| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nzin | Structured version Visualization version GIF version | ||
| Description: The intersection of the set of multiples of m, mℤ, and those of n, nℤ, is the set of multiples of their least common multiple. Roughly Lemma 2.1(c) of https://www.mscs.dal.ca/~selinger/3343/handouts/ideals.pdf p. 5 and Problem 1(b) of https://people.math.binghamton.edu/mazur/teach/40107/40107h16sol.pdf p. 1, with mℤ and nℤ as images of the divides relation under m and n. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| Ref | Expression |
|---|---|
| nzin.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| nzin.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| Ref | Expression |
|---|---|
| nzin | ⊢ (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) = ( ∥ “ {(𝑀 lcm 𝑁)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdszrcl 16203 | . . . . . . . . 9 ⊢ (𝑀 ∥ 𝑛 → (𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ)) | |
| 2 | dvdszrcl 16203 | . . . . . . . . 9 ⊢ (𝑁 ∥ 𝑛 → (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ)) | |
| 3 | 1, 2 | anim12i 613 | . . . . . . . 8 ⊢ ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) → ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ))) |
| 4 | anandir 677 | . . . . . . . 8 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ))) | |
| 5 | 3, 4 | sylibr 234 | . . . . . . 7 ⊢ ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 ∈ ℤ)) |
| 6 | 5 | ancomd 461 | . . . . . 6 ⊢ ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) → (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) |
| 7 | lcmdvds 16554 | . . . . . . 7 ⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) → (𝑀 lcm 𝑁) ∥ 𝑛)) | |
| 8 | 7 | 3expb 1120 | . . . . . 6 ⊢ ((𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) → (𝑀 lcm 𝑁) ∥ 𝑛)) |
| 9 | 6, 8 | mpcom 38 | . . . . 5 ⊢ ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) → (𝑀 lcm 𝑁) ∥ 𝑛) |
| 10 | elin 3927 | . . . . . 6 ⊢ (𝑛 ∈ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ↔ (𝑛 ∈ ( ∥ “ {𝑀}) ∧ 𝑛 ∈ ( ∥ “ {𝑁}))) | |
| 11 | reldvds 44297 | . . . . . . . 8 ⊢ Rel ∥ | |
| 12 | elrelimasn 6046 | . . . . . . . 8 ⊢ (Rel ∥ → (𝑛 ∈ ( ∥ “ {𝑀}) ↔ 𝑀 ∥ 𝑛)) | |
| 13 | 11, 12 | ax-mp 5 | . . . . . . 7 ⊢ (𝑛 ∈ ( ∥ “ {𝑀}) ↔ 𝑀 ∥ 𝑛) |
| 14 | elrelimasn 6046 | . . . . . . . 8 ⊢ (Rel ∥ → (𝑛 ∈ ( ∥ “ {𝑁}) ↔ 𝑁 ∥ 𝑛)) | |
| 15 | 11, 14 | ax-mp 5 | . . . . . . 7 ⊢ (𝑛 ∈ ( ∥ “ {𝑁}) ↔ 𝑁 ∥ 𝑛) |
| 16 | 13, 15 | anbi12i 628 | . . . . . 6 ⊢ ((𝑛 ∈ ( ∥ “ {𝑀}) ∧ 𝑛 ∈ ( ∥ “ {𝑁})) ↔ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)) |
| 17 | 10, 16 | bitri 275 | . . . . 5 ⊢ (𝑛 ∈ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ↔ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)) |
| 18 | elrelimasn 6046 | . . . . . 6 ⊢ (Rel ∥ → (𝑛 ∈ ( ∥ “ {(𝑀 lcm 𝑁)}) ↔ (𝑀 lcm 𝑁) ∥ 𝑛)) | |
| 19 | 11, 18 | ax-mp 5 | . . . . 5 ⊢ (𝑛 ∈ ( ∥ “ {(𝑀 lcm 𝑁)}) ↔ (𝑀 lcm 𝑁) ∥ 𝑛) |
| 20 | 9, 17, 19 | 3imtr4i 292 | . . . 4 ⊢ (𝑛 ∈ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) → 𝑛 ∈ ( ∥ “ {(𝑀 lcm 𝑁)})) |
| 21 | 20 | ssriv 3947 | . . 3 ⊢ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ⊆ ( ∥ “ {(𝑀 lcm 𝑁)}) |
| 22 | 21 | a1i 11 | . 2 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ⊆ ( ∥ “ {(𝑀 lcm 𝑁)})) |
| 23 | nzin.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 24 | nzin.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 25 | dvdslcm 16544 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁))) | |
| 26 | 23, 24, 25 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁))) |
| 27 | 26 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝑀 ∥ (𝑀 lcm 𝑁)) |
| 28 | lcmcl 16547 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0) | |
| 29 | 23, 24, 28 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑀 lcm 𝑁) ∈ ℕ0) |
| 30 | 29 | nn0zd 12531 | . . . . 5 ⊢ (𝜑 → (𝑀 lcm 𝑁) ∈ ℤ) |
| 31 | 30, 23 | nzss 44299 | . . . 4 ⊢ (𝜑 → (( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑀}) ↔ 𝑀 ∥ (𝑀 lcm 𝑁))) |
| 32 | 27, 31 | mpbird 257 | . . 3 ⊢ (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑀})) |
| 33 | 26 | simprd 495 | . . . 4 ⊢ (𝜑 → 𝑁 ∥ (𝑀 lcm 𝑁)) |
| 34 | 30, 24 | nzss 44299 | . . . 4 ⊢ (𝜑 → (( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑁}) ↔ 𝑁 ∥ (𝑀 lcm 𝑁))) |
| 35 | 33, 34 | mpbird 257 | . . 3 ⊢ (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑁})) |
| 36 | 32, 35 | ssind 4200 | . 2 ⊢ (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁}))) |
| 37 | 22, 36 | eqssd 3961 | 1 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) = ( ∥ “ {(𝑀 lcm 𝑁)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 ⊆ wss 3911 {csn 4585 class class class wbr 5102 “ cima 5634 Rel wrel 5636 (class class class)co 7369 ℕ0cn0 12418 ℤcz 12505 ∥ cdvds 16198 lcm clcm 16534 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-dvds 16199 df-gcd 16441 df-lcm 16536 |
| This theorem is referenced by: nzprmdif 44301 |
| Copyright terms: Public domain | W3C validator |