MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adantl3r Structured version   Visualization version   GIF version

Theorem adantl3r 748
Description: Deduction adding 1 conjunct to antecedent. (Contributed by Alan Sare, 17-Oct-2017.)
Hypothesis
Ref Expression
adantl3r.1 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
adantl3r (((((𝜑𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)

Proof of Theorem adantl3r
StepHypRef Expression
1 id 22 . . 3 ((𝜑𝜓) → (𝜑𝜓))
21adantlr 713 . 2 (((𝜑𝜂) ∧ 𝜓) → (𝜑𝜓))
3 adantl3r.1 . 2 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
42, 3sylanl1 678 1 (((((𝜑𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395
This theorem is referenced by:  adantl4r  753  iscgrglt  28441  legov  28512  dfcgra2  28757  suppovss  32597  cyc3genpm  33030  rhmimaidl  33307  fedgmul  33526  zarclsun  33685  omssubadd  34134  circlemeth  34486  poimirlem29  37350  adantlllr  44638  supxrge  44953  xrralrecnnle  44998  rexabslelem  45033  limclner  45272  xlimmnfvlem2  45454  xlimmnfv  45455  xlimpnfvlem2  45458  xlimpnfv  45459  climxlim2lem  45466  icccncfext  45508  fourierdlem64  45791  fourierdlem73  45800  etransclem35  45890  sge0tsms  46001  hoicvr  46169  hspmbllem2  46248  smflimlem2  46393  smflimlem4  46395
  Copyright terms: Public domain W3C validator