![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantl3r | Structured version Visualization version GIF version |
Description: Deduction adding 1 conjunct to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) |
Ref | Expression |
---|---|
adantl3r.1 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
adantl3r | ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
2 | 1 | adantlr 712 | . 2 ⊢ (((𝜑 ∧ 𝜂) ∧ 𝜓) → (𝜑 ∧ 𝜓)) |
3 | adantl3r.1 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | sylanl1 677 | 1 ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: adantl4r 752 iscgrglt 28033 legov 28104 dfcgra2 28349 suppovss 32174 cyc3genpm 32582 rhmimaidl 32825 fedgmul 33005 zarclsun 33149 omssubadd 33598 circlemeth 33951 poimirlem29 36821 adantlllr 44026 supxrge 44347 xrralrecnnle 44392 rexabslelem 44427 limclner 44666 xlimmnfvlem2 44848 xlimmnfv 44849 xlimpnfvlem2 44852 xlimpnfv 44853 climxlim2lem 44860 icccncfext 44902 fourierdlem64 45185 fourierdlem73 45194 etransclem35 45284 sge0tsms 45395 hoicvr 45563 hspmbllem2 45642 smflimlem2 45787 smflimlem4 45789 |
Copyright terms: Public domain | W3C validator |