![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantl3r | Structured version Visualization version GIF version |
Description: Deduction adding 1 conjunct to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) |
Ref | Expression |
---|---|
adantl3r.1 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
adantl3r | ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
2 | 1 | adantlr 713 | . 2 ⊢ (((𝜑 ∧ 𝜂) ∧ 𝜓) → (𝜑 ∧ 𝜓)) |
3 | adantl3r.1 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | sylanl1 678 | 1 ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: adantl4r 753 iscgrglt 27803 legov 27874 dfcgra2 28119 suppovss 31944 cyc3genpm 32352 rhmimaidl 32595 fedgmul 32775 zarclsun 32919 omssubadd 33368 circlemeth 33721 poimirlem29 36603 adantlllr 43805 supxrge 44127 xrralrecnnle 44172 rexabslelem 44207 limclner 44446 xlimmnfvlem2 44628 xlimmnfv 44629 xlimpnfvlem2 44632 xlimpnfv 44633 climxlim2lem 44640 icccncfext 44682 fourierdlem64 44965 fourierdlem73 44974 etransclem35 45064 sge0tsms 45175 hoicvr 45343 hspmbllem2 45422 smflimlem2 45567 smflimlem4 45569 |
Copyright terms: Public domain | W3C validator |