| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adantl3r | Structured version Visualization version GIF version | ||
| Description: Deduction adding 1 conjunct to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) |
| Ref | Expression |
|---|---|
| adantl3r.1 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| adantl3r | ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
| 2 | 1 | adantlr 715 | . 2 ⊢ (((𝜑 ∧ 𝜂) ∧ 𝜓) → (𝜑 ∧ 𝜓)) |
| 3 | adantl3r.1 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | sylanl1 680 | 1 ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: adantl4r 755 iscgrglt 28448 legov 28519 dfcgra2 28764 suppovss 32611 cyc3genpm 33116 elrgspnlem4 33203 rhmimaidl 33410 fedgmul 33634 zarclsun 33867 omssubadd 34298 circlemeth 34638 poimirlem29 37650 adantlllr 45040 supxrge 45341 xrralrecnnle 45386 rexabslelem 45421 limclner 45656 xlimmnfvlem2 45838 xlimmnfv 45839 xlimpnfvlem2 45842 xlimpnfv 45843 climxlim2lem 45850 icccncfext 45892 fourierdlem64 46175 fourierdlem73 46184 etransclem35 46274 sge0tsms 46385 hoicvr 46553 hspmbllem2 46632 smflimlem2 46777 smflimlem4 46779 |
| Copyright terms: Public domain | W3C validator |