MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpowndlem3 Structured version   Visualization version   GIF version

Theorem axpowndlem3 10010
Description: Lemma for the Axiom of Power Sets with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2379. (Contributed by NM, 4-Jan-2002.) (Revised by Mario Carneiro, 10-Dec-2016.) (Proof shortened by Wolf Lammen, 10-Jun-2019.) (New usage is discouraged.)
Assertion
Ref Expression
axpowndlem3 𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))
Distinct variable group:   𝑦,𝑧

Proof of Theorem axpowndlem3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 sp 2180 . 2 (∀𝑥 𝑥 = 𝑦𝑥 = 𝑦)
2 p0ex 5250 . . . . . . . 8 {∅} ∈ V
3 eleq2 2878 . . . . . . . . . 10 (𝑥 = {∅} → (𝑤𝑥𝑤 ∈ {∅}))
43imbi2d 344 . . . . . . . . 9 (𝑥 = {∅} → ((𝑤 = ∅ → 𝑤𝑥) ↔ (𝑤 = ∅ → 𝑤 ∈ {∅})))
54albidv 1921 . . . . . . . 8 (𝑥 = {∅} → (∀𝑤(𝑤 = ∅ → 𝑤𝑥) ↔ ∀𝑤(𝑤 = ∅ → 𝑤 ∈ {∅})))
62, 5spcev 3555 . . . . . . 7 (∀𝑤(𝑤 = ∅ → 𝑤 ∈ {∅}) → ∃𝑥𝑤(𝑤 = ∅ → 𝑤𝑥))
7 0ex 5175 . . . . . . . . 9 ∅ ∈ V
87snid 4561 . . . . . . . 8 ∅ ∈ {∅}
9 eleq1 2877 . . . . . . . 8 (𝑤 = ∅ → (𝑤 ∈ {∅} ↔ ∅ ∈ {∅}))
108, 9mpbiri 261 . . . . . . 7 (𝑤 = ∅ → 𝑤 ∈ {∅})
116, 10mpg 1799 . . . . . 6 𝑥𝑤(𝑤 = ∅ → 𝑤𝑥)
12 neq0 4259 . . . . . . . . . 10 𝑤 = ∅ ↔ ∃𝑥 𝑥𝑤)
1312con1bii 360 . . . . . . . . 9 (¬ ∃𝑥 𝑥𝑤𝑤 = ∅)
1413imbi1i 353 . . . . . . . 8 ((¬ ∃𝑥 𝑥𝑤𝑤𝑥) ↔ (𝑤 = ∅ → 𝑤𝑥))
1514albii 1821 . . . . . . 7 (∀𝑤(¬ ∃𝑥 𝑥𝑤𝑤𝑥) ↔ ∀𝑤(𝑤 = ∅ → 𝑤𝑥))
1615exbii 1849 . . . . . 6 (∃𝑥𝑤(¬ ∃𝑥 𝑥𝑤𝑤𝑥) ↔ ∃𝑥𝑤(𝑤 = ∅ → 𝑤𝑥))
1711, 16mpbir 234 . . . . 5 𝑥𝑤(¬ ∃𝑥 𝑥𝑤𝑤𝑥)
18 nfnae 2445 . . . . . 6 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
19 nfnae 2445 . . . . . . 7 𝑦 ¬ ∀𝑥 𝑥 = 𝑦
20 nfcvf2 2982 . . . . . . . . . . 11 (¬ ∀𝑥 𝑥 = 𝑦𝑦𝑥)
21 nfcvd 2956 . . . . . . . . . . 11 (¬ ∀𝑥 𝑥 = 𝑦𝑦𝑤)
2220, 21nfeld 2966 . . . . . . . . . 10 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦 𝑥𝑤)
2318, 22nfexd 2337 . . . . . . . . 9 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝑥 𝑥𝑤)
2423nfnd 1859 . . . . . . . 8 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦 ¬ ∃𝑥 𝑥𝑤)
2521, 20nfeld 2966 . . . . . . . 8 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦 𝑤𝑥)
2624, 25nfimd 1895 . . . . . . 7 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦(¬ ∃𝑥 𝑥𝑤𝑤𝑥))
27 nfeqf2 2384 . . . . . . . . . . . 12 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑤 = 𝑦)
2818, 27nfan1 2198 . . . . . . . . . . 11 𝑥(¬ ∀𝑥 𝑥 = 𝑦𝑤 = 𝑦)
29 elequ2 2126 . . . . . . . . . . . 12 (𝑤 = 𝑦 → (𝑥𝑤𝑥𝑦))
3029adantl 485 . . . . . . . . . . 11 ((¬ ∀𝑥 𝑥 = 𝑦𝑤 = 𝑦) → (𝑥𝑤𝑥𝑦))
3128, 30exbid 2223 . . . . . . . . . 10 ((¬ ∀𝑥 𝑥 = 𝑦𝑤 = 𝑦) → (∃𝑥 𝑥𝑤 ↔ ∃𝑥 𝑥𝑦))
3231notbid 321 . . . . . . . . 9 ((¬ ∀𝑥 𝑥 = 𝑦𝑤 = 𝑦) → (¬ ∃𝑥 𝑥𝑤 ↔ ¬ ∃𝑥 𝑥𝑦))
33 elequ1 2118 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑤𝑥𝑦𝑥))
3433adantl 485 . . . . . . . . 9 ((¬ ∀𝑥 𝑥 = 𝑦𝑤 = 𝑦) → (𝑤𝑥𝑦𝑥))
3532, 34imbi12d 348 . . . . . . . 8 ((¬ ∀𝑥 𝑥 = 𝑦𝑤 = 𝑦) → ((¬ ∃𝑥 𝑥𝑤𝑤𝑥) ↔ (¬ ∃𝑥 𝑥𝑦𝑦𝑥)))
3635ex 416 . . . . . . 7 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑤 = 𝑦 → ((¬ ∃𝑥 𝑥𝑤𝑤𝑥) ↔ (¬ ∃𝑥 𝑥𝑦𝑦𝑥))))
3719, 26, 36cbvald 2417 . . . . . 6 (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑤(¬ ∃𝑥 𝑥𝑤𝑤𝑥) ↔ ∀𝑦(¬ ∃𝑥 𝑥𝑦𝑦𝑥)))
3818, 37exbid 2223 . . . . 5 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥𝑤(¬ ∃𝑥 𝑥𝑤𝑤𝑥) ↔ ∃𝑥𝑦(¬ ∃𝑥 𝑥𝑦𝑦𝑥)))
3917, 38mpbii 236 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦(¬ ∃𝑥 𝑥𝑦𝑦𝑥))
40 nfae 2444 . . . . 5 𝑥𝑥 𝑥 = 𝑧
41 nfae 2444 . . . . . 6 𝑦𝑥 𝑥 = 𝑧
42 axc11r 2375 . . . . . . . . . 10 (∀𝑥 𝑥 = 𝑧 → (∀𝑧 ¬ 𝑥𝑦 → ∀𝑥 ¬ 𝑥𝑦))
43 alnex 1783 . . . . . . . . . 10 (∀𝑧 ¬ 𝑥𝑦 ↔ ¬ ∃𝑧 𝑥𝑦)
44 alnex 1783 . . . . . . . . . 10 (∀𝑥 ¬ 𝑥𝑦 ↔ ¬ ∃𝑥 𝑥𝑦)
4542, 43, 443imtr3g 298 . . . . . . . . 9 (∀𝑥 𝑥 = 𝑧 → (¬ ∃𝑧 𝑥𝑦 → ¬ ∃𝑥 𝑥𝑦))
46 nd3 10000 . . . . . . . . . 10 (∀𝑥 𝑥 = 𝑧 → ¬ ∀𝑦 𝑥𝑧)
4746pm2.21d 121 . . . . . . . . 9 (∀𝑥 𝑥 = 𝑧 → (∀𝑦 𝑥𝑧 → ¬ ∃𝑥 𝑥𝑦))
4845, 47jad 190 . . . . . . . 8 (∀𝑥 𝑥 = 𝑧 → ((∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → ¬ ∃𝑥 𝑥𝑦))
4948spsd 2184 . . . . . . 7 (∀𝑥 𝑥 = 𝑧 → (∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → ¬ ∃𝑥 𝑥𝑦))
5049imim1d 82 . . . . . 6 (∀𝑥 𝑥 = 𝑧 → ((¬ ∃𝑥 𝑥𝑦𝑦𝑥) → (∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))
5141, 50alimd 2210 . . . . 5 (∀𝑥 𝑥 = 𝑧 → (∀𝑦(¬ ∃𝑥 𝑥𝑦𝑦𝑥) → ∀𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))
5240, 51eximd 2214 . . . 4 (∀𝑥 𝑥 = 𝑧 → (∃𝑥𝑦(¬ ∃𝑥 𝑥𝑦𝑦𝑥) → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))
5339, 52syl5com 31 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑧 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))
54 axpowndlem2 10009 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑧 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥)))
5553, 54pm2.61d 182 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))
561, 55nsyl5 162 1 𝑥 = 𝑦 → ∃𝑥𝑦(∀𝑥(∃𝑧 𝑥𝑦 → ∀𝑦 𝑥𝑧) → 𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wex 1781  wcel 2111  c0 4243  {csn 4525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-13 2379  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-reg 9040
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-pw 4499  df-sn 4526  df-pr 4528
This theorem is referenced by:  axpowndlem4  10011
  Copyright terms: Public domain W3C validator