![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantl3r | Structured version Visualization version GIF version |
Description: Deduction adding 1 conjunct to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) |
Ref | Expression |
---|---|
adantl3r.1 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
adantl3r | ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
2 | 1 | adantlr 714 | . 2 ⊢ (((𝜑 ∧ 𝜂) ∧ 𝜓) → (𝜑 ∧ 𝜓)) |
3 | adantl3r.1 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | sylanl1 679 | 1 ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: adantl4r 754 iscgrglt 27765 legov 27836 dfcgra2 28081 suppovss 31906 cyc3genpm 32311 rhmimaidl 32550 fedgmul 32716 zarclsun 32850 omssubadd 33299 circlemeth 33652 poimirlem29 36517 adantlllr 43723 supxrge 44048 xrralrecnnle 44093 rexabslelem 44128 limclner 44367 xlimmnfvlem2 44549 xlimmnfv 44550 xlimpnfvlem2 44553 xlimpnfv 44554 climxlim2lem 44561 icccncfext 44603 fourierdlem64 44886 fourierdlem73 44895 etransclem35 44985 sge0tsms 45096 hoicvr 45264 hspmbllem2 45343 smflimlem2 45488 smflimlem4 45490 |
Copyright terms: Public domain | W3C validator |