MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imadif Structured version   Visualization version   GIF version

Theorem imadif 6650
Description: The image of a difference is the difference of images. (Contributed by NM, 24-May-1998.)
Assertion
Ref Expression
imadif (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∖ (𝐹𝐵)))

Proof of Theorem imadif
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 anandir 677 . . . . . . . 8 (((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴𝑥𝐹𝑦) ∧ (¬ 𝑥𝐵𝑥𝐹𝑦)))
21exbii 1848 . . . . . . 7 (∃𝑥((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦) ↔ ∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ (¬ 𝑥𝐵𝑥𝐹𝑦)))
3 19.40 1886 . . . . . . 7 (∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ (¬ 𝑥𝐵𝑥𝐹𝑦)) → (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∃𝑥𝑥𝐵𝑥𝐹𝑦)))
42, 3sylbi 217 . . . . . 6 (∃𝑥((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦) → (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∃𝑥𝑥𝐵𝑥𝐹𝑦)))
5 nfv 1914 . . . . . . . . . . 11 𝑥Fun 𝐹
6 nfe1 2150 . . . . . . . . . . 11 𝑥𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵)
75, 6nfan 1899 . . . . . . . . . 10 𝑥(Fun 𝐹 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵))
8 funmo 6581 . . . . . . . . . . . . . 14 (Fun 𝐹 → ∃*𝑥 𝑦𝐹𝑥)
9 vex 3484 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
10 vex 3484 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
119, 10brcnv 5893 . . . . . . . . . . . . . . 15 (𝑦𝐹𝑥𝑥𝐹𝑦)
1211mobii 2548 . . . . . . . . . . . . . 14 (∃*𝑥 𝑦𝐹𝑥 ↔ ∃*𝑥 𝑥𝐹𝑦)
138, 12sylib 218 . . . . . . . . . . . . 13 (Fun 𝐹 → ∃*𝑥 𝑥𝐹𝑦)
14 mopick 2625 . . . . . . . . . . . . 13 ((∃*𝑥 𝑥𝐹𝑦 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵)) → (𝑥𝐹𝑦 → ¬ 𝑥𝐵))
1513, 14sylan 580 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵)) → (𝑥𝐹𝑦 → ¬ 𝑥𝐵))
1615con2d 134 . . . . . . . . . . 11 ((Fun 𝐹 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵)) → (𝑥𝐵 → ¬ 𝑥𝐹𝑦))
17 imnan 399 . . . . . . . . . . 11 ((𝑥𝐵 → ¬ 𝑥𝐹𝑦) ↔ ¬ (𝑥𝐵𝑥𝐹𝑦))
1816, 17sylib 218 . . . . . . . . . 10 ((Fun 𝐹 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵)) → ¬ (𝑥𝐵𝑥𝐹𝑦))
197, 18alrimi 2213 . . . . . . . . 9 ((Fun 𝐹 ∧ ∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵)) → ∀𝑥 ¬ (𝑥𝐵𝑥𝐹𝑦))
2019ex 412 . . . . . . . 8 (Fun 𝐹 → (∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵) → ∀𝑥 ¬ (𝑥𝐵𝑥𝐹𝑦)))
21 exancom 1861 . . . . . . . 8 (∃𝑥(𝑥𝐹𝑦 ∧ ¬ 𝑥𝐵) ↔ ∃𝑥𝑥𝐵𝑥𝐹𝑦))
22 alnex 1781 . . . . . . . 8 (∀𝑥 ¬ (𝑥𝐵𝑥𝐹𝑦) ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))
2320, 21, 223imtr3g 295 . . . . . . 7 (Fun 𝐹 → (∃𝑥𝑥𝐵𝑥𝐹𝑦) → ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)))
2423anim2d 612 . . . . . 6 (Fun 𝐹 → ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∃𝑥𝑥𝐵𝑥𝐹𝑦)) → (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))))
254, 24syl5 34 . . . . 5 (Fun 𝐹 → (∃𝑥((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦) → (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))))
26 19.29r 1874 . . . . . . 7 ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∀𝑥 ¬ (𝑥𝐵𝑥𝐹𝑦)) → ∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)))
2722, 26sylan2br 595 . . . . . 6 ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)) → ∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)))
28 andi 1010 . . . . . . . 8 (((𝑥𝐴𝑥𝐹𝑦) ∧ (¬ 𝑥𝐵 ∨ ¬ 𝑥𝐹𝑦)) ↔ (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ 𝑥𝐵) ∨ ((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ 𝑥𝐹𝑦)))
29 ianor 984 . . . . . . . . 9 (¬ (𝑥𝐵𝑥𝐹𝑦) ↔ (¬ 𝑥𝐵 ∨ ¬ 𝑥𝐹𝑦))
3029anbi2i 623 . . . . . . . 8 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) ↔ ((𝑥𝐴𝑥𝐹𝑦) ∧ (¬ 𝑥𝐵 ∨ ¬ 𝑥𝐹𝑦)))
31 an32 646 . . . . . . . . 9 (((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ 𝑥𝐵))
32 pm3.24 402 . . . . . . . . . . . 12 ¬ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐹𝑦)
3332intnan 486 . . . . . . . . . . 11 ¬ (𝑥𝐴 ∧ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐹𝑦))
34 anass 468 . . . . . . . . . . 11 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ 𝑥𝐹𝑦) ↔ (𝑥𝐴 ∧ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐹𝑦)))
3533, 34mtbir 323 . . . . . . . . . 10 ¬ ((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ 𝑥𝐹𝑦)
3635biorfri 940 . . . . . . . . 9 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ 𝑥𝐵) ↔ (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ 𝑥𝐵) ∨ ((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ 𝑥𝐹𝑦)))
3731, 36bitri 275 . . . . . . . 8 (((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦) ↔ (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ 𝑥𝐵) ∨ ((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ 𝑥𝐹𝑦)))
3828, 30, 373bitr4i 303 . . . . . . 7 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦))
3938exbii 1848 . . . . . 6 (∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) ↔ ∃𝑥((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦))
4027, 39sylib 218 . . . . 5 ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)) → ∃𝑥((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦))
4125, 40impbid1 225 . . . 4 (Fun 𝐹 → (∃𝑥((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦) ↔ (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))))
42 eldif 3961 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
4342anbi1i 624 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦))
4443exbii 1848 . . . 4 (∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) ↔ ∃𝑥((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦))
459elima2 6084 . . . . 5 (𝑦 ∈ (𝐹𝐴) ↔ ∃𝑥(𝑥𝐴𝑥𝐹𝑦))
469elima2 6084 . . . . . 6 (𝑦 ∈ (𝐹𝐵) ↔ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))
4746notbii 320 . . . . 5 𝑦 ∈ (𝐹𝐵) ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))
4845, 47anbi12i 628 . . . 4 ((𝑦 ∈ (𝐹𝐴) ∧ ¬ 𝑦 ∈ (𝐹𝐵)) ↔ (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)))
4941, 44, 483bitr4g 314 . . 3 (Fun 𝐹 → (∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) ↔ (𝑦 ∈ (𝐹𝐴) ∧ ¬ 𝑦 ∈ (𝐹𝐵))))
509elima2 6084 . . 3 (𝑦 ∈ (𝐹 “ (𝐴𝐵)) ↔ ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦))
51 eldif 3961 . . 3 (𝑦 ∈ ((𝐹𝐴) ∖ (𝐹𝐵)) ↔ (𝑦 ∈ (𝐹𝐴) ∧ ¬ 𝑦 ∈ (𝐹𝐵)))
5249, 50, 513bitr4g 314 . 2 (Fun 𝐹 → (𝑦 ∈ (𝐹 “ (𝐴𝐵)) ↔ 𝑦 ∈ ((𝐹𝐴) ∖ (𝐹𝐵))))
5352eqrdv 2735 1 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∖ (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 848  wal 1538   = wceq 1540  wex 1779  wcel 2108  ∃*wmo 2538  cdif 3948   class class class wbr 5143  ccnv 5684  cima 5688  Fun wfun 6555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-fun 6563
This theorem is referenced by:  imain  6651  f1imadifssran  6652  resdif  6869  difpreima  7085  domunsncan  9112  phplem2  9245  php3  9249  phplem4OLD  9257  php3OLD  9261  infdifsn  9697  cantnfp1lem3  9720  enfin1ai  10424  fin1a2lem7  10446  symgfixelsi  19453  dprdf1o  20052  frlmlbs  21817  f1lindf  21842  cnclima  23276  iscncl  23277  qtopcld  23721  qtoprest  23725  qtopcmap  23727  mbfimaicc  25666  ismbf3d  25689  i1fd  25716  ballotlemfrc  34529  poimirlem2  37629  poimirlem4  37631  poimirlem6  37633  poimirlem7  37634  poimirlem9  37636  poimirlem11  37638  poimirlem12  37639  poimirlem13  37640  poimirlem14  37641  poimirlem16  37643  poimirlem19  37646  poimirlem23  37650
  Copyright terms: Public domain W3C validator