MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imadif Structured version   Visualization version   GIF version

Theorem imadif 6442
Description: The image of a difference is the difference of images. (Contributed by NM, 24-May-1998.)
Assertion
Ref Expression
imadif (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∖ (𝐹𝐵)))

Proof of Theorem imadif
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 anandir 677 . . . . . . . 8 (((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴𝑥𝐹𝑦) ∧ (¬ 𝑥𝐵𝑥𝐹𝑦)))
21exbii 1855 . . . . . . 7 (∃𝑥((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦) ↔ ∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ (¬ 𝑥𝐵𝑥𝐹𝑦)))
3 19.40 1894 . . . . . . 7 (∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ (¬ 𝑥𝐵𝑥𝐹𝑦)) → (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∃𝑥𝑥𝐵𝑥𝐹𝑦)))
42, 3sylbi 220 . . . . . 6 (∃𝑥((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦) → (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∃𝑥𝑥𝐵𝑥𝐹𝑦)))
5 nfv 1922 . . . . . . . . . . 11 𝑥Fun 𝐹
6 nfe1 2153 . . . . . . . . . . 11 𝑥𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵)
75, 6nfan 1907 . . . . . . . . . 10 𝑥(Fun 𝐹 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵))
8 funmo 6374 . . . . . . . . . . . . . 14 (Fun 𝐹 → ∃*𝑥 𝑦𝐹𝑥)
9 vex 3402 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
10 vex 3402 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
119, 10brcnv 5736 . . . . . . . . . . . . . . 15 (𝑦𝐹𝑥𝑥𝐹𝑦)
1211mobii 2547 . . . . . . . . . . . . . 14 (∃*𝑥 𝑦𝐹𝑥 ↔ ∃*𝑥 𝑥𝐹𝑦)
138, 12sylib 221 . . . . . . . . . . . . 13 (Fun 𝐹 → ∃*𝑥 𝑥𝐹𝑦)
14 mopick 2626 . . . . . . . . . . . . 13 ((∃*𝑥 𝑥𝐹𝑦 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵)) → (𝑥𝐹𝑦 → ¬ 𝑥𝐵))
1513, 14sylan 583 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵)) → (𝑥𝐹𝑦 → ¬ 𝑥𝐵))
1615con2d 136 . . . . . . . . . . 11 ((Fun 𝐹 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵)) → (𝑥𝐵 → ¬ 𝑥𝐹𝑦))
17 imnan 403 . . . . . . . . . . 11 ((𝑥𝐵 → ¬ 𝑥𝐹𝑦) ↔ ¬ (𝑥𝐵𝑥𝐹𝑦))
1816, 17sylib 221 . . . . . . . . . 10 ((Fun 𝐹 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵)) → ¬ (𝑥𝐵𝑥𝐹𝑦))
197, 18alrimi 2213 . . . . . . . . 9 ((Fun 𝐹 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵)) → ∀𝑥 ¬ (𝑥𝐵𝑥𝐹𝑦))
2019ex 416 . . . . . . . 8 (Fun 𝐹 → (∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵) → ∀𝑥 ¬ (𝑥𝐵𝑥𝐹𝑦)))
21 exancom 1869 . . . . . . . 8 (∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵) ↔ ∃𝑥𝑥𝐵𝑥𝐹𝑦))
22 alnex 1789 . . . . . . . 8 (∀𝑥 ¬ (𝑥𝐵𝑥𝐹𝑦) ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))
2320, 21, 223imtr3g 298 . . . . . . 7 (Fun 𝐹 → (∃𝑥𝑥𝐵𝑥𝐹𝑦) → ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)))
2423anim2d 615 . . . . . 6 (Fun 𝐹 → ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∃𝑥𝑥𝐵𝑥𝐹𝑦)) → (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))))
254, 24syl5 34 . . . . 5 (Fun 𝐹 → (∃𝑥((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦) → (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))))
26 19.29r 1882 . . . . . . 7 ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∀𝑥 ¬ (𝑥𝐵𝑥𝐹𝑦)) → ∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)))
2722, 26sylan2br 598 . . . . . 6 ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)) → ∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)))
28 andi 1008 . . . . . . . 8 (((𝑥𝐴𝑥𝐹𝑦) ∧ (¬ 𝑥𝐵 ∨ ¬ 𝑥𝐹𝑦)) ↔ (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ 𝑥𝐵) ∨ ((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ 𝑥𝐹𝑦)))
29 ianor 982 . . . . . . . . 9 (¬ (𝑥𝐵𝑥𝐹𝑦) ↔ (¬ 𝑥𝐵 ∨ ¬ 𝑥𝐹𝑦))
3029anbi2i 626 . . . . . . . 8 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) ↔ ((𝑥𝐴𝑥𝐹𝑦) ∧ (¬ 𝑥𝐵 ∨ ¬ 𝑥𝐹𝑦)))
31 an32 646 . . . . . . . . 9 (((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ 𝑥𝐵))
32 pm3.24 406 . . . . . . . . . . . 12 ¬ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐹𝑦)
3332intnan 490 . . . . . . . . . . 11 ¬ (𝑥𝐴 ∧ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐹𝑦))
34 anass 472 . . . . . . . . . . 11 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ 𝑥𝐹𝑦) ↔ (𝑥𝐴 ∧ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐹𝑦)))
3533, 34mtbir 326 . . . . . . . . . 10 ¬ ((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ 𝑥𝐹𝑦)
3635biorfi 939 . . . . . . . . 9 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ 𝑥𝐵) ↔ (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ 𝑥𝐵) ∨ ((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ 𝑥𝐹𝑦)))
3731, 36bitri 278 . . . . . . . 8 (((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦) ↔ (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ 𝑥𝐵) ∨ ((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ 𝑥𝐹𝑦)))
3828, 30, 373bitr4i 306 . . . . . . 7 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦))
3938exbii 1855 . . . . . 6 (∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) ↔ ∃𝑥((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦))
4027, 39sylib 221 . . . . 5 ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)) → ∃𝑥((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦))
4125, 40impbid1 228 . . . 4 (Fun 𝐹 → (∃𝑥((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦) ↔ (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))))
42 eldif 3863 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
4342anbi1i 627 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦))
4443exbii 1855 . . . 4 (∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) ↔ ∃𝑥((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦))
459elima2 5920 . . . . 5 (𝑦 ∈ (𝐹𝐴) ↔ ∃𝑥(𝑥𝐴𝑥𝐹𝑦))
469elima2 5920 . . . . . 6 (𝑦 ∈ (𝐹𝐵) ↔ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))
4746notbii 323 . . . . 5 𝑦 ∈ (𝐹𝐵) ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))
4845, 47anbi12i 630 . . . 4 ((𝑦 ∈ (𝐹𝐴) ∧ ¬ 𝑦 ∈ (𝐹𝐵)) ↔ (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)))
4941, 44, 483bitr4g 317 . . 3 (Fun 𝐹 → (∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) ↔ (𝑦 ∈ (𝐹𝐴) ∧ ¬ 𝑦 ∈ (𝐹𝐵))))
509elima2 5920 . . 3 (𝑦 ∈ (𝐹 “ (𝐴𝐵)) ↔ ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦))
51 eldif 3863 . . 3 (𝑦 ∈ ((𝐹𝐴) ∖ (𝐹𝐵)) ↔ (𝑦 ∈ (𝐹𝐴) ∧ ¬ 𝑦 ∈ (𝐹𝐵)))
5249, 50, 513bitr4g 317 . 2 (Fun 𝐹 → (𝑦 ∈ (𝐹 “ (𝐴𝐵)) ↔ 𝑦 ∈ ((𝐹𝐴) ∖ (𝐹𝐵))))
5352eqrdv 2734 1 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∖ (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 847  wal 1541   = wceq 1543  wex 1787  wcel 2112  ∃*wmo 2537  cdif 3850   class class class wbr 5039  ccnv 5535  cima 5539  Fun wfun 6352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-br 5040  df-opab 5102  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-fun 6360
This theorem is referenced by:  imain  6443  resdif  6659  difpreima  6863  domunsncan  8723  phplem4  8806  php3  8810  infdifsn  9250  cantnfp1lem3  9273  enfin1ai  9963  fin1a2lem7  9985  symgfixelsi  18781  dprdf1o  19373  frlmlbs  20713  f1lindf  20738  cnclima  22119  iscncl  22120  qtopcld  22564  qtoprest  22568  qtopcmap  22570  mbfimaicc  24482  ismbf3d  24505  i1fd  24532  ballotlemfrc  32159  poimirlem2  35465  poimirlem4  35467  poimirlem6  35469  poimirlem7  35470  poimirlem9  35472  poimirlem11  35474  poimirlem12  35475  poimirlem13  35476  poimirlem14  35477  poimirlem16  35479  poimirlem19  35482  poimirlem23  35486
  Copyright terms: Public domain W3C validator