Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nzin Structured version   Visualization version   GIF version

Theorem nzin 44287
Description: The intersection of the set of multiples of m, mℤ, and those of n, nℤ, is the set of multiples of their least common multiple. Roughly Lemma 2.1(c) of https://www.mscs.dal.ca/~selinger/3343/handouts/ideals.pdf p. 5 and Problem 1(b) of https://people.math.binghamton.edu/mazur/teach/40107/40107h16sol.pdf p. 1, with mℤ and nℤ as images of the divides relation under m and n. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Hypotheses
Ref Expression
nzin.m (𝜑𝑀 ∈ ℤ)
nzin.n (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
nzin (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) = ( ∥ “ {(𝑀 lcm 𝑁)}))

Proof of Theorem nzin
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 dvdszrcl 16307 . . . . . . . . 9 (𝑀𝑛 → (𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ))
2 dvdszrcl 16307 . . . . . . . . 9 (𝑁𝑛 → (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ))
31, 2anim12i 612 . . . . . . . 8 ((𝑀𝑛𝑁𝑛) → ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ)))
4 anandir 676 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ)))
53, 4sylibr 234 . . . . . . 7 ((𝑀𝑛𝑁𝑛) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 ∈ ℤ))
65ancomd 461 . . . . . 6 ((𝑀𝑛𝑁𝑛) → (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)))
7 lcmdvds 16655 . . . . . . 7 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑛𝑁𝑛) → (𝑀 lcm 𝑁) ∥ 𝑛))
873expb 1120 . . . . . 6 ((𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑀𝑛𝑁𝑛) → (𝑀 lcm 𝑁) ∥ 𝑛))
96, 8mpcom 38 . . . . 5 ((𝑀𝑛𝑁𝑛) → (𝑀 lcm 𝑁) ∥ 𝑛)
10 elin 3992 . . . . . 6 (𝑛 ∈ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ↔ (𝑛 ∈ ( ∥ “ {𝑀}) ∧ 𝑛 ∈ ( ∥ “ {𝑁})))
11 reldvds 44284 . . . . . . . 8 Rel ∥
12 elrelimasn 6115 . . . . . . . 8 (Rel ∥ → (𝑛 ∈ ( ∥ “ {𝑀}) ↔ 𝑀𝑛))
1311, 12ax-mp 5 . . . . . . 7 (𝑛 ∈ ( ∥ “ {𝑀}) ↔ 𝑀𝑛)
14 elrelimasn 6115 . . . . . . . 8 (Rel ∥ → (𝑛 ∈ ( ∥ “ {𝑁}) ↔ 𝑁𝑛))
1511, 14ax-mp 5 . . . . . . 7 (𝑛 ∈ ( ∥ “ {𝑁}) ↔ 𝑁𝑛)
1613, 15anbi12i 627 . . . . . 6 ((𝑛 ∈ ( ∥ “ {𝑀}) ∧ 𝑛 ∈ ( ∥ “ {𝑁})) ↔ (𝑀𝑛𝑁𝑛))
1710, 16bitri 275 . . . . 5 (𝑛 ∈ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ↔ (𝑀𝑛𝑁𝑛))
18 elrelimasn 6115 . . . . . 6 (Rel ∥ → (𝑛 ∈ ( ∥ “ {(𝑀 lcm 𝑁)}) ↔ (𝑀 lcm 𝑁) ∥ 𝑛))
1911, 18ax-mp 5 . . . . 5 (𝑛 ∈ ( ∥ “ {(𝑀 lcm 𝑁)}) ↔ (𝑀 lcm 𝑁) ∥ 𝑛)
209, 17, 193imtr4i 292 . . . 4 (𝑛 ∈ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) → 𝑛 ∈ ( ∥ “ {(𝑀 lcm 𝑁)}))
2120ssriv 4012 . . 3 (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ⊆ ( ∥ “ {(𝑀 lcm 𝑁)})
2221a1i 11 . 2 (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ⊆ ( ∥ “ {(𝑀 lcm 𝑁)}))
23 nzin.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
24 nzin.n . . . . . 6 (𝜑𝑁 ∈ ℤ)
25 dvdslcm 16645 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))
2623, 24, 25syl2anc 583 . . . . 5 (𝜑 → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))
2726simpld 494 . . . 4 (𝜑𝑀 ∥ (𝑀 lcm 𝑁))
28 lcmcl 16648 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0)
2923, 24, 28syl2anc 583 . . . . . 6 (𝜑 → (𝑀 lcm 𝑁) ∈ ℕ0)
3029nn0zd 12665 . . . . 5 (𝜑 → (𝑀 lcm 𝑁) ∈ ℤ)
3130, 23nzss 44286 . . . 4 (𝜑 → (( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑀}) ↔ 𝑀 ∥ (𝑀 lcm 𝑁)))
3227, 31mpbird 257 . . 3 (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑀}))
3326simprd 495 . . . 4 (𝜑𝑁 ∥ (𝑀 lcm 𝑁))
3430, 24nzss 44286 . . . 4 (𝜑 → (( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑁}) ↔ 𝑁 ∥ (𝑀 lcm 𝑁)))
3533, 34mpbird 257 . . 3 (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑁}))
3632, 35ssind 4262 . 2 (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})))
3722, 36eqssd 4026 1 (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) = ( ∥ “ {(𝑀 lcm 𝑁)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  cin 3975  wss 3976  {csn 4648   class class class wbr 5166  cima 5703  Rel wrel 5705  (class class class)co 7448  0cn0 12553  cz 12639  cdvds 16302   lcm clcm 16635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-lcm 16637
This theorem is referenced by:  nzprmdif  44288
  Copyright terms: Public domain W3C validator