MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adantl3r Structured version   Visualization version   GIF version

Theorem adantl3r 746
Description: Deduction adding 1 conjunct to antecedent. (Contributed by Alan Sare, 17-Oct-2017.)
Hypothesis
Ref Expression
adantl3r.1 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
adantl3r (((((𝜑𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)

Proof of Theorem adantl3r
StepHypRef Expression
1 id 22 . . 3 ((𝜑𝜓) → (𝜑𝜓))
21adantlr 711 . 2 (((𝜑𝜂) ∧ 𝜓) → (𝜑𝜓))
3 adantl3r.1 . 2 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
42, 3sylanl1 676 1 (((((𝜑𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  adantl4r  751  iscgrglt  26779  legov  26850  dfcgra2  27095  suppovss  30919  cyc3genpm  31321  rhmimaidl  31511  fedgmul  31614  zarclsun  31722  omssubadd  32167  circlemeth  32520  poimirlem29  35733  adantlllr  42472  supxrge  42767  xrralrecnnle  42812  rexabslelem  42848  limclner  43082  xlimmnfvlem2  43264  xlimmnfv  43265  xlimpnfvlem2  43268  xlimpnfv  43269  climxlim2lem  43276  icccncfext  43318  fourierdlem64  43601  fourierdlem73  43610  etransclem35  43700  sge0tsms  43808  hoicvr  43976  hspmbllem2  44055  smflimlem2  44194  smflimlem4  44196
  Copyright terms: Public domain W3C validator