MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adantl3r Structured version   Visualization version   GIF version

Theorem adantl3r 748
Description: Deduction adding 1 conjunct to antecedent. (Contributed by Alan Sare, 17-Oct-2017.)
Hypothesis
Ref Expression
adantl3r.1 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
adantl3r (((((𝜑𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)

Proof of Theorem adantl3r
StepHypRef Expression
1 id 22 . . 3 ((𝜑𝜓) → (𝜑𝜓))
21adantlr 713 . 2 (((𝜑𝜂) ∧ 𝜓) → (𝜑𝜓))
3 adantl3r.1 . 2 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
42, 3sylanl1 678 1 (((((𝜑𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  adantl4r  753  iscgrglt  27803  legov  27874  dfcgra2  28119  suppovss  31944  cyc3genpm  32352  rhmimaidl  32595  fedgmul  32775  zarclsun  32919  omssubadd  33368  circlemeth  33721  poimirlem29  36603  adantlllr  43805  supxrge  44127  xrralrecnnle  44172  rexabslelem  44207  limclner  44446  xlimmnfvlem2  44628  xlimmnfv  44629  xlimpnfvlem2  44632  xlimpnfv  44633  climxlim2lem  44640  icccncfext  44682  fourierdlem64  44965  fourierdlem73  44974  etransclem35  45064  sge0tsms  45175  hoicvr  45343  hspmbllem2  45422  smflimlem2  45567  smflimlem4  45569
  Copyright terms: Public domain W3C validator