HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oalem3 Structured version   Visualization version   GIF version

Theorem 5oalem3 29039
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oalem3.1 𝐴S
5oalem3.2 𝐵S
5oalem3.3 𝐶S
5oalem3.4 𝐷S
5oalem3.5 𝐹S
5oalem3.6 𝐺S
Assertion
Ref Expression
5oalem3 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → (𝑥 𝑧) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))

Proof of Theorem 5oalem3
StepHypRef Expression
1 anandir 668 . . . 4 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ↔ (((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺))))
2 5oalem3.1 . . . . . . 7 𝐴S
3 5oalem3.2 . . . . . . 7 𝐵S
4 5oalem3.5 . . . . . . 7 𝐹S
5 5oalem3.6 . . . . . . 7 𝐺S
62, 3, 4, 55oalem2 29038 . . . . . 6 ((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑥 + 𝑦) = (𝑓 + 𝑔)) → (𝑥 𝑓) ∈ ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)))
7 5oalem3.3 . . . . . . 7 𝐶S
8 5oalem3.4 . . . . . . 7 𝐷S
97, 8, 4, 55oalem2 29038 . . . . . 6 ((((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔)) → (𝑧 𝑓) ∈ ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)))
106, 9anim12i 607 . . . . 5 (((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑥 + 𝑦) = (𝑓 + 𝑔)) ∧ (((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → ((𝑥 𝑓) ∈ ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∧ (𝑧 𝑓) ∈ ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
1110an4s 651 . . . 4 (((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺))) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → ((𝑥 𝑓) ∈ ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∧ (𝑧 𝑓) ∈ ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
121, 11sylanb 577 . . 3 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → ((𝑥 𝑓) ∈ ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∧ (𝑧 𝑓) ∈ ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
132, 4shscli 28700 . . . . 5 (𝐴 + 𝐹) ∈ S
143, 5shscli 28700 . . . . 5 (𝐵 + 𝐺) ∈ S
1513, 14shincli 28745 . . . 4 ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∈ S
167, 4shscli 28700 . . . . 5 (𝐶 + 𝐹) ∈ S
178, 5shscli 28700 . . . . 5 (𝐷 + 𝐺) ∈ S
1816, 17shincli 28745 . . . 4 ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∈ S
1915, 18shsvsi 28750 . . 3 (((𝑥 𝑓) ∈ ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∧ (𝑧 𝑓) ∈ ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))) → ((𝑥 𝑓) − (𝑧 𝑓)) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
2012, 19syl 17 . 2 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → ((𝑥 𝑓) − (𝑧 𝑓)) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
212sheli 28595 . . . . . . 7 (𝑥𝐴𝑥 ∈ ℋ)
2221adantr 473 . . . . . 6 ((𝑥𝐴𝑦𝐵) → 𝑥 ∈ ℋ)
237sheli 28595 . . . . . . 7 (𝑧𝐶𝑧 ∈ ℋ)
2423adantr 473 . . . . . 6 ((𝑧𝐶𝑤𝐷) → 𝑧 ∈ ℋ)
2522, 24anim12i 607 . . . . 5 (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) → (𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ))
264sheli 28595 . . . . . 6 (𝑓𝐹𝑓 ∈ ℋ)
2726adantr 473 . . . . 5 ((𝑓𝐹𝑔𝐺) → 𝑓 ∈ ℋ)
28 hvsubsub4 28441 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑓 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑓 ∈ ℋ)) → ((𝑥 𝑓) − (𝑧 𝑓)) = ((𝑥 𝑧) − (𝑓 𝑓)))
2928anandirs 670 . . . . . 6 (((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑓 ∈ ℋ) → ((𝑥 𝑓) − (𝑧 𝑓)) = ((𝑥 𝑧) − (𝑓 𝑓)))
30 hvsubid 28407 . . . . . . . 8 (𝑓 ∈ ℋ → (𝑓 𝑓) = 0)
3130oveq2d 6895 . . . . . . 7 (𝑓 ∈ ℋ → ((𝑥 𝑧) − (𝑓 𝑓)) = ((𝑥 𝑧) − 0))
32 hvsubcl 28398 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 𝑧) ∈ ℋ)
33 hvsub0 28457 . . . . . . . 8 ((𝑥 𝑧) ∈ ℋ → ((𝑥 𝑧) − 0) = (𝑥 𝑧))
3432, 33syl 17 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 𝑧) − 0) = (𝑥 𝑧))
3531, 34sylan9eqr 2856 . . . . . 6 (((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑓 ∈ ℋ) → ((𝑥 𝑧) − (𝑓 𝑓)) = (𝑥 𝑧))
3629, 35eqtrd 2834 . . . . 5 (((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑓 ∈ ℋ) → ((𝑥 𝑓) − (𝑧 𝑓)) = (𝑥 𝑧))
3725, 27, 36syl2an 590 . . . 4 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) → ((𝑥 𝑓) − (𝑧 𝑓)) = (𝑥 𝑧))
3837eleq1d 2864 . . 3 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) → (((𝑥 𝑓) − (𝑧 𝑓)) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))) ↔ (𝑥 𝑧) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)))))
3938adantr 473 . 2 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → (((𝑥 𝑓) − (𝑧 𝑓)) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))) ↔ (𝑥 𝑧) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)))))
4020, 39mpbid 224 1 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑥 + 𝑦) = (𝑓 + 𝑔) ∧ (𝑧 + 𝑤) = (𝑓 + 𝑔))) → (𝑥 𝑧) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) + ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  cin 3769  (class class class)co 6879  chba 28300   + cva 28301  0c0v 28305   cmv 28306   S csh 28309   + cph 28312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-rep 4965  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-cnex 10281  ax-resscn 10282  ax-1cn 10283  ax-icn 10284  ax-addcl 10285  ax-addrcl 10286  ax-mulcl 10287  ax-mulrcl 10288  ax-mulcom 10289  ax-addass 10290  ax-mulass 10291  ax-distr 10292  ax-i2m1 10293  ax-1ne0 10294  ax-1rid 10295  ax-rnegex 10296  ax-rrecex 10297  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300  ax-pre-ltadd 10301  ax-hilex 28380  ax-hfvadd 28381  ax-hvcom 28382  ax-hvass 28383  ax-hv0cl 28384  ax-hvaddid 28385  ax-hfvmul 28386  ax-hvmulid 28387  ax-hvmulass 28388  ax-hvdistr1 28389  ax-hvdistr2 28390  ax-hvmul0 28391
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-pss 3786  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-tp 4374  df-op 4376  df-uni 4630  df-int 4669  df-iun 4713  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5221  df-eprel 5226  df-po 5234  df-so 5235  df-fr 5272  df-we 5274  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-pred 5899  df-ord 5945  df-on 5946  df-lim 5947  df-suc 5948  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-om 7301  df-wrecs 7646  df-recs 7708  df-rdg 7746  df-er 7983  df-map 8098  df-en 8197  df-dom 8198  df-sdom 8199  df-pnf 10366  df-mnf 10367  df-ltxr 10369  df-sub 10559  df-neg 10560  df-nn 11314  df-grpo 27872  df-ablo 27924  df-hvsub 28352  df-hlim 28353  df-sh 28588  df-ch 28602  df-shs 28691
This theorem is referenced by:  5oalem4  29040
  Copyright terms: Public domain W3C validator