MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqvincf Structured version   Visualization version   GIF version

Theorem eqvincf 3580
Description: A variable introduction law for class equality, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Sep-2003.)
Hypotheses
Ref Expression
eqvincf.1 𝑥𝐴
eqvincf.2 𝑥𝐵
eqvincf.3 𝐴 ∈ V
Assertion
Ref Expression
eqvincf (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥 = 𝐵))

Proof of Theorem eqvincf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqvincf.3 . . 3 𝐴 ∈ V
21eqvinc 3579 . 2 (𝐴 = 𝐵 ↔ ∃𝑦(𝑦 = 𝐴𝑦 = 𝐵))
3 eqvincf.1 . . . . 5 𝑥𝐴
43nfeq2 2924 . . . 4 𝑥 𝑦 = 𝐴
5 eqvincf.2 . . . . 5 𝑥𝐵
65nfeq2 2924 . . . 4 𝑥 𝑦 = 𝐵
74, 6nfan 1902 . . 3 𝑥(𝑦 = 𝐴𝑦 = 𝐵)
8 nfv 1917 . . 3 𝑦(𝑥 = 𝐴𝑥 = 𝐵)
9 eqeq1 2742 . . . 4 (𝑦 = 𝑥 → (𝑦 = 𝐴𝑥 = 𝐴))
10 eqeq1 2742 . . . 4 (𝑦 = 𝑥 → (𝑦 = 𝐵𝑥 = 𝐵))
119, 10anbi12d 631 . . 3 (𝑦 = 𝑥 → ((𝑦 = 𝐴𝑦 = 𝐵) ↔ (𝑥 = 𝐴𝑥 = 𝐵)))
127, 8, 11cbvexv1 2339 . 2 (∃𝑦(𝑦 = 𝐴𝑦 = 𝐵) ↔ ∃𝑥(𝑥 = 𝐴𝑥 = 𝐵))
132, 12bitri 274 1 (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wnfc 2887  Vcvv 3432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator