MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alexeqg Structured version   Visualization version   GIF version

Theorem alexeqg 3573
Description: Two ways to express substitution of 𝐴 for 𝑥 in 𝜑. This is the analogue for classes of sbalex 2238. (Contributed by NM, 2-Mar-1995.) (Revised by BJ, 27-Apr-2019.)
Assertion
Ref Expression
alexeqg (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem alexeqg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqeq2 2750 . . . . 5 (𝑦 = 𝐴 → (𝑥 = 𝑦𝑥 = 𝐴))
21anbi1d 629 . . . 4 (𝑦 = 𝐴 → ((𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝐴𝜑)))
32exbidv 1925 . . 3 (𝑦 = 𝐴 → (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
41imbi1d 341 . . . 4 (𝑦 = 𝐴 → ((𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝐴𝜑)))
54albidv 1924 . . 3 (𝑦 = 𝐴 → (∀𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
6 sbalex 2238 . . 3 (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
73, 5, 6vtoclbg 3497 . 2 (𝐴𝑉 → (∃𝑥(𝑥 = 𝐴𝜑) ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
87bicomd 222 1 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wex 1783  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817
This theorem is referenced by:  ceqex  3574  sbc6gOLD  3742
  Copyright terms: Public domain W3C validator