| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqvincf | Structured version Visualization version GIF version | ||
| Description: A variable introduction law for class equality, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Sep-2003.) |
| Ref | Expression |
|---|---|
| eqvincf.1 | ⊢ Ⅎ𝑥𝐴 |
| eqvincf.2 | ⊢ Ⅎ𝑥𝐵 |
| eqvincf.3 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| eqvincf | ⊢ (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvincf.3 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | eqvinc 3604 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∃𝑦(𝑦 = 𝐴 ∧ 𝑦 = 𝐵)) |
| 3 | eqvincf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 3 | nfeq2 2912 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = 𝐴 |
| 5 | eqvincf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 5 | nfeq2 2912 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = 𝐵 |
| 7 | 4, 6 | nfan 1900 | . . 3 ⊢ Ⅎ𝑥(𝑦 = 𝐴 ∧ 𝑦 = 𝐵) |
| 8 | nfv 1915 | . . 3 ⊢ Ⅎ𝑦(𝑥 = 𝐴 ∧ 𝑥 = 𝐵) | |
| 9 | eqeq1 2735 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝐴 ↔ 𝑥 = 𝐴)) | |
| 10 | eqeq1 2735 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝐵 ↔ 𝑥 = 𝐵)) | |
| 11 | 9, 10 | anbi12d 632 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝑦 = 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 = 𝐴 ∧ 𝑥 = 𝐵))) |
| 12 | 7, 8, 11 | cbvexv1 2342 | . 2 ⊢ (∃𝑦(𝑦 = 𝐴 ∧ 𝑦 = 𝐵) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) |
| 13 | 2, 12 | bitri 275 | 1 ⊢ (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Ⅎwnfc 2879 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |