Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > adantl3r | Structured version Visualization version GIF version |
Description: Deduction adding 1 conjunct to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) |
Ref | Expression |
---|---|
adantl3r.1 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
adantl3r | ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
2 | 1 | adantlr 711 | . 2 ⊢ (((𝜑 ∧ 𝜂) ∧ 𝜓) → (𝜑 ∧ 𝜓)) |
3 | adantl3r.1 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | sylanl1 676 | 1 ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: adantl4r 751 iscgrglt 26779 legov 26850 dfcgra2 27095 suppovss 30919 cyc3genpm 31321 rhmimaidl 31511 fedgmul 31614 zarclsun 31722 omssubadd 32167 circlemeth 32520 poimirlem29 35733 adantlllr 42472 supxrge 42767 xrralrecnnle 42812 rexabslelem 42848 limclner 43082 xlimmnfvlem2 43264 xlimmnfv 43265 xlimpnfvlem2 43268 xlimpnfv 43269 climxlim2lem 43276 icccncfext 43318 fourierdlem64 43601 fourierdlem73 43610 etransclem35 43700 sge0tsms 43808 hoicvr 43976 hspmbllem2 44055 smflimlem2 44194 smflimlem4 44196 |
Copyright terms: Public domain | W3C validator |