HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oalem3 Structured version   Visualization version   GIF version

Theorem 5oalem3 29366
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oalem3.1 𝐴S
5oalem3.2 𝐵S
5oalem3.3 𝐶S
5oalem3.4 𝐷S
5oalem3.5 𝐹S
5oalem3.6 𝐺S
Assertion
Ref Expression
5oalem3 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → (𝑥 𝑧) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))

Proof of Theorem 5oalem3
StepHypRef Expression
1 anandir 673 . . . 4 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ↔ (((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺))))
2 5oalem3.1 . . . . . . 7 𝐴S
3 5oalem3.2 . . . . . . 7 𝐵S
4 5oalem3.5 . . . . . . 7 𝐹S
5 5oalem3.6 . . . . . . 7 𝐺S
62, 3, 4, 55oalem2 29365 . . . . . 6 ((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑥 + 𝑦) = (𝑓 + 𝑔)) → (𝑥 𝑓) ∈ ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)))
7 5oalem3.3 . . . . . . 7 𝐶S
8 5oalem3.4 . . . . . . 7 𝐷S
97, 8, 4, 55oalem2 29365 . . . . . 6 ((((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔)) → (𝑧 𝑓) ∈ ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)))
106, 9anim12i 612 . . . . 5 (((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑥 + 𝑦) = (𝑓 + 𝑔)) ∧ (((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → ((𝑥 𝑓) ∈ ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∧ (𝑧 𝑓) ∈ ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
1110an4s 656 . . . 4 (((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺))) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → ((𝑥 𝑓) ∈ ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∧ (𝑧 𝑓) ∈ ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
121, 11sylanb 581 . . 3 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → ((𝑥 𝑓) ∈ ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∧ (𝑧 𝑓) ∈ ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
132, 4shscli 29027 . . . . 5 (𝐴 + 𝐹) ∈ S
143, 5shscli 29027 . . . . 5 (𝐵 + 𝐺) ∈ S
1513, 14shincli 29072 . . . 4 ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∈ S
167, 4shscli 29027 . . . . 5 (𝐶 + 𝐹) ∈ S
178, 5shscli 29027 . . . . 5 (𝐷 + 𝐺) ∈ S
1816, 17shincli 29072 . . . 4 ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∈ S
1915, 18shsvsi 29077 . . 3 (((𝑥 𝑓) ∈ ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∧ (𝑧 𝑓) ∈ ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))) → ((𝑥 𝑓) − (𝑧 𝑓)) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
2012, 19syl 17 . 2 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → ((𝑥 𝑓) − (𝑧 𝑓)) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
212sheli 28924 . . . . . . 7 (𝑥𝐴𝑥 ∈ ℋ)
2221adantr 481 . . . . . 6 ((𝑥𝐴𝑦𝐵) → 𝑥 ∈ ℋ)
237sheli 28924 . . . . . . 7 (𝑧𝐶𝑧 ∈ ℋ)
2423adantr 481 . . . . . 6 ((𝑧𝐶𝑤𝐷) → 𝑧 ∈ ℋ)
2522, 24anim12i 612 . . . . 5 (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) → (𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ))
264sheli 28924 . . . . . 6 (𝑓𝐹𝑓 ∈ ℋ)
2726adantr 481 . . . . 5 ((𝑓𝐹𝑔𝐺) → 𝑓 ∈ ℋ)
28 hvsubsub4 28770 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑓 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑓 ∈ ℋ)) → ((𝑥 𝑓) − (𝑧 𝑓)) = ((𝑥 𝑧) − (𝑓 𝑓)))
2928anandirs 675 . . . . . 6 (((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑓 ∈ ℋ) → ((𝑥 𝑓) − (𝑧 𝑓)) = ((𝑥 𝑧) − (𝑓 𝑓)))
30 hvsubid 28736 . . . . . . . 8 (𝑓 ∈ ℋ → (𝑓 𝑓) = 0)
3130oveq2d 7166 . . . . . . 7 (𝑓 ∈ ℋ → ((𝑥 𝑧) − (𝑓 𝑓)) = ((𝑥 𝑧) − 0))
32 hvsubcl 28727 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 𝑧) ∈ ℋ)
33 hvsub0 28786 . . . . . . . 8 ((𝑥 𝑧) ∈ ℋ → ((𝑥 𝑧) − 0) = (𝑥 𝑧))
3432, 33syl 17 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 𝑧) − 0) = (𝑥 𝑧))
3531, 34sylan9eqr 2883 . . . . . 6 (((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑓 ∈ ℋ) → ((𝑥 𝑧) − (𝑓 𝑓)) = (𝑥 𝑧))
3629, 35eqtrd 2861 . . . . 5 (((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑓 ∈ ℋ) → ((𝑥 𝑓) − (𝑧 𝑓)) = (𝑥 𝑧))
3725, 27, 36syl2an 595 . . . 4 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) → ((𝑥 𝑓) − (𝑧 𝑓)) = (𝑥 𝑧))
3837eleq1d 2902 . . 3 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) → (((𝑥 𝑓) − (𝑧 𝑓)) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))) ↔ (𝑥 𝑧) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)))))
3938adantr 481 . 2 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → (((𝑥 𝑓) − (𝑧 𝑓)) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))) ↔ (𝑥 𝑧) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)))))
4020, 39mpbid 233 1 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → (𝑥 𝑧) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  cin 3939  (class class class)co 7150  chba 28629   + cva 28630  0c0v 28634   cmv 28635   S csh 28638   + cph 28641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-hilex 28709  ax-hfvadd 28710  ax-hvcom 28711  ax-hvass 28712  ax-hv0cl 28713  ax-hvaddid 28714  ax-hfvmul 28715  ax-hvmulid 28716  ax-hvmulass 28717  ax-hvdistr1 28718  ax-hvdistr2 28719  ax-hvmul0 28720
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8284  df-map 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-ltxr 10674  df-sub 10866  df-neg 10867  df-nn 11633  df-grpo 28203  df-ablo 28255  df-hvsub 28681  df-hlim 28682  df-sh 28917  df-ch 28931  df-shs 29018
This theorem is referenced by:  5oalem4  29367
  Copyright terms: Public domain W3C validator