| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | sp 2182 | . 2
⊢
(∀𝑥 𝑥 = 𝑦 → 𝑥 = 𝑦) | 
| 2 |  | p0ex 5383 | . . . . . . . 8
⊢ {∅}
∈ V | 
| 3 |  | eleq2 2829 | . . . . . . . . . 10
⊢ (𝑥 = {∅} → (𝑤 ∈ 𝑥 ↔ 𝑤 ∈ {∅})) | 
| 4 | 3 | imbi2d 340 | . . . . . . . . 9
⊢ (𝑥 = {∅} → ((𝑤 = ∅ → 𝑤 ∈ 𝑥) ↔ (𝑤 = ∅ → 𝑤 ∈ {∅}))) | 
| 5 | 4 | albidv 1919 | . . . . . . . 8
⊢ (𝑥 = {∅} →
(∀𝑤(𝑤 = ∅ → 𝑤 ∈ 𝑥) ↔ ∀𝑤(𝑤 = ∅ → 𝑤 ∈ {∅}))) | 
| 6 | 2, 5 | spcev 3605 | . . . . . . 7
⊢
(∀𝑤(𝑤 = ∅ → 𝑤 ∈ {∅}) →
∃𝑥∀𝑤(𝑤 = ∅ → 𝑤 ∈ 𝑥)) | 
| 7 |  | 0ex 5306 | . . . . . . . . 9
⊢ ∅
∈ V | 
| 8 | 7 | snid 4661 | . . . . . . . 8
⊢ ∅
∈ {∅} | 
| 9 |  | eleq1 2828 | . . . . . . . 8
⊢ (𝑤 = ∅ → (𝑤 ∈ {∅} ↔ ∅
∈ {∅})) | 
| 10 | 8, 9 | mpbiri 258 | . . . . . . 7
⊢ (𝑤 = ∅ → 𝑤 ∈
{∅}) | 
| 11 | 6, 10 | mpg 1796 | . . . . . 6
⊢
∃𝑥∀𝑤(𝑤 = ∅ → 𝑤 ∈ 𝑥) | 
| 12 |  | neq0 4351 | . . . . . . . . . 10
⊢ (¬
𝑤 = ∅ ↔
∃𝑥 𝑥 ∈ 𝑤) | 
| 13 | 12 | con1bii 356 | . . . . . . . . 9
⊢ (¬
∃𝑥 𝑥 ∈ 𝑤 ↔ 𝑤 = ∅) | 
| 14 | 13 | imbi1i 349 | . . . . . . . 8
⊢ ((¬
∃𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥) ↔ (𝑤 = ∅ → 𝑤 ∈ 𝑥)) | 
| 15 | 14 | albii 1818 | . . . . . . 7
⊢
(∀𝑤(¬
∃𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥) ↔ ∀𝑤(𝑤 = ∅ → 𝑤 ∈ 𝑥)) | 
| 16 | 15 | exbii 1847 | . . . . . 6
⊢
(∃𝑥∀𝑤(¬ ∃𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥) ↔ ∃𝑥∀𝑤(𝑤 = ∅ → 𝑤 ∈ 𝑥)) | 
| 17 | 11, 16 | mpbir 231 | . . . . 5
⊢
∃𝑥∀𝑤(¬ ∃𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥) | 
| 18 |  | nfnae 2438 | . . . . . 6
⊢
Ⅎ𝑥 ¬
∀𝑥 𝑥 = 𝑦 | 
| 19 |  | nfnae 2438 | . . . . . . 7
⊢
Ⅎ𝑦 ¬
∀𝑥 𝑥 = 𝑦 | 
| 20 |  | nfcvf2 2932 | . . . . . . . . . . 11
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝑥) | 
| 21 |  | nfcvd 2905 | . . . . . . . . . . 11
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝑤) | 
| 22 | 20, 21 | nfeld 2916 | . . . . . . . . . 10
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦 𝑥 ∈ 𝑤) | 
| 23 | 18, 22 | nfexd 2328 | . . . . . . . . 9
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦∃𝑥 𝑥 ∈ 𝑤) | 
| 24 | 23 | nfnd 1857 | . . . . . . . 8
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦 ¬ ∃𝑥 𝑥 ∈ 𝑤) | 
| 25 | 21, 20 | nfeld 2916 | . . . . . . . 8
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦 𝑤 ∈ 𝑥) | 
| 26 | 24, 25 | nfimd 1893 | . . . . . . 7
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦(¬ ∃𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥)) | 
| 27 |  | nfeqf2 2381 | . . . . . . . . . . . 12
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑤 = 𝑦) | 
| 28 | 18, 27 | nfan1 2199 | . . . . . . . . . . 11
⊢
Ⅎ𝑥(¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦) | 
| 29 |  | elequ2 2122 | . . . . . . . . . . . 12
⊢ (𝑤 = 𝑦 → (𝑥 ∈ 𝑤 ↔ 𝑥 ∈ 𝑦)) | 
| 30 | 29 | adantl 481 | . . . . . . . . . . 11
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦) → (𝑥 ∈ 𝑤 ↔ 𝑥 ∈ 𝑦)) | 
| 31 | 28, 30 | exbid 2222 | . . . . . . . . . 10
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦) → (∃𝑥 𝑥 ∈ 𝑤 ↔ ∃𝑥 𝑥 ∈ 𝑦)) | 
| 32 | 31 | notbid 318 | . . . . . . . . 9
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦) → (¬ ∃𝑥 𝑥 ∈ 𝑤 ↔ ¬ ∃𝑥 𝑥 ∈ 𝑦)) | 
| 33 |  | elequ1 2114 | . . . . . . . . . 10
⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥)) | 
| 34 | 33 | adantl 481 | . . . . . . . . 9
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦) → (𝑤 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥)) | 
| 35 | 32, 34 | imbi12d 344 | . . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦) → ((¬ ∃𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥) ↔ (¬ ∃𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥))) | 
| 36 | 35 | ex 412 | . . . . . . 7
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (𝑤 = 𝑦 → ((¬ ∃𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥) ↔ (¬ ∃𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥)))) | 
| 37 | 19, 26, 36 | cbvald 2411 | . . . . . 6
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (∀𝑤(¬ ∃𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥) ↔ ∀𝑦(¬ ∃𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥))) | 
| 38 | 18, 37 | exbid 2222 | . . . . 5
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (∃𝑥∀𝑤(¬ ∃𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥) ↔ ∃𝑥∀𝑦(¬ ∃𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥))) | 
| 39 | 17, 38 | mpbii 233 | . . . 4
⊢ (¬
∀𝑥 𝑥 = 𝑦 → ∃𝑥∀𝑦(¬ ∃𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥)) | 
| 40 |  | nfae 2437 | . . . . 5
⊢
Ⅎ𝑥∀𝑥 𝑥 = 𝑧 | 
| 41 |  | nfae 2437 | . . . . . 6
⊢
Ⅎ𝑦∀𝑥 𝑥 = 𝑧 | 
| 42 |  | axc11r 2370 | . . . . . . . . . 10
⊢
(∀𝑥 𝑥 = 𝑧 → (∀𝑧 ¬ 𝑥 ∈ 𝑦 → ∀𝑥 ¬ 𝑥 ∈ 𝑦)) | 
| 43 |  | alnex 1780 | . . . . . . . . . 10
⊢
(∀𝑧 ¬
𝑥 ∈ 𝑦 ↔ ¬ ∃𝑧 𝑥 ∈ 𝑦) | 
| 44 |  | alnex 1780 | . . . . . . . . . 10
⊢
(∀𝑥 ¬
𝑥 ∈ 𝑦 ↔ ¬ ∃𝑥 𝑥 ∈ 𝑦) | 
| 45 | 42, 43, 44 | 3imtr3g 295 | . . . . . . . . 9
⊢
(∀𝑥 𝑥 = 𝑧 → (¬ ∃𝑧 𝑥 ∈ 𝑦 → ¬ ∃𝑥 𝑥 ∈ 𝑦)) | 
| 46 |  | nd3 10630 | . . . . . . . . . 10
⊢
(∀𝑥 𝑥 = 𝑧 → ¬ ∀𝑦 𝑥 ∈ 𝑧) | 
| 47 | 46 | pm2.21d 121 | . . . . . . . . 9
⊢
(∀𝑥 𝑥 = 𝑧 → (∀𝑦 𝑥 ∈ 𝑧 → ¬ ∃𝑥 𝑥 ∈ 𝑦)) | 
| 48 | 45, 47 | jad 187 | . . . . . . . 8
⊢
(∀𝑥 𝑥 = 𝑧 → ((∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → ¬ ∃𝑥 𝑥 ∈ 𝑦)) | 
| 49 | 48 | spsd 2186 | . . . . . . 7
⊢
(∀𝑥 𝑥 = 𝑧 → (∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → ¬ ∃𝑥 𝑥 ∈ 𝑦)) | 
| 50 | 49 | imim1d 82 | . . . . . 6
⊢
(∀𝑥 𝑥 = 𝑧 → ((¬ ∃𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥) → (∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥))) | 
| 51 | 41, 50 | alimd 2211 | . . . . 5
⊢
(∀𝑥 𝑥 = 𝑧 → (∀𝑦(¬ ∃𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥) → ∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥))) | 
| 52 | 40, 51 | eximd 2215 | . . . 4
⊢
(∀𝑥 𝑥 = 𝑧 → (∃𝑥∀𝑦(¬ ∃𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥) → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥))) | 
| 53 | 39, 52 | syl5com 31 | . . 3
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑧 → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥))) | 
| 54 |  | axpowndlem2 10639 | . . 3
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑧 → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥))) | 
| 55 | 53, 54 | pm2.61d 179 | . 2
⊢ (¬
∀𝑥 𝑥 = 𝑦 → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) | 
| 56 | 1, 55 | nsyl5 159 | 1
⊢ (¬
𝑥 = 𝑦 → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |