| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adantl3r | Structured version Visualization version GIF version | ||
| Description: Deduction adding 1 conjunct to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) |
| Ref | Expression |
|---|---|
| adantl3r.1 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| adantl3r | ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
| 2 | 1 | adantlr 715 | . 2 ⊢ (((𝜑 ∧ 𝜂) ∧ 𝜓) → (𝜑 ∧ 𝜓)) |
| 3 | adantl3r.1 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | sylanl1 680 | 1 ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: adantl4r 755 iscgrglt 28441 legov 28512 dfcgra2 28757 suppovss 32604 cyc3genpm 33109 elrgspnlem4 33196 rhmimaidl 33403 fedgmul 33627 zarclsun 33860 omssubadd 34291 circlemeth 34631 poimirlem29 37643 adantlllr 45033 supxrge 45334 xrralrecnnle 45379 rexabslelem 45414 limclner 45649 xlimmnfvlem2 45831 xlimmnfv 45832 xlimpnfvlem2 45835 xlimpnfv 45836 climxlim2lem 45843 icccncfext 45885 fourierdlem64 46168 fourierdlem73 46177 etransclem35 46267 sge0tsms 46378 hoicvr 46546 hspmbllem2 46625 smflimlem2 46770 smflimlem4 46772 |
| Copyright terms: Public domain | W3C validator |