Proof of Theorem asymref2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | asymref 6136 | . 2
⊢ ((𝑅 ∩ ◡𝑅) = ( I ↾ ∪
∪ 𝑅) ↔ ∀𝑥 ∈ ∪ ∪ 𝑅∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) ↔ 𝑥 = 𝑦)) | 
| 2 |  | albiim 1889 | . . 3
⊢
(∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) ↔ 𝑥 = 𝑦) ↔ (∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ ∀𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)))) | 
| 3 | 2 | ralbii 3093 | . 2
⊢
(∀𝑥 ∈
∪ ∪ 𝑅∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) ↔ 𝑥 = 𝑦) ↔ ∀𝑥 ∈ ∪ ∪ 𝑅(∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ ∀𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)))) | 
| 4 |  | r19.26 3111 | . . 3
⊢
(∀𝑥 ∈
∪ ∪ 𝑅(∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ ∀𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥))) ↔ (∀𝑥 ∈ ∪ ∪ 𝑅∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥 ∈ ∪ ∪ 𝑅∀𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)))) | 
| 5 |  | ancom 460 | . . 3
⊢
((∀𝑥 ∈
∪ ∪ 𝑅∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥 ∈ ∪ ∪ 𝑅∀𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥))) ↔ (∀𝑥 ∈ ∪ ∪ 𝑅∀𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)) ∧ ∀𝑥 ∈ ∪ ∪ 𝑅∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦))) | 
| 6 |  | equcom 2017 | . . . . . . . 8
⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | 
| 7 | 6 | imbi1i 349 | . . . . . . 7
⊢ ((𝑥 = 𝑦 → (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)) ↔ (𝑦 = 𝑥 → (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥))) | 
| 8 | 7 | albii 1819 | . . . . . 6
⊢
(∀𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)) ↔ ∀𝑦(𝑦 = 𝑥 → (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥))) | 
| 9 |  | breq2 5147 | . . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝑥𝑅𝑦 ↔ 𝑥𝑅𝑥)) | 
| 10 |  | breq1 5146 | . . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝑦𝑅𝑥 ↔ 𝑥𝑅𝑥)) | 
| 11 | 9, 10 | anbi12d 632 | . . . . . . . 8
⊢ (𝑦 = 𝑥 → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) ↔ (𝑥𝑅𝑥 ∧ 𝑥𝑅𝑥))) | 
| 12 |  | anidm 564 | . . . . . . . 8
⊢ ((𝑥𝑅𝑥 ∧ 𝑥𝑅𝑥) ↔ 𝑥𝑅𝑥) | 
| 13 | 11, 12 | bitrdi 287 | . . . . . . 7
⊢ (𝑦 = 𝑥 → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) ↔ 𝑥𝑅𝑥)) | 
| 14 | 13 | equsalvw 2003 | . . . . . 6
⊢
(∀𝑦(𝑦 = 𝑥 → (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)) ↔ 𝑥𝑅𝑥) | 
| 15 | 8, 14 | bitri 275 | . . . . 5
⊢
(∀𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)) ↔ 𝑥𝑅𝑥) | 
| 16 | 15 | ralbii 3093 | . . . 4
⊢
(∀𝑥 ∈
∪ ∪ 𝑅∀𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)) ↔ ∀𝑥 ∈ ∪ ∪ 𝑅𝑥𝑅𝑥) | 
| 17 |  | df-ral 3062 | . . . . 5
⊢
(∀𝑥 ∈
∪ ∪ 𝑅∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ ∪ ∪ 𝑅
→ ∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦))) | 
| 18 |  | df-br 5144 | . . . . . . . . . . . . 13
⊢ (𝑥𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) | 
| 19 |  | vex 3484 | . . . . . . . . . . . . . . 15
⊢ 𝑥 ∈ V | 
| 20 |  | vex 3484 | . . . . . . . . . . . . . . 15
⊢ 𝑦 ∈ V | 
| 21 | 19, 20 | opeluu 5475 | . . . . . . . . . . . . . 14
⊢
(〈𝑥, 𝑦〉 ∈ 𝑅 → (𝑥 ∈ ∪ ∪ 𝑅
∧ 𝑦 ∈ ∪ ∪ 𝑅)) | 
| 22 | 21 | simpld 494 | . . . . . . . . . . . . 13
⊢
(〈𝑥, 𝑦〉 ∈ 𝑅 → 𝑥 ∈ ∪ ∪ 𝑅) | 
| 23 | 18, 22 | sylbi 217 | . . . . . . . . . . . 12
⊢ (𝑥𝑅𝑦 → 𝑥 ∈ ∪ ∪ 𝑅) | 
| 24 | 23 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 ∈ ∪ ∪ 𝑅) | 
| 25 | 24 | pm2.24d 151 | . . . . . . . . . 10
⊢ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → (¬ 𝑥 ∈ ∪ ∪ 𝑅
→ 𝑥 = 𝑦)) | 
| 26 | 25 | com12 32 | . . . . . . . . 9
⊢ (¬
𝑥 ∈ ∪ ∪ 𝑅 → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) | 
| 27 | 26 | alrimiv 1927 | . . . . . . . 8
⊢ (¬
𝑥 ∈ ∪ ∪ 𝑅 → ∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) | 
| 28 |  | id 22 | . . . . . . . 8
⊢
(∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦) → ∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) | 
| 29 | 27, 28 | ja 186 | . . . . . . 7
⊢ ((𝑥 ∈ ∪ ∪ 𝑅 → ∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) → ∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) | 
| 30 |  | ax-1 6 | . . . . . . 7
⊢
(∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦) → (𝑥 ∈ ∪ ∪ 𝑅
→ ∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦))) | 
| 31 | 29, 30 | impbii 209 | . . . . . 6
⊢ ((𝑥 ∈ ∪ ∪ 𝑅 → ∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) ↔ ∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) | 
| 32 | 31 | albii 1819 | . . . . 5
⊢
(∀𝑥(𝑥 ∈ ∪ ∪ 𝑅 → ∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) ↔ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) | 
| 33 | 17, 32 | bitri 275 | . . . 4
⊢
(∀𝑥 ∈
∪ ∪ 𝑅∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) | 
| 34 | 16, 33 | anbi12i 628 | . . 3
⊢
((∀𝑥 ∈
∪ ∪ 𝑅∀𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥)) ∧ ∀𝑥 ∈ ∪ ∪ 𝑅∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) ↔ (∀𝑥 ∈ ∪ ∪ 𝑅𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦))) | 
| 35 | 4, 5, 34 | 3bitri 297 | . 2
⊢
(∀𝑥 ∈
∪ ∪ 𝑅(∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ ∀𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥))) ↔ (∀𝑥 ∈ ∪ ∪ 𝑅𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦))) | 
| 36 | 1, 3, 35 | 3bitri 297 | 1
⊢ ((𝑅 ∩ ◡𝑅) = ( I ↾ ∪
∪ 𝑅) ↔ (∀𝑥 ∈ ∪ ∪ 𝑅𝑥𝑅𝑥 ∧ ∀𝑥∀𝑦((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦))) |