| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adantl3r | Structured version Visualization version GIF version | ||
| Description: Deduction adding 1 conjunct to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) |
| Ref | Expression |
|---|---|
| adantl3r.1 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| adantl3r | ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
| 2 | 1 | adantlr 715 | . 2 ⊢ (((𝜑 ∧ 𝜂) ∧ 𝜓) → (𝜑 ∧ 𝜓)) |
| 3 | adantl3r.1 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | sylanl1 680 | 1 ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: adantl4r 755 iscgrglt 28494 legov 28565 dfcgra2 28810 suppovss 32654 cyc3genpm 33124 elrgspnlem4 33212 rhmimaidl 33396 fedgmul 33620 zarclsun 33853 omssubadd 34284 circlemeth 34624 poimirlem29 37636 adantlllr 45026 supxrge 45327 xrralrecnnle 45372 rexabslelem 45407 limclner 45642 xlimmnfvlem2 45824 xlimmnfv 45825 xlimpnfvlem2 45828 xlimpnfv 45829 climxlim2lem 45836 icccncfext 45878 fourierdlem64 46161 fourierdlem73 46170 etransclem35 46260 sge0tsms 46371 hoicvr 46539 hspmbllem2 46618 smflimlem2 46763 smflimlem4 46765 |
| Copyright terms: Public domain | W3C validator |