![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantl3r | Structured version Visualization version GIF version |
Description: Deduction adding 1 conjunct to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) |
Ref | Expression |
---|---|
adantl3r.1 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
adantl3r | ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
2 | 1 | adantlr 713 | . 2 ⊢ (((𝜑 ∧ 𝜂) ∧ 𝜓) → (𝜑 ∧ 𝜓)) |
3 | adantl3r.1 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | sylanl1 678 | 1 ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: adantl4r 753 iscgrglt 28441 legov 28512 dfcgra2 28757 suppovss 32597 cyc3genpm 33030 rhmimaidl 33307 fedgmul 33526 zarclsun 33685 omssubadd 34134 circlemeth 34486 poimirlem29 37350 adantlllr 44638 supxrge 44953 xrralrecnnle 44998 rexabslelem 45033 limclner 45272 xlimmnfvlem2 45454 xlimmnfv 45455 xlimpnfvlem2 45458 xlimpnfv 45459 climxlim2lem 45466 icccncfext 45508 fourierdlem64 45791 fourierdlem73 45800 etransclem35 45890 sge0tsms 46001 hoicvr 46169 hspmbllem2 46248 smflimlem2 46393 smflimlem4 46395 |
Copyright terms: Public domain | W3C validator |