| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adantl3r | Structured version Visualization version GIF version | ||
| Description: Deduction adding 1 conjunct to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) |
| Ref | Expression |
|---|---|
| adantl3r.1 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| adantl3r | ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
| 2 | 1 | adantlr 715 | . 2 ⊢ (((𝜑 ∧ 𝜂) ∧ 𝜓) → (𝜑 ∧ 𝜓)) |
| 3 | adantl3r.1 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | sylanl1 680 | 1 ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: adantl4r 755 iscgrglt 28493 legov 28564 dfcgra2 28809 suppovss 32658 cyc3genpm 33163 elrgspnlem4 33240 rhmimaidl 33447 fedgmul 33671 zarclsun 33901 omssubadd 34332 circlemeth 34672 poimirlem29 37673 adantlllr 45063 supxrge 45365 xrralrecnnle 45410 rexabslelem 45445 limclner 45680 xlimmnfvlem2 45862 xlimmnfv 45863 xlimpnfvlem2 45866 xlimpnfv 45867 climxlim2lem 45874 icccncfext 45916 fourierdlem64 46199 fourierdlem73 46208 etransclem35 46298 sge0tsms 46409 hoicvr 46577 hspmbllem2 46656 smflimlem2 46801 smflimlem4 46803 |
| Copyright terms: Public domain | W3C validator |