![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantl3r | Structured version Visualization version GIF version |
Description: Deduction adding 1 conjunct to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) |
Ref | Expression |
---|---|
adantl3r.1 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
adantl3r | ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
2 | 1 | adantlr 715 | . 2 ⊢ (((𝜑 ∧ 𝜂) ∧ 𝜓) → (𝜑 ∧ 𝜓)) |
3 | adantl3r.1 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | sylanl1 680 | 1 ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: adantl4r 755 iscgrglt 28536 legov 28607 dfcgra2 28852 suppovss 32695 cyc3genpm 33154 elrgspnlem4 33234 rhmimaidl 33439 fedgmul 33658 zarclsun 33830 omssubadd 34281 circlemeth 34633 poimirlem29 37635 adantlllr 44976 supxrge 45287 xrralrecnnle 45332 rexabslelem 45367 limclner 45606 xlimmnfvlem2 45788 xlimmnfv 45789 xlimpnfvlem2 45792 xlimpnfv 45793 climxlim2lem 45800 icccncfext 45842 fourierdlem64 46125 fourierdlem73 46134 etransclem35 46224 sge0tsms 46335 hoicvr 46503 hspmbllem2 46582 smflimlem2 46727 smflimlem4 46729 |
Copyright terms: Public domain | W3C validator |