Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nzin Structured version   Visualization version   GIF version

Theorem nzin 43749
Description: The intersection of the set of multiples of m, mℤ, and those of n, nℤ, is the set of multiples of their least common multiple. Roughly Lemma 2.1(c) of https://www.mscs.dal.ca/~selinger/3343/handouts/ideals.pdf p. 5 and Problem 1(b) of https://people.math.binghamton.edu/mazur/teach/40107/40107h16sol.pdf p. 1, with mℤ and nℤ as images of the divides relation under m and n. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Hypotheses
Ref Expression
nzin.m (𝜑𝑀 ∈ ℤ)
nzin.n (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
nzin (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) = ( ∥ “ {(𝑀 lcm 𝑁)}))

Proof of Theorem nzin
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 dvdszrcl 16229 . . . . . . . . 9 (𝑀𝑛 → (𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ))
2 dvdszrcl 16229 . . . . . . . . 9 (𝑁𝑛 → (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ))
31, 2anim12i 612 . . . . . . . 8 ((𝑀𝑛𝑁𝑛) → ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ)))
4 anandir 676 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ)))
53, 4sylibr 233 . . . . . . 7 ((𝑀𝑛𝑁𝑛) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 ∈ ℤ))
65ancomd 461 . . . . . 6 ((𝑀𝑛𝑁𝑛) → (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)))
7 lcmdvds 16572 . . . . . . 7 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑛𝑁𝑛) → (𝑀 lcm 𝑁) ∥ 𝑛))
873expb 1118 . . . . . 6 ((𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑀𝑛𝑁𝑛) → (𝑀 lcm 𝑁) ∥ 𝑛))
96, 8mpcom 38 . . . . 5 ((𝑀𝑛𝑁𝑛) → (𝑀 lcm 𝑁) ∥ 𝑛)
10 elin 3961 . . . . . 6 (𝑛 ∈ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ↔ (𝑛 ∈ ( ∥ “ {𝑀}) ∧ 𝑛 ∈ ( ∥ “ {𝑁})))
11 reldvds 43746 . . . . . . . 8 Rel ∥
12 elrelimasn 6083 . . . . . . . 8 (Rel ∥ → (𝑛 ∈ ( ∥ “ {𝑀}) ↔ 𝑀𝑛))
1311, 12ax-mp 5 . . . . . . 7 (𝑛 ∈ ( ∥ “ {𝑀}) ↔ 𝑀𝑛)
14 elrelimasn 6083 . . . . . . . 8 (Rel ∥ → (𝑛 ∈ ( ∥ “ {𝑁}) ↔ 𝑁𝑛))
1511, 14ax-mp 5 . . . . . . 7 (𝑛 ∈ ( ∥ “ {𝑁}) ↔ 𝑁𝑛)
1613, 15anbi12i 627 . . . . . 6 ((𝑛 ∈ ( ∥ “ {𝑀}) ∧ 𝑛 ∈ ( ∥ “ {𝑁})) ↔ (𝑀𝑛𝑁𝑛))
1710, 16bitri 275 . . . . 5 (𝑛 ∈ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ↔ (𝑀𝑛𝑁𝑛))
18 elrelimasn 6083 . . . . . 6 (Rel ∥ → (𝑛 ∈ ( ∥ “ {(𝑀 lcm 𝑁)}) ↔ (𝑀 lcm 𝑁) ∥ 𝑛))
1911, 18ax-mp 5 . . . . 5 (𝑛 ∈ ( ∥ “ {(𝑀 lcm 𝑁)}) ↔ (𝑀 lcm 𝑁) ∥ 𝑛)
209, 17, 193imtr4i 292 . . . 4 (𝑛 ∈ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) → 𝑛 ∈ ( ∥ “ {(𝑀 lcm 𝑁)}))
2120ssriv 3982 . . 3 (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ⊆ ( ∥ “ {(𝑀 lcm 𝑁)})
2221a1i 11 . 2 (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ⊆ ( ∥ “ {(𝑀 lcm 𝑁)}))
23 nzin.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
24 nzin.n . . . . . 6 (𝜑𝑁 ∈ ℤ)
25 dvdslcm 16562 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))
2623, 24, 25syl2anc 583 . . . . 5 (𝜑 → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))
2726simpld 494 . . . 4 (𝜑𝑀 ∥ (𝑀 lcm 𝑁))
28 lcmcl 16565 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0)
2923, 24, 28syl2anc 583 . . . . . 6 (𝜑 → (𝑀 lcm 𝑁) ∈ ℕ0)
3029nn0zd 12608 . . . . 5 (𝜑 → (𝑀 lcm 𝑁) ∈ ℤ)
3130, 23nzss 43748 . . . 4 (𝜑 → (( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑀}) ↔ 𝑀 ∥ (𝑀 lcm 𝑁)))
3227, 31mpbird 257 . . 3 (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑀}))
3326simprd 495 . . . 4 (𝜑𝑁 ∥ (𝑀 lcm 𝑁))
3430, 24nzss 43748 . . . 4 (𝜑 → (( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑁}) ↔ 𝑁 ∥ (𝑀 lcm 𝑁)))
3533, 34mpbird 257 . . 3 (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑁}))
3632, 35ssind 4228 . 2 (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})))
3722, 36eqssd 3995 1 (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) = ( ∥ “ {(𝑀 lcm 𝑁)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  cin 3944  wss 3945  {csn 4624   class class class wbr 5142  cima 5675  Rel wrel 5677  (class class class)co 7414  0cn0 12496  cz 12582  cdvds 16224   lcm clcm 16552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9459  df-inf 9460  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-n0 12497  df-z 12583  df-uz 12847  df-rp 13001  df-fl 13783  df-mod 13861  df-seq 13993  df-exp 14053  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16225  df-gcd 16463  df-lcm 16554
This theorem is referenced by:  nzprmdif  43750
  Copyright terms: Public domain W3C validator