Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarclsun Structured version   Visualization version   GIF version

Theorem zarclsun 31223
 Description: The union of two closed sets of the Zariski topology is closed. (Contributed by Thierry Arnoux, 16-Jun-2024.)
Hypothesis
Ref Expression
zarclsx.1 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
Assertion
Ref Expression
zarclsun ((𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉𝑌 ∈ ran 𝑉) → (𝑋𝑌) ∈ ran 𝑉)
Distinct variable groups:   𝑅,𝑖,𝑗   𝑖,𝑋   𝑖,𝑌
Allowed substitution hints:   𝑉(𝑖,𝑗)   𝑋(𝑗)   𝑌(𝑗)

Proof of Theorem zarclsun
Dummy variables 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpllr 775 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) → 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
2 simpr 488 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) → 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})
31, 2uneq12d 4094 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) → (𝑋𝑌) = ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∪ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}))
4 unrab 4229 . . . . . . . . . 10 ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∪ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)}
5 zarclsx.1 . . . . . . . . . . 11 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
6 eqid 2801 . . . . . . . . . . . . 13 (IDLsrg‘𝑅) = (IDLsrg‘𝑅)
7 eqid 2801 . . . . . . . . . . . . 13 (LIdeal‘𝑅) = (LIdeal‘𝑅)
8 eqid 2801 . . . . . . . . . . . . 13 (.r‘(IDLsrg‘𝑅)) = (.r‘(IDLsrg‘𝑅))
9 simpll 766 . . . . . . . . . . . . . 14 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → 𝑅 ∈ CRing)
109crngringd 19306 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → 𝑅 ∈ Ring)
11 simplr 768 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → 𝑙 ∈ (LIdeal‘𝑅))
12 simpr 488 . . . . . . . . . . . . 13 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → 𝑘 ∈ (LIdeal‘𝑅))
136, 7, 8, 10, 11, 12idlsrgmulrcl 31063 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ∈ (LIdeal‘𝑅))
14 sseq1 3943 . . . . . . . . . . . . . . 15 (𝑖 = (𝑙(.r‘(IDLsrg‘𝑅))𝑘) → (𝑖𝑗 ↔ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗))
1514rabbidv 3430 . . . . . . . . . . . . . 14 (𝑖 = (𝑙(.r‘(IDLsrg‘𝑅))𝑘) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗})
1615eqeq2d 2812 . . . . . . . . . . . . 13 (𝑖 = (𝑙(.r‘(IDLsrg‘𝑅))𝑘) → ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗}))
1716adantl 485 . . . . . . . . . . . 12 ((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑖 = (𝑙(.r‘(IDLsrg‘𝑅))𝑘)) → ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗}))
18 eqid 2801 . . . . . . . . . . . . . . . . 17 (.r𝑅) = (.r𝑅)
199ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑙𝑗) → 𝑅 ∈ CRing)
2011ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑙𝑗) → 𝑙 ∈ (LIdeal‘𝑅))
2112ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑙𝑗) → 𝑘 ∈ (LIdeal‘𝑅))
226, 7, 8, 18, 19, 20, 21idlsrgmulrss1 31064 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑙𝑗) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑙)
23 simpr 488 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑙𝑗) → 𝑙𝑗)
2422, 23sstrd 3928 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑙𝑗) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗)
2510ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑘𝑗) → 𝑅 ∈ Ring)
2611ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑘𝑗) → 𝑙 ∈ (LIdeal‘𝑅))
2712ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑘𝑗) → 𝑘 ∈ (LIdeal‘𝑅))
286, 7, 8, 18, 25, 26, 27idlsrgmulrss2 31065 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑘𝑗) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑘)
29 simpr 488 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑘𝑗) → 𝑘𝑗)
3028, 29sstrd 3928 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ 𝑘𝑗) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗)
3124, 30jaodan 955 . . . . . . . . . . . . . 14 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙𝑗𝑘𝑗)) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗)
32 eqid 2801 . . . . . . . . . . . . . . 15 (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅))
3310ad2antrr 725 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → 𝑅 ∈ Ring)
34 simplr 768 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → 𝑗 ∈ (PrmIdeal‘𝑅))
3511ad2antrr 725 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → 𝑙 ∈ (LIdeal‘𝑅))
3612ad2antrr 725 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → 𝑘 ∈ (LIdeal‘𝑅))
37 eqid 2801 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑅) = (Base‘𝑅)
38 eqid 2801 . . . . . . . . . . . . . . . . . . 19 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3937, 7lidlss 19979 . . . . . . . . . . . . . . . . . . . 20 (𝑙 ∈ (LIdeal‘𝑅) → 𝑙 ⊆ (Base‘𝑅))
4035, 39syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → 𝑙 ⊆ (Base‘𝑅))
4137, 7lidlss 19979 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (LIdeal‘𝑅) → 𝑘 ⊆ (Base‘𝑅))
4236, 41syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → 𝑘 ⊆ (Base‘𝑅))
4337, 38, 32, 33, 40, 42ringlsmss 31005 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → (𝑙(LSSum‘(mulGrp‘𝑅))𝑘) ⊆ (Base‘𝑅))
44 eqid 2801 . . . . . . . . . . . . . . . . . . 19 (RSpan‘𝑅) = (RSpan‘𝑅)
4544, 37rspssid 19992 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ (𝑙(LSSum‘(mulGrp‘𝑅))𝑘) ⊆ (Base‘𝑅)) → (𝑙(LSSum‘(mulGrp‘𝑅))𝑘) ⊆ ((RSpan‘𝑅)‘(𝑙(LSSum‘(mulGrp‘𝑅))𝑘)))
4633, 43, 45syl2anc 587 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → (𝑙(LSSum‘(mulGrp‘𝑅))𝑘) ⊆ ((RSpan‘𝑅)‘(𝑙(LSSum‘(mulGrp‘𝑅))𝑘)))
476, 7, 8, 38, 32, 33, 35, 36idlsrgmulrval 31062 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) = ((RSpan‘𝑅)‘(𝑙(LSSum‘(mulGrp‘𝑅))𝑘)))
4846, 47sseqtrrd 3959 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → (𝑙(LSSum‘(mulGrp‘𝑅))𝑘) ⊆ (𝑙(.r‘(IDLsrg‘𝑅))𝑘))
49 simpr 488 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗)
5048, 49sstrd 3928 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → (𝑙(LSSum‘(mulGrp‘𝑅))𝑘) ⊆ 𝑗)
5132, 33, 34, 35, 36, 50idlmulssprm 31025 . . . . . . . . . . . . . 14 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) ∧ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗) → (𝑙𝑗𝑘𝑗))
5231, 51impbida 800 . . . . . . . . . . . . 13 ((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑗 ∈ (PrmIdeal‘𝑅)) → ((𝑙𝑗𝑘𝑗) ↔ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗))
5352rabbidva 3428 . . . . . . . . . . . 12 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙(.r‘(IDLsrg‘𝑅))𝑘) ⊆ 𝑗})
5413, 17, 53rspcedvd 3577 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → ∃𝑖 ∈ (LIdeal‘𝑅){𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
55 fvex 6662 . . . . . . . . . . . . 13 (PrmIdeal‘𝑅) ∈ V
5655rabex 5202 . . . . . . . . . . . 12 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} ∈ V
5756a1i 11 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} ∈ V)
585, 54, 57elrnmptd 5801 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ (𝑙𝑗𝑘𝑗)} ∈ ran 𝑉)
594, 58eqeltrid 2897 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∪ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) ∈ ran 𝑉)
6059adantlr 714 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) ∧ 𝑘 ∈ (LIdeal‘𝑅)) → ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∪ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) ∈ ran 𝑉)
6160adantr 484 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) → ({𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ∪ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) ∈ ran 𝑉)
623, 61eqeltrd 2893 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) → (𝑋𝑌) ∈ ran 𝑉)
6362adantl4r 754 . . . . 5 ((((((𝑅 ∈ CRing ∧ 𝑌 ∈ ran 𝑉) ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) ∧ 𝑘 ∈ (LIdeal‘𝑅)) ∧ 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}) → (𝑋𝑌) ∈ ran 𝑉)
6455rabex 5202 . . . . . . . . 9 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ∈ V
655, 64elrnmpti 5800 . . . . . . . 8 (𝑌 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
66 sseq1 3943 . . . . . . . . . . 11 (𝑖 = 𝑘 → (𝑖𝑗𝑘𝑗))
6766rabbidv 3430 . . . . . . . . . 10 (𝑖 = 𝑘 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})
6867eqeq2d 2812 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ 𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗}))
6968cbvrexvw 3400 . . . . . . . 8 (∃𝑖 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ ∃𝑘 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})
70 biid 264 . . . . . . . 8 (∃𝑘 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗} ↔ ∃𝑘 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})
7165, 69, 703bitri 300 . . . . . . 7 (𝑌 ∈ ran 𝑉 ↔ ∃𝑘 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})
7271biimpi 219 . . . . . 6 (𝑌 ∈ ran 𝑉 → ∃𝑘 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})
7372ad3antlr 730 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑌 ∈ ran 𝑉) ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) → ∃𝑘 ∈ (LIdeal‘𝑅)𝑌 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})
7463, 73r19.29a 3251 . . . 4 ((((𝑅 ∈ CRing ∧ 𝑌 ∈ ran 𝑉) ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) → (𝑋𝑌) ∈ ran 𝑉)
7574adantl3r 749 . . 3 (((((𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉) ∧ 𝑌 ∈ ran 𝑉) ∧ 𝑙 ∈ (LIdeal‘𝑅)) ∧ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}) → (𝑋𝑌) ∈ ran 𝑉)
765, 64elrnmpti 5800 . . . . . 6 (𝑋 ∈ ran 𝑉 ↔ ∃𝑖 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗})
77 sseq1 3943 . . . . . . . . 9 (𝑖 = 𝑙 → (𝑖𝑗𝑙𝑗))
7877rabbidv 3430 . . . . . . . 8 (𝑖 = 𝑙 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
7978eqeq2d 2812 . . . . . . 7 (𝑖 = 𝑙 → (𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ 𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗}))
8079cbvrexvw 3400 . . . . . 6 (∃𝑖 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} ↔ ∃𝑙 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
81 biid 264 . . . . . 6 (∃𝑙 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗} ↔ ∃𝑙 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
8276, 80, 813bitri 300 . . . . 5 (𝑋 ∈ ran 𝑉 ↔ ∃𝑙 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
8382biimpi 219 . . . 4 (𝑋 ∈ ran 𝑉 → ∃𝑙 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
8483ad2antlr 726 . . 3 (((𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉) ∧ 𝑌 ∈ ran 𝑉) → ∃𝑙 ∈ (LIdeal‘𝑅)𝑋 = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑙𝑗})
8575, 84r19.29a 3251 . 2 (((𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉) ∧ 𝑌 ∈ ran 𝑉) → (𝑋𝑌) ∈ ran 𝑉)
86853impa 1107 1 ((𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉𝑌 ∈ ran 𝑉) → (𝑋𝑌) ∈ ran 𝑉)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112  ∃wrex 3110  {crab 3113  Vcvv 3444   ∪ cun 3882   ⊆ wss 3884   ↦ cmpt 5113  ran crn 5524  ‘cfv 6328  (class class class)co 7139  Basecbs 16478  .rcmulr 16561  LSSumclsm 18754  mulGrpcmgp 19235  Ringcrg 19293  CRingccrg 19294  LIdealclidl 19938  RSpancrsp 19939  PrmIdealcprmidl 31018  IDLsrgcidlsrg 31053 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12890  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18101  df-minusg 18102  df-sbg 18103  df-subg 18271  df-lsm 18756  df-cmn 18903  df-mgp 19236  df-ur 19248  df-ring 19295  df-cring 19296  df-subrg 19529  df-lmod 19632  df-lss 19700  df-lsp 19740  df-sra 19940  df-rgmod 19941  df-lidl 19942  df-rsp 19943  df-prmidl 31019  df-idlsrg 31054 This theorem is referenced by:  zartopn  31228
 Copyright terms: Public domain W3C validator