MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imadif Structured version   Visualization version   GIF version

Theorem imadif 6603
Description: The image of a difference is the difference of images. (Contributed by NM, 24-May-1998.)
Assertion
Ref Expression
imadif (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∖ (𝐹𝐵)))

Proof of Theorem imadif
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 anandir 677 . . . . . . . 8 (((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴𝑥𝐹𝑦) ∧ (¬ 𝑥𝐵𝑥𝐹𝑦)))
21exbii 1848 . . . . . . 7 (∃𝑥((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦) ↔ ∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ (¬ 𝑥𝐵𝑥𝐹𝑦)))
3 19.40 1886 . . . . . . 7 (∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ (¬ 𝑥𝐵𝑥𝐹𝑦)) → (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∃𝑥𝑥𝐵𝑥𝐹𝑦)))
42, 3sylbi 217 . . . . . 6 (∃𝑥((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦) → (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∃𝑥𝑥𝐵𝑥𝐹𝑦)))
5 nfv 1914 . . . . . . . . . . 11 𝑥Fun 𝐹
6 nfe1 2151 . . . . . . . . . . 11 𝑥𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵)
75, 6nfan 1899 . . . . . . . . . 10 𝑥(Fun 𝐹 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵))
8 funmo 6534 . . . . . . . . . . . . . 14 (Fun 𝐹 → ∃*𝑥 𝑦𝐹𝑥)
9 vex 3454 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
10 vex 3454 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
119, 10brcnv 5849 . . . . . . . . . . . . . . 15 (𝑦𝐹𝑥𝑥𝐹𝑦)
1211mobii 2542 . . . . . . . . . . . . . 14 (∃*𝑥 𝑦𝐹𝑥 ↔ ∃*𝑥 𝑥𝐹𝑦)
138, 12sylib 218 . . . . . . . . . . . . 13 (Fun 𝐹 → ∃*𝑥 𝑥𝐹𝑦)
14 mopick 2619 . . . . . . . . . . . . 13 ((∃*𝑥 𝑥𝐹𝑦 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵)) → (𝑥𝐹𝑦 → ¬ 𝑥𝐵))
1513, 14sylan 580 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵)) → (𝑥𝐹𝑦 → ¬ 𝑥𝐵))
1615con2d 134 . . . . . . . . . . 11 ((Fun 𝐹 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵)) → (𝑥𝐵 → ¬ 𝑥𝐹𝑦))
17 imnan 399 . . . . . . . . . . 11 ((𝑥𝐵 → ¬ 𝑥𝐹𝑦) ↔ ¬ (𝑥𝐵𝑥𝐹𝑦))
1816, 17sylib 218 . . . . . . . . . 10 ((Fun 𝐹 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵)) → ¬ (𝑥𝐵𝑥𝐹𝑦))
197, 18alrimi 2214 . . . . . . . . 9 ((Fun 𝐹 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵)) → ∀𝑥 ¬ (𝑥𝐵𝑥𝐹𝑦))
2019ex 412 . . . . . . . 8 (Fun 𝐹 → (∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵) → ∀𝑥 ¬ (𝑥𝐵𝑥𝐹𝑦)))
21 exancom 1861 . . . . . . . 8 (∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵) ↔ ∃𝑥𝑥𝐵𝑥𝐹𝑦))
22 alnex 1781 . . . . . . . 8 (∀𝑥 ¬ (𝑥𝐵𝑥𝐹𝑦) ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))
2320, 21, 223imtr3g 295 . . . . . . 7 (Fun 𝐹 → (∃𝑥𝑥𝐵𝑥𝐹𝑦) → ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)))
2423anim2d 612 . . . . . 6 (Fun 𝐹 → ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∃𝑥𝑥𝐵𝑥𝐹𝑦)) → (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))))
254, 24syl5 34 . . . . 5 (Fun 𝐹 → (∃𝑥((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦) → (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))))
26 19.29r 1874 . . . . . . 7 ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∀𝑥 ¬ (𝑥𝐵𝑥𝐹𝑦)) → ∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)))
2722, 26sylan2br 595 . . . . . 6 ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)) → ∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)))
28 andi 1009 . . . . . . . 8 (((𝑥𝐴𝑥𝐹𝑦) ∧ (¬ 𝑥𝐵 ∨ ¬ 𝑥𝐹𝑦)) ↔ (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ 𝑥𝐵) ∨ ((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ 𝑥𝐹𝑦)))
29 ianor 983 . . . . . . . . 9 (¬ (𝑥𝐵𝑥𝐹𝑦) ↔ (¬ 𝑥𝐵 ∨ ¬ 𝑥𝐹𝑦))
3029anbi2i 623 . . . . . . . 8 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) ↔ ((𝑥𝐴𝑥𝐹𝑦) ∧ (¬ 𝑥𝐵 ∨ ¬ 𝑥𝐹𝑦)))
31 an32 646 . . . . . . . . 9 (((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ 𝑥𝐵))
32 pm3.24 402 . . . . . . . . . . . 12 ¬ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐹𝑦)
3332intnan 486 . . . . . . . . . . 11 ¬ (𝑥𝐴 ∧ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐹𝑦))
34 anass 468 . . . . . . . . . . 11 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ 𝑥𝐹𝑦) ↔ (𝑥𝐴 ∧ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐹𝑦)))
3533, 34mtbir 323 . . . . . . . . . 10 ¬ ((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ 𝑥𝐹𝑦)
3635biorfri 939 . . . . . . . . 9 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ 𝑥𝐵) ↔ (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ 𝑥𝐵) ∨ ((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ 𝑥𝐹𝑦)))
3731, 36bitri 275 . . . . . . . 8 (((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦) ↔ (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ 𝑥𝐵) ∨ ((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ 𝑥𝐹𝑦)))
3828, 30, 373bitr4i 303 . . . . . . 7 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦))
3938exbii 1848 . . . . . 6 (∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) ↔ ∃𝑥((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦))
4027, 39sylib 218 . . . . 5 ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)) → ∃𝑥((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦))
4125, 40impbid1 225 . . . 4 (Fun 𝐹 → (∃𝑥((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦) ↔ (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))))
42 eldif 3927 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
4342anbi1i 624 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦))
4443exbii 1848 . . . 4 (∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) ↔ ∃𝑥((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦))
459elima2 6040 . . . . 5 (𝑦 ∈ (𝐹𝐴) ↔ ∃𝑥(𝑥𝐴𝑥𝐹𝑦))
469elima2 6040 . . . . . 6 (𝑦 ∈ (𝐹𝐵) ↔ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))
4746notbii 320 . . . . 5 𝑦 ∈ (𝐹𝐵) ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))
4845, 47anbi12i 628 . . . 4 ((𝑦 ∈ (𝐹𝐴) ∧ ¬ 𝑦 ∈ (𝐹𝐵)) ↔ (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)))
4941, 44, 483bitr4g 314 . . 3 (Fun 𝐹 → (∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) ↔ (𝑦 ∈ (𝐹𝐴) ∧ ¬ 𝑦 ∈ (𝐹𝐵))))
509elima2 6040 . . 3 (𝑦 ∈ (𝐹 “ (𝐴𝐵)) ↔ ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦))
51 eldif 3927 . . 3 (𝑦 ∈ ((𝐹𝐴) ∖ (𝐹𝐵)) ↔ (𝑦 ∈ (𝐹𝐴) ∧ ¬ 𝑦 ∈ (𝐹𝐵)))
5249, 50, 513bitr4g 314 . 2 (Fun 𝐹 → (𝑦 ∈ (𝐹 “ (𝐴𝐵)) ↔ 𝑦 ∈ ((𝐹𝐴) ∖ (𝐹𝐵))))
5352eqrdv 2728 1 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∖ (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  wal 1538   = wceq 1540  wex 1779  wcel 2109  ∃*wmo 2532  cdif 3914   class class class wbr 5110  ccnv 5640  cima 5644  Fun wfun 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-fun 6516
This theorem is referenced by:  imain  6604  f1imadifssran  6605  resdif  6824  difpreima  7040  domunsncan  9046  phplem2  9175  php3  9179  infdifsn  9617  cantnfp1lem3  9640  enfin1ai  10344  fin1a2lem7  10366  symgfixelsi  19372  dprdf1o  19971  frlmlbs  21713  f1lindf  21738  cnclima  23162  iscncl  23163  qtopcld  23607  qtoprest  23611  qtopcmap  23613  mbfimaicc  25539  ismbf3d  25562  i1fd  25589  ballotlemfrc  34525  poimirlem2  37623  poimirlem4  37625  poimirlem6  37627  poimirlem7  37628  poimirlem9  37630  poimirlem11  37632  poimirlem12  37633  poimirlem13  37634  poimirlem14  37635  poimirlem16  37637  poimirlem19  37640  poimirlem23  37644
  Copyright terms: Public domain W3C validator