| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssext | Structured version Visualization version GIF version | ||
| Description: An extensionality-like principle that uses the subset instead of the membership relation: two classes are equal iff they have the same subsets. (Contributed by NM, 30-Jun-2004.) |
| Ref | Expression |
|---|---|
| ssext | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssextss 5438 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵)) | |
| 2 | ssextss 5438 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴)) | |
| 3 | 1, 2 | anbi12i 628 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵) ∧ ∀𝑥(𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴))) |
| 4 | eqss 3979 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | albiim 1888 | . 2 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵) ↔ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵) ∧ ∀𝑥(𝑥 ⊆ 𝐵 → 𝑥 ⊆ 𝐴))) | |
| 6 | 3, 4, 5 | 3bitr4i 303 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 = wceq 1539 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-un 3936 df-ss 3948 df-pw 4582 df-sn 4607 df-pr 4609 |
| This theorem is referenced by: extssr 38469 |
| Copyright terms: Public domain | W3C validator |