| Step | Hyp | Ref
| Expression |
| 1 | | sp 2184 |
. 2
⊢
(∀𝑥 𝑥 = 𝑦 → 𝑥 = 𝑦) |
| 2 | | p0ex 5359 |
. . . . . . . 8
⊢ {∅}
∈ V |
| 3 | | eleq2 2824 |
. . . . . . . . . 10
⊢ (𝑥 = {∅} → (𝑤 ∈ 𝑥 ↔ 𝑤 ∈ {∅})) |
| 4 | 3 | imbi2d 340 |
. . . . . . . . 9
⊢ (𝑥 = {∅} → ((𝑤 = ∅ → 𝑤 ∈ 𝑥) ↔ (𝑤 = ∅ → 𝑤 ∈ {∅}))) |
| 5 | 4 | albidv 1920 |
. . . . . . . 8
⊢ (𝑥 = {∅} →
(∀𝑤(𝑤 = ∅ → 𝑤 ∈ 𝑥) ↔ ∀𝑤(𝑤 = ∅ → 𝑤 ∈ {∅}))) |
| 6 | 2, 5 | spcev 3590 |
. . . . . . 7
⊢
(∀𝑤(𝑤 = ∅ → 𝑤 ∈ {∅}) →
∃𝑥∀𝑤(𝑤 = ∅ → 𝑤 ∈ 𝑥)) |
| 7 | | 0ex 5282 |
. . . . . . . . 9
⊢ ∅
∈ V |
| 8 | 7 | snid 4643 |
. . . . . . . 8
⊢ ∅
∈ {∅} |
| 9 | | eleq1 2823 |
. . . . . . . 8
⊢ (𝑤 = ∅ → (𝑤 ∈ {∅} ↔ ∅
∈ {∅})) |
| 10 | 8, 9 | mpbiri 258 |
. . . . . . 7
⊢ (𝑤 = ∅ → 𝑤 ∈
{∅}) |
| 11 | 6, 10 | mpg 1797 |
. . . . . 6
⊢
∃𝑥∀𝑤(𝑤 = ∅ → 𝑤 ∈ 𝑥) |
| 12 | | neq0 4332 |
. . . . . . . . . 10
⊢ (¬
𝑤 = ∅ ↔
∃𝑥 𝑥 ∈ 𝑤) |
| 13 | 12 | con1bii 356 |
. . . . . . . . 9
⊢ (¬
∃𝑥 𝑥 ∈ 𝑤 ↔ 𝑤 = ∅) |
| 14 | 13 | imbi1i 349 |
. . . . . . . 8
⊢ ((¬
∃𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥) ↔ (𝑤 = ∅ → 𝑤 ∈ 𝑥)) |
| 15 | 14 | albii 1819 |
. . . . . . 7
⊢
(∀𝑤(¬
∃𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥) ↔ ∀𝑤(𝑤 = ∅ → 𝑤 ∈ 𝑥)) |
| 16 | 15 | exbii 1848 |
. . . . . 6
⊢
(∃𝑥∀𝑤(¬ ∃𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥) ↔ ∃𝑥∀𝑤(𝑤 = ∅ → 𝑤 ∈ 𝑥)) |
| 17 | 11, 16 | mpbir 231 |
. . . . 5
⊢
∃𝑥∀𝑤(¬ ∃𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥) |
| 18 | | nfnae 2439 |
. . . . . 6
⊢
Ⅎ𝑥 ¬
∀𝑥 𝑥 = 𝑦 |
| 19 | | nfnae 2439 |
. . . . . . 7
⊢
Ⅎ𝑦 ¬
∀𝑥 𝑥 = 𝑦 |
| 20 | | nfcvf2 2927 |
. . . . . . . . . . 11
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝑥) |
| 21 | | nfcvd 2900 |
. . . . . . . . . . 11
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝑤) |
| 22 | 20, 21 | nfeld 2911 |
. . . . . . . . . 10
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦 𝑥 ∈ 𝑤) |
| 23 | 18, 22 | nfexd 2330 |
. . . . . . . . 9
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦∃𝑥 𝑥 ∈ 𝑤) |
| 24 | 23 | nfnd 1858 |
. . . . . . . 8
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦 ¬ ∃𝑥 𝑥 ∈ 𝑤) |
| 25 | 21, 20 | nfeld 2911 |
. . . . . . . 8
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦 𝑤 ∈ 𝑥) |
| 26 | 24, 25 | nfimd 1894 |
. . . . . . 7
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦(¬ ∃𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥)) |
| 27 | | nfeqf2 2382 |
. . . . . . . . . . . 12
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑤 = 𝑦) |
| 28 | 18, 27 | nfan1 2201 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦) |
| 29 | | elequ2 2124 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑦 → (𝑥 ∈ 𝑤 ↔ 𝑥 ∈ 𝑦)) |
| 30 | 29 | adantl 481 |
. . . . . . . . . . 11
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦) → (𝑥 ∈ 𝑤 ↔ 𝑥 ∈ 𝑦)) |
| 31 | 28, 30 | exbid 2224 |
. . . . . . . . . 10
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦) → (∃𝑥 𝑥 ∈ 𝑤 ↔ ∃𝑥 𝑥 ∈ 𝑦)) |
| 32 | 31 | notbid 318 |
. . . . . . . . 9
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦) → (¬ ∃𝑥 𝑥 ∈ 𝑤 ↔ ¬ ∃𝑥 𝑥 ∈ 𝑦)) |
| 33 | | elequ1 2116 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥)) |
| 34 | 33 | adantl 481 |
. . . . . . . . 9
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦) → (𝑤 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥)) |
| 35 | 32, 34 | imbi12d 344 |
. . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦) → ((¬ ∃𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥) ↔ (¬ ∃𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥))) |
| 36 | 35 | ex 412 |
. . . . . . 7
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (𝑤 = 𝑦 → ((¬ ∃𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥) ↔ (¬ ∃𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥)))) |
| 37 | 19, 26, 36 | cbvald 2412 |
. . . . . 6
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (∀𝑤(¬ ∃𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥) ↔ ∀𝑦(¬ ∃𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥))) |
| 38 | 18, 37 | exbid 2224 |
. . . . 5
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (∃𝑥∀𝑤(¬ ∃𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥) ↔ ∃𝑥∀𝑦(¬ ∃𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥))) |
| 39 | 17, 38 | mpbii 233 |
. . . 4
⊢ (¬
∀𝑥 𝑥 = 𝑦 → ∃𝑥∀𝑦(¬ ∃𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥)) |
| 40 | | nfae 2438 |
. . . . 5
⊢
Ⅎ𝑥∀𝑥 𝑥 = 𝑧 |
| 41 | | nfae 2438 |
. . . . . 6
⊢
Ⅎ𝑦∀𝑥 𝑥 = 𝑧 |
| 42 | | axc11r 2371 |
. . . . . . . . . 10
⊢
(∀𝑥 𝑥 = 𝑧 → (∀𝑧 ¬ 𝑥 ∈ 𝑦 → ∀𝑥 ¬ 𝑥 ∈ 𝑦)) |
| 43 | | alnex 1781 |
. . . . . . . . . 10
⊢
(∀𝑧 ¬
𝑥 ∈ 𝑦 ↔ ¬ ∃𝑧 𝑥 ∈ 𝑦) |
| 44 | | alnex 1781 |
. . . . . . . . . 10
⊢
(∀𝑥 ¬
𝑥 ∈ 𝑦 ↔ ¬ ∃𝑥 𝑥 ∈ 𝑦) |
| 45 | 42, 43, 44 | 3imtr3g 295 |
. . . . . . . . 9
⊢
(∀𝑥 𝑥 = 𝑧 → (¬ ∃𝑧 𝑥 ∈ 𝑦 → ¬ ∃𝑥 𝑥 ∈ 𝑦)) |
| 46 | | nd3 10608 |
. . . . . . . . . 10
⊢
(∀𝑥 𝑥 = 𝑧 → ¬ ∀𝑦 𝑥 ∈ 𝑧) |
| 47 | 46 | pm2.21d 121 |
. . . . . . . . 9
⊢
(∀𝑥 𝑥 = 𝑧 → (∀𝑦 𝑥 ∈ 𝑧 → ¬ ∃𝑥 𝑥 ∈ 𝑦)) |
| 48 | 45, 47 | jad 187 |
. . . . . . . 8
⊢
(∀𝑥 𝑥 = 𝑧 → ((∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → ¬ ∃𝑥 𝑥 ∈ 𝑦)) |
| 49 | 48 | spsd 2188 |
. . . . . . 7
⊢
(∀𝑥 𝑥 = 𝑧 → (∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → ¬ ∃𝑥 𝑥 ∈ 𝑦)) |
| 50 | 49 | imim1d 82 |
. . . . . 6
⊢
(∀𝑥 𝑥 = 𝑧 → ((¬ ∃𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥) → (∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥))) |
| 51 | 41, 50 | alimd 2213 |
. . . . 5
⊢
(∀𝑥 𝑥 = 𝑧 → (∀𝑦(¬ ∃𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥) → ∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥))) |
| 52 | 40, 51 | eximd 2217 |
. . . 4
⊢
(∀𝑥 𝑥 = 𝑧 → (∃𝑥∀𝑦(¬ ∃𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥) → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥))) |
| 53 | 39, 52 | syl5com 31 |
. . 3
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑧 → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥))) |
| 54 | | axpowndlem2 10617 |
. . 3
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑧 → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥))) |
| 55 | 53, 54 | pm2.61d 179 |
. 2
⊢ (¬
∀𝑥 𝑥 = 𝑦 → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
| 56 | 1, 55 | nsyl5 159 |
1
⊢ (¬
𝑥 = 𝑦 → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |