HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oalem3 Structured version   Visualization version   GIF version

Theorem 5oalem3 29591
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oalem3.1 𝐴S
5oalem3.2 𝐵S
5oalem3.3 𝐶S
5oalem3.4 𝐷S
5oalem3.5 𝐹S
5oalem3.6 𝐺S
Assertion
Ref Expression
5oalem3 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → (𝑥 𝑧) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))

Proof of Theorem 5oalem3
StepHypRef Expression
1 anandir 677 . . . 4 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ↔ (((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺))))
2 5oalem3.1 . . . . . . 7 𝐴S
3 5oalem3.2 . . . . . . 7 𝐵S
4 5oalem3.5 . . . . . . 7 𝐹S
5 5oalem3.6 . . . . . . 7 𝐺S
62, 3, 4, 55oalem2 29590 . . . . . 6 ((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑥 + 𝑦) = (𝑓 + 𝑔)) → (𝑥 𝑓) ∈ ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)))
7 5oalem3.3 . . . . . . 7 𝐶S
8 5oalem3.4 . . . . . . 7 𝐷S
97, 8, 4, 55oalem2 29590 . . . . . 6 ((((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔)) → (𝑧 𝑓) ∈ ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)))
106, 9anim12i 616 . . . . 5 (((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑥 + 𝑦) = (𝑓 + 𝑔)) ∧ (((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → ((𝑥 𝑓) ∈ ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∧ (𝑧 𝑓) ∈ ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
1110an4s 660 . . . 4 (((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺))) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → ((𝑥 𝑓) ∈ ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∧ (𝑧 𝑓) ∈ ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
121, 11sylanb 584 . . 3 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → ((𝑥 𝑓) ∈ ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∧ (𝑧 𝑓) ∈ ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
132, 4shscli 29252 . . . . 5 (𝐴 + 𝐹) ∈ S
143, 5shscli 29252 . . . . 5 (𝐵 + 𝐺) ∈ S
1513, 14shincli 29297 . . . 4 ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∈ S
167, 4shscli 29252 . . . . 5 (𝐶 + 𝐹) ∈ S
178, 5shscli 29252 . . . . 5 (𝐷 + 𝐺) ∈ S
1816, 17shincli 29297 . . . 4 ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∈ S
1915, 18shsvsi 29302 . . 3 (((𝑥 𝑓) ∈ ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∧ (𝑧 𝑓) ∈ ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))) → ((𝑥 𝑓) − (𝑧 𝑓)) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
2012, 19syl 17 . 2 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → ((𝑥 𝑓) − (𝑧 𝑓)) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
212sheli 29149 . . . . . . 7 (𝑥𝐴𝑥 ∈ ℋ)
2221adantr 484 . . . . . 6 ((𝑥𝐴𝑦𝐵) → 𝑥 ∈ ℋ)
237sheli 29149 . . . . . . 7 (𝑧𝐶𝑧 ∈ ℋ)
2423adantr 484 . . . . . 6 ((𝑧𝐶𝑤𝐷) → 𝑧 ∈ ℋ)
2522, 24anim12i 616 . . . . 5 (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) → (𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ))
264sheli 29149 . . . . . 6 (𝑓𝐹𝑓 ∈ ℋ)
2726adantr 484 . . . . 5 ((𝑓𝐹𝑔𝐺) → 𝑓 ∈ ℋ)
28 hvsubsub4 28995 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑓 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑓 ∈ ℋ)) → ((𝑥 𝑓) − (𝑧 𝑓)) = ((𝑥 𝑧) − (𝑓 𝑓)))
2928anandirs 679 . . . . . 6 (((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑓 ∈ ℋ) → ((𝑥 𝑓) − (𝑧 𝑓)) = ((𝑥 𝑧) − (𝑓 𝑓)))
30 hvsubid 28961 . . . . . . . 8 (𝑓 ∈ ℋ → (𝑓 𝑓) = 0)
3130oveq2d 7186 . . . . . . 7 (𝑓 ∈ ℋ → ((𝑥 𝑧) − (𝑓 𝑓)) = ((𝑥 𝑧) − 0))
32 hvsubcl 28952 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 𝑧) ∈ ℋ)
33 hvsub0 29011 . . . . . . . 8 ((𝑥 𝑧) ∈ ℋ → ((𝑥 𝑧) − 0) = (𝑥 𝑧))
3432, 33syl 17 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 𝑧) − 0) = (𝑥 𝑧))
3531, 34sylan9eqr 2795 . . . . . 6 (((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑓 ∈ ℋ) → ((𝑥 𝑧) − (𝑓 𝑓)) = (𝑥 𝑧))
3629, 35eqtrd 2773 . . . . 5 (((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑓 ∈ ℋ) → ((𝑥 𝑓) − (𝑧 𝑓)) = (𝑥 𝑧))
3725, 27, 36syl2an 599 . . . 4 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) → ((𝑥 𝑓) − (𝑧 𝑓)) = (𝑥 𝑧))
3837eleq1d 2817 . . 3 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) → (((𝑥 𝑓) − (𝑧 𝑓)) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))) ↔ (𝑥 𝑧) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)))))
3938adantr 484 . 2 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → (((𝑥 𝑓) − (𝑧 𝑓)) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))) ↔ (𝑥 𝑧) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)))))
4020, 39mpbid 235 1 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → (𝑥 𝑧) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  cin 3842  (class class class)co 7170  chba 28854   + cva 28855  0c0v 28859   cmv 28860   S csh 28863   + cph 28866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-hilex 28934  ax-hfvadd 28935  ax-hvcom 28936  ax-hvass 28937  ax-hv0cl 28938  ax-hvaddid 28939  ax-hfvmul 28940  ax-hvmulid 28941  ax-hvmulass 28942  ax-hvdistr1 28943  ax-hvdistr2 28944  ax-hvmul0 28945
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-pnf 10755  df-mnf 10756  df-ltxr 10758  df-sub 10950  df-neg 10951  df-nn 11717  df-grpo 28428  df-ablo 28480  df-hvsub 28906  df-hlim 28907  df-sh 29142  df-ch 29156  df-shs 29243
This theorem is referenced by:  5oalem4  29592
  Copyright terms: Public domain W3C validator