MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adantl3r Structured version   Visualization version   GIF version

Theorem adantl3r 750
Description: Deduction adding 1 conjunct to antecedent. (Contributed by Alan Sare, 17-Oct-2017.)
Hypothesis
Ref Expression
adantl3r.1 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
adantl3r (((((𝜑𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)

Proof of Theorem adantl3r
StepHypRef Expression
1 id 22 . . 3 ((𝜑𝜓) → (𝜑𝜓))
21adantlr 715 . 2 (((𝜑𝜂) ∧ 𝜓) → (𝜑𝜓))
3 adantl3r.1 . 2 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
42, 3sylanl1 680 1 (((((𝜑𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  adantl4r  755  iscgrglt  28493  legov  28564  dfcgra2  28809  suppovss  32658  cyc3genpm  33163  elrgspnlem4  33240  rhmimaidl  33447  fedgmul  33671  zarclsun  33901  omssubadd  34332  circlemeth  34672  poimirlem29  37673  adantlllr  45063  supxrge  45365  xrralrecnnle  45410  rexabslelem  45445  limclner  45680  xlimmnfvlem2  45862  xlimmnfv  45863  xlimpnfvlem2  45866  xlimpnfv  45867  climxlim2lem  45874  icccncfext  45916  fourierdlem64  46199  fourierdlem73  46208  etransclem35  46298  sge0tsms  46409  hoicvr  46577  hspmbllem2  46656  smflimlem2  46801  smflimlem4  46803
  Copyright terms: Public domain W3C validator