Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarclsun Structured version   Visualization version   GIF version

Theorem zarclsun 32838
Description: The union of two closed sets of the Zariski topology is closed. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypothesis
Ref Expression
zarclsx.1 𝑉 = (𝑖 ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗})
Assertion
Ref Expression
zarclsun ((𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉 ∧ π‘Œ ∈ ran 𝑉) β†’ (𝑋 βˆͺ π‘Œ) ∈ ran 𝑉)
Distinct variable groups:   𝑅,𝑖,𝑗   𝑖,𝑋   𝑖,π‘Œ
Allowed substitution hints:   𝑉(𝑖,𝑗)   𝑋(𝑗)   π‘Œ(𝑗)

Proof of Theorem zarclsun
Dummy variables π‘˜ 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpllr 774 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ 𝑋 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑙 βŠ† 𝑗}) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ π‘Œ = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗}) β†’ 𝑋 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑙 βŠ† 𝑗})
2 simpr 485 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ 𝑋 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑙 βŠ† 𝑗}) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ π‘Œ = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗}) β†’ π‘Œ = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗})
31, 2uneq12d 4163 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ 𝑋 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑙 βŠ† 𝑗}) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ π‘Œ = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗}) β†’ (𝑋 βˆͺ π‘Œ) = ({𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑙 βŠ† 𝑗} βˆͺ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗}))
4 unrab 4304 . . . . . . . . . 10 ({𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑙 βŠ† 𝑗} βˆͺ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗}) = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ (𝑙 βŠ† 𝑗 ∨ π‘˜ βŠ† 𝑗)}
5 zarclsx.1 . . . . . . . . . . 11 𝑉 = (𝑖 ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗})
6 eqid 2732 . . . . . . . . . . . . 13 (IDLsrgβ€˜π‘…) = (IDLsrgβ€˜π‘…)
7 eqid 2732 . . . . . . . . . . . . 13 (LIdealβ€˜π‘…) = (LIdealβ€˜π‘…)
8 eqid 2732 . . . . . . . . . . . . 13 (.rβ€˜(IDLsrgβ€˜π‘…)) = (.rβ€˜(IDLsrgβ€˜π‘…))
9 simpll 765 . . . . . . . . . . . . . 14 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) β†’ 𝑅 ∈ CRing)
109crngringd 20062 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) β†’ 𝑅 ∈ Ring)
11 simplr 767 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) β†’ 𝑙 ∈ (LIdealβ€˜π‘…))
12 simpr 485 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) β†’ π‘˜ ∈ (LIdealβ€˜π‘…))
136, 7, 8, 10, 11, 12idlsrgmulrcl 32612 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) β†’ (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜) ∈ (LIdealβ€˜π‘…))
14 sseq1 4006 . . . . . . . . . . . . . . 15 (𝑖 = (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜) β†’ (𝑖 βŠ† 𝑗 ↔ (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜) βŠ† 𝑗))
1514rabbidv 3440 . . . . . . . . . . . . . 14 (𝑖 = (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜) β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗} = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜) βŠ† 𝑗})
1615eqeq2d 2743 . . . . . . . . . . . . 13 (𝑖 = (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜) β†’ ({𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ (𝑙 βŠ† 𝑗 ∨ π‘˜ βŠ† 𝑗)} = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗} ↔ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ (𝑙 βŠ† 𝑗 ∨ π‘˜ βŠ† 𝑗)} = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜) βŠ† 𝑗}))
1716adantl 482 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ 𝑖 = (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜)) β†’ ({𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ (𝑙 βŠ† 𝑗 ∨ π‘˜ βŠ† 𝑗)} = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗} ↔ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ (𝑙 βŠ† 𝑗 ∨ π‘˜ βŠ† 𝑗)} = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜) βŠ† 𝑗}))
18 eqid 2732 . . . . . . . . . . . . . . . . 17 (.rβ€˜π‘…) = (.rβ€˜π‘…)
199ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑙 βŠ† 𝑗) β†’ 𝑅 ∈ CRing)
2011ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑙 βŠ† 𝑗) β†’ 𝑙 ∈ (LIdealβ€˜π‘…))
2112ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑙 βŠ† 𝑗) β†’ π‘˜ ∈ (LIdealβ€˜π‘…))
226, 7, 8, 18, 19, 20, 21idlsrgmulrss1 32613 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑙 βŠ† 𝑗) β†’ (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜) βŠ† 𝑙)
23 simpr 485 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑙 βŠ† 𝑗) β†’ 𝑙 βŠ† 𝑗)
2422, 23sstrd 3991 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) ∧ 𝑙 βŠ† 𝑗) β†’ (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜) βŠ† 𝑗)
2510ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘˜ βŠ† 𝑗) β†’ 𝑅 ∈ Ring)
2611ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘˜ βŠ† 𝑗) β†’ 𝑙 ∈ (LIdealβ€˜π‘…))
2712ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘˜ βŠ† 𝑗) β†’ π‘˜ ∈ (LIdealβ€˜π‘…))
286, 7, 8, 18, 25, 26, 27idlsrgmulrss2 32614 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘˜ βŠ† 𝑗) β†’ (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜) βŠ† π‘˜)
29 simpr 485 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘˜ βŠ† 𝑗) β†’ π‘˜ βŠ† 𝑗)
3028, 29sstrd 3991 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) ∧ π‘˜ βŠ† 𝑗) β†’ (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜) βŠ† 𝑗)
3124, 30jaodan 956 . . . . . . . . . . . . . 14 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) ∧ (𝑙 βŠ† 𝑗 ∨ π‘˜ βŠ† 𝑗)) β†’ (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜) βŠ† 𝑗)
32 eqid 2732 . . . . . . . . . . . . . . 15 (LSSumβ€˜(mulGrpβ€˜π‘…)) = (LSSumβ€˜(mulGrpβ€˜π‘…))
3310ad2antrr 724 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) ∧ (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜) βŠ† 𝑗) β†’ 𝑅 ∈ Ring)
34 simplr 767 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) ∧ (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜) βŠ† 𝑗) β†’ 𝑗 ∈ (PrmIdealβ€˜π‘…))
3511ad2antrr 724 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) ∧ (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜) βŠ† 𝑗) β†’ 𝑙 ∈ (LIdealβ€˜π‘…))
3612ad2antrr 724 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) ∧ (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜) βŠ† 𝑗) β†’ π‘˜ ∈ (LIdealβ€˜π‘…))
37 eqid 2732 . . . . . . . . . . . . . . . . . . 19 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
38 eqid 2732 . . . . . . . . . . . . . . . . . . 19 (mulGrpβ€˜π‘…) = (mulGrpβ€˜π‘…)
3937, 7lidlss 20825 . . . . . . . . . . . . . . . . . . . 20 (𝑙 ∈ (LIdealβ€˜π‘…) β†’ 𝑙 βŠ† (Baseβ€˜π‘…))
4035, 39syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) ∧ (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜) βŠ† 𝑗) β†’ 𝑙 βŠ† (Baseβ€˜π‘…))
4137, 7lidlss 20825 . . . . . . . . . . . . . . . . . . . 20 (π‘˜ ∈ (LIdealβ€˜π‘…) β†’ π‘˜ βŠ† (Baseβ€˜π‘…))
4236, 41syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) ∧ (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜) βŠ† 𝑗) β†’ π‘˜ βŠ† (Baseβ€˜π‘…))
4337, 38, 32, 33, 40, 42ringlsmss 32493 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) ∧ (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜) βŠ† 𝑗) β†’ (𝑙(LSSumβ€˜(mulGrpβ€˜π‘…))π‘˜) βŠ† (Baseβ€˜π‘…))
44 eqid 2732 . . . . . . . . . . . . . . . . . . 19 (RSpanβ€˜π‘…) = (RSpanβ€˜π‘…)
4544, 37rspssid 20840 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ (𝑙(LSSumβ€˜(mulGrpβ€˜π‘…))π‘˜) βŠ† (Baseβ€˜π‘…)) β†’ (𝑙(LSSumβ€˜(mulGrpβ€˜π‘…))π‘˜) βŠ† ((RSpanβ€˜π‘…)β€˜(𝑙(LSSumβ€˜(mulGrpβ€˜π‘…))π‘˜)))
4633, 43, 45syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) ∧ (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜) βŠ† 𝑗) β†’ (𝑙(LSSumβ€˜(mulGrpβ€˜π‘…))π‘˜) βŠ† ((RSpanβ€˜π‘…)β€˜(𝑙(LSSumβ€˜(mulGrpβ€˜π‘…))π‘˜)))
476, 7, 8, 38, 32, 33, 35, 36idlsrgmulrval 32611 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) ∧ (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜) βŠ† 𝑗) β†’ (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜) = ((RSpanβ€˜π‘…)β€˜(𝑙(LSSumβ€˜(mulGrpβ€˜π‘…))π‘˜)))
4846, 47sseqtrrd 4022 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) ∧ (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜) βŠ† 𝑗) β†’ (𝑙(LSSumβ€˜(mulGrpβ€˜π‘…))π‘˜) βŠ† (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜))
49 simpr 485 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) ∧ (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜) βŠ† 𝑗) β†’ (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜) βŠ† 𝑗)
5048, 49sstrd 3991 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) ∧ (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜) βŠ† 𝑗) β†’ (𝑙(LSSumβ€˜(mulGrpβ€˜π‘…))π‘˜) βŠ† 𝑗)
5132, 33, 34, 35, 36, 50idlmulssprm 32548 . . . . . . . . . . . . . 14 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) ∧ (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜) βŠ† 𝑗) β†’ (𝑙 βŠ† 𝑗 ∨ π‘˜ βŠ† 𝑗))
5231, 51impbida 799 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ 𝑗 ∈ (PrmIdealβ€˜π‘…)) β†’ ((𝑙 βŠ† 𝑗 ∨ π‘˜ βŠ† 𝑗) ↔ (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜) βŠ† 𝑗))
5352rabbidva 3439 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ (𝑙 βŠ† 𝑗 ∨ π‘˜ βŠ† 𝑗)} = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ (𝑙(.rβ€˜(IDLsrgβ€˜π‘…))π‘˜) βŠ† 𝑗})
5413, 17, 53rspcedvd 3614 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) β†’ βˆƒπ‘– ∈ (LIdealβ€˜π‘…){𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ (𝑙 βŠ† 𝑗 ∨ π‘˜ βŠ† 𝑗)} = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗})
55 fvex 6901 . . . . . . . . . . . . 13 (PrmIdealβ€˜π‘…) ∈ V
5655rabex 5331 . . . . . . . . . . . 12 {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ (𝑙 βŠ† 𝑗 ∨ π‘˜ βŠ† 𝑗)} ∈ V
5756a1i 11 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ (𝑙 βŠ† 𝑗 ∨ π‘˜ βŠ† 𝑗)} ∈ V)
585, 54, 57elrnmptd 5958 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ (𝑙 βŠ† 𝑗 ∨ π‘˜ βŠ† 𝑗)} ∈ ran 𝑉)
594, 58eqeltrid 2837 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) β†’ ({𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑙 βŠ† 𝑗} βˆͺ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗}) ∈ ran 𝑉)
6059adantlr 713 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ 𝑋 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑙 βŠ† 𝑗}) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) β†’ ({𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑙 βŠ† 𝑗} βˆͺ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗}) ∈ ran 𝑉)
6160adantr 481 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ 𝑋 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑙 βŠ† 𝑗}) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ π‘Œ = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗}) β†’ ({𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑙 βŠ† 𝑗} βˆͺ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗}) ∈ ran 𝑉)
623, 61eqeltrd 2833 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ 𝑋 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑙 βŠ† 𝑗}) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ π‘Œ = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗}) β†’ (𝑋 βˆͺ π‘Œ) ∈ ran 𝑉)
6362adantl4r 753 . . . . 5 ((((((𝑅 ∈ CRing ∧ π‘Œ ∈ ran 𝑉) ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ 𝑋 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑙 βŠ† 𝑗}) ∧ π‘˜ ∈ (LIdealβ€˜π‘…)) ∧ π‘Œ = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗}) β†’ (𝑋 βˆͺ π‘Œ) ∈ ran 𝑉)
6455rabex 5331 . . . . . . . . 9 {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗} ∈ V
655, 64elrnmpti 5957 . . . . . . . 8 (π‘Œ ∈ ran 𝑉 ↔ βˆƒπ‘– ∈ (LIdealβ€˜π‘…)π‘Œ = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗})
66 sseq1 4006 . . . . . . . . . . 11 (𝑖 = π‘˜ β†’ (𝑖 βŠ† 𝑗 ↔ π‘˜ βŠ† 𝑗))
6766rabbidv 3440 . . . . . . . . . 10 (𝑖 = π‘˜ β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗} = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗})
6867eqeq2d 2743 . . . . . . . . 9 (𝑖 = π‘˜ β†’ (π‘Œ = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗} ↔ π‘Œ = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗}))
6968cbvrexvw 3235 . . . . . . . 8 (βˆƒπ‘– ∈ (LIdealβ€˜π‘…)π‘Œ = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗} ↔ βˆƒπ‘˜ ∈ (LIdealβ€˜π‘…)π‘Œ = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗})
70 biid 260 . . . . . . . 8 (βˆƒπ‘˜ ∈ (LIdealβ€˜π‘…)π‘Œ = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗} ↔ βˆƒπ‘˜ ∈ (LIdealβ€˜π‘…)π‘Œ = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗})
7165, 69, 703bitri 296 . . . . . . 7 (π‘Œ ∈ ran 𝑉 ↔ βˆƒπ‘˜ ∈ (LIdealβ€˜π‘…)π‘Œ = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗})
7271biimpi 215 . . . . . 6 (π‘Œ ∈ ran 𝑉 β†’ βˆƒπ‘˜ ∈ (LIdealβ€˜π‘…)π‘Œ = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗})
7372ad3antlr 729 . . . . 5 ((((𝑅 ∈ CRing ∧ π‘Œ ∈ ran 𝑉) ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ 𝑋 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑙 βŠ† 𝑗}) β†’ βˆƒπ‘˜ ∈ (LIdealβ€˜π‘…)π‘Œ = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗})
7463, 73r19.29a 3162 . . . 4 ((((𝑅 ∈ CRing ∧ π‘Œ ∈ ran 𝑉) ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ 𝑋 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑙 βŠ† 𝑗}) β†’ (𝑋 βˆͺ π‘Œ) ∈ ran 𝑉)
7574adantl3r 748 . . 3 (((((𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉) ∧ π‘Œ ∈ ran 𝑉) ∧ 𝑙 ∈ (LIdealβ€˜π‘…)) ∧ 𝑋 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑙 βŠ† 𝑗}) β†’ (𝑋 βˆͺ π‘Œ) ∈ ran 𝑉)
765, 64elrnmpti 5957 . . . . . 6 (𝑋 ∈ ran 𝑉 ↔ βˆƒπ‘– ∈ (LIdealβ€˜π‘…)𝑋 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗})
77 sseq1 4006 . . . . . . . . 9 (𝑖 = 𝑙 β†’ (𝑖 βŠ† 𝑗 ↔ 𝑙 βŠ† 𝑗))
7877rabbidv 3440 . . . . . . . 8 (𝑖 = 𝑙 β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗} = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑙 βŠ† 𝑗})
7978eqeq2d 2743 . . . . . . 7 (𝑖 = 𝑙 β†’ (𝑋 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗} ↔ 𝑋 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑙 βŠ† 𝑗}))
8079cbvrexvw 3235 . . . . . 6 (βˆƒπ‘– ∈ (LIdealβ€˜π‘…)𝑋 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗} ↔ βˆƒπ‘™ ∈ (LIdealβ€˜π‘…)𝑋 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑙 βŠ† 𝑗})
81 biid 260 . . . . . 6 (βˆƒπ‘™ ∈ (LIdealβ€˜π‘…)𝑋 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑙 βŠ† 𝑗} ↔ βˆƒπ‘™ ∈ (LIdealβ€˜π‘…)𝑋 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑙 βŠ† 𝑗})
8276, 80, 813bitri 296 . . . . 5 (𝑋 ∈ ran 𝑉 ↔ βˆƒπ‘™ ∈ (LIdealβ€˜π‘…)𝑋 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑙 βŠ† 𝑗})
8382biimpi 215 . . . 4 (𝑋 ∈ ran 𝑉 β†’ βˆƒπ‘™ ∈ (LIdealβ€˜π‘…)𝑋 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑙 βŠ† 𝑗})
8483ad2antlr 725 . . 3 (((𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉) ∧ π‘Œ ∈ ran 𝑉) β†’ βˆƒπ‘™ ∈ (LIdealβ€˜π‘…)𝑋 = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑙 βŠ† 𝑗})
8575, 84r19.29a 3162 . 2 (((𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉) ∧ π‘Œ ∈ ran 𝑉) β†’ (𝑋 βˆͺ π‘Œ) ∈ ran 𝑉)
86853impa 1110 1 ((𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉 ∧ π‘Œ ∈ ran 𝑉) β†’ (𝑋 βˆͺ π‘Œ) ∈ ran 𝑉)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ wo 845   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070  {crab 3432  Vcvv 3474   βˆͺ cun 3945   βŠ† wss 3947   ↦ cmpt 5230  ran crn 5676  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  .rcmulr 17194  LSSumclsm 19496  mulGrpcmgp 19981  Ringcrg 20049  CRingccrg 20050  LIdealclidl 20775  RSpancrsp 20776  PrmIdealcprmidl 32541  IDLsrgcidlsrg 32602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-sbg 18820  df-subg 18997  df-lsm 19498  df-cmn 19644  df-mgp 19982  df-ur 19999  df-ring 20051  df-cring 20052  df-subrg 20353  df-lmod 20465  df-lss 20535  df-lsp 20575  df-sra 20777  df-rgmod 20778  df-lidl 20779  df-rsp 20780  df-prmidl 32542  df-idlsrg 32603
This theorem is referenced by:  zartopn  32843
  Copyright terms: Public domain W3C validator