MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adantl3r Structured version   Visualization version   GIF version

Theorem adantl3r 750
Description: Deduction adding 1 conjunct to antecedent. (Contributed by Alan Sare, 17-Oct-2017.)
Hypothesis
Ref Expression
adantl3r.1 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
adantl3r (((((𝜑𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)

Proof of Theorem adantl3r
StepHypRef Expression
1 id 22 . . 3 ((𝜑𝜓) → (𝜑𝜓))
21adantlr 715 . 2 (((𝜑𝜂) ∧ 𝜓) → (𝜑𝜓))
3 adantl3r.1 . 2 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
42, 3sylanl1 680 1 (((((𝜑𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  adantl4r  755  iscgrglt  28448  legov  28519  dfcgra2  28764  suppovss  32611  cyc3genpm  33116  elrgspnlem4  33203  rhmimaidl  33410  fedgmul  33634  zarclsun  33867  omssubadd  34298  circlemeth  34638  poimirlem29  37650  adantlllr  45040  supxrge  45341  xrralrecnnle  45386  rexabslelem  45421  limclner  45656  xlimmnfvlem2  45838  xlimmnfv  45839  xlimpnfvlem2  45842  xlimpnfv  45843  climxlim2lem  45850  icccncfext  45892  fourierdlem64  46175  fourierdlem73  46184  etransclem35  46274  sge0tsms  46385  hoicvr  46553  hspmbllem2  46632  smflimlem2  46777  smflimlem4  46779
  Copyright terms: Public domain W3C validator