉) ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) → (𝑋𝑌) ∈ ran 𝑉)
765, 64elrnmpti 5985 . . . . . 6 (𝑋 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
77 sseq1 4034 . . . . . . . . 9 (𝑖 = 𝑙 → (𝑖𝑗𝑙𝑗))
7877rabbidv 3451 . . . . . . . 8 (𝑖 = 𝑙 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
7978eqeq2d 2751 . . . . . . 7 (𝑖 = 𝑙 → (𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}))
8079cbvrexvw 3244 . . . . . 6 (∃𝑖 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ ∃𝑙 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
81 biid 261 . . . . . 6 (∃𝑙 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ↔ ∃𝑙 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
8276, 80, 813bitri 297 . . . . 5 (𝑋 ∈ ran 𝑉 ↔ ∃𝑙 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
8382biimpi 216 . . . 4 (𝑋 ∈ ran 𝑉 → ∃𝑙 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
8483ad2antlr 726 . . 3 (((𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉) ∧ 𝑌 ∈ ran 𝑉) → ∃𝑙 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
8575, 84r19.29a 3168 . 2 (((𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉) ∧ 𝑌 ∈ ran 𝑉) → (𝑋𝑌) ∈ ran 𝑉)
86853impa 1110 1 ((𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉𝑌 ∈ ran 𝑉) → (𝑋𝑌) ∈ ran 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  Vcvv 3488  cun 3974  wss 3976  cmpt 5249  ran crn 5701  cfv 6573  (class class class)co 7448  Basecbs 17258  .rcmulr 17312  LSSumclsm 19676  mulGrpcmgp 20161  Ringcrg 20260  CRingccrg 20261  LIdealclidl 21239  RSpancrsp 21240  PrmIdealcprmidl 33428  IDLsrgcidlsrg 33493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-lsm 19678  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-subrg 20597  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-prmidl 33429  df-idlsrg 33494
This theorem is referenced by:  zartopn  33821
  Copyright terms: Public domain W3C validator