![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantl3r | Structured version Visualization version GIF version |
Description: Deduction adding 1 conjunct to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) |
Ref | Expression |
---|---|
adantl3r.1 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
adantl3r | ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
2 | 1 | adantlr 714 | . 2 ⊢ (((𝜑 ∧ 𝜂) ∧ 𝜓) → (𝜑 ∧ 𝜓)) |
3 | adantl3r.1 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | sylanl1 679 | 1 ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: adantl4r 754 iscgrglt 28540 legov 28611 dfcgra2 28856 suppovss 32697 cyc3genpm 33145 rhmimaidl 33425 fedgmul 33644 zarclsun 33816 omssubadd 34265 circlemeth 34617 poimirlem29 37609 adantlllr 44939 supxrge 45253 xrralrecnnle 45298 rexabslelem 45333 limclner 45572 xlimmnfvlem2 45754 xlimmnfv 45755 xlimpnfvlem2 45758 xlimpnfv 45759 climxlim2lem 45766 icccncfext 45808 fourierdlem64 46091 fourierdlem73 46100 etransclem35 46190 sge0tsms 46301 hoicvr 46469 hspmbllem2 46548 smflimlem2 46693 smflimlem4 46695 |
Copyright terms: Public domain | W3C validator |