Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nzin Structured version   Visualization version   GIF version

Theorem nzin 43992
Description: The intersection of the set of multiples of m, mℤ, and those of n, nℤ, is the set of multiples of their least common multiple. Roughly Lemma 2.1(c) of https://www.mscs.dal.ca/~selinger/3343/handouts/ideals.pdf p. 5 and Problem 1(b) of https://people.math.binghamton.edu/mazur/teach/40107/40107h16sol.pdf p. 1, with mℤ and nℤ as images of the divides relation under m and n. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Hypotheses
Ref Expression
nzin.m (𝜑𝑀 ∈ ℤ)
nzin.n (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
nzin (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) = ( ∥ “ {(𝑀 lcm 𝑁)}))

Proof of Theorem nzin
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 dvdszrcl 16261 . . . . . . . . 9 (𝑀𝑛 → (𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ))
2 dvdszrcl 16261 . . . . . . . . 9 (𝑁𝑛 → (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ))
31, 2anim12i 611 . . . . . . . 8 ((𝑀𝑛𝑁𝑛) → ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ)))
4 anandir 675 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ)))
53, 4sylibr 233 . . . . . . 7 ((𝑀𝑛𝑁𝑛) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 ∈ ℤ))
65ancomd 460 . . . . . 6 ((𝑀𝑛𝑁𝑛) → (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)))
7 lcmdvds 16609 . . . . . . 7 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑛𝑁𝑛) → (𝑀 lcm 𝑁) ∥ 𝑛))
873expb 1117 . . . . . 6 ((𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑀𝑛𝑁𝑛) → (𝑀 lcm 𝑁) ∥ 𝑛))
96, 8mpcom 38 . . . . 5 ((𝑀𝑛𝑁𝑛) → (𝑀 lcm 𝑁) ∥ 𝑛)
10 elin 3963 . . . . . 6 (𝑛 ∈ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ↔ (𝑛 ∈ ( ∥ “ {𝑀}) ∧ 𝑛 ∈ ( ∥ “ {𝑁})))
11 reldvds 43989 . . . . . . . 8 Rel ∥
12 elrelimasn 6095 . . . . . . . 8 (Rel ∥ → (𝑛 ∈ ( ∥ “ {𝑀}) ↔ 𝑀𝑛))
1311, 12ax-mp 5 . . . . . . 7 (𝑛 ∈ ( ∥ “ {𝑀}) ↔ 𝑀𝑛)
14 elrelimasn 6095 . . . . . . . 8 (Rel ∥ → (𝑛 ∈ ( ∥ “ {𝑁}) ↔ 𝑁𝑛))
1511, 14ax-mp 5 . . . . . . 7 (𝑛 ∈ ( ∥ “ {𝑁}) ↔ 𝑁𝑛)
1613, 15anbi12i 626 . . . . . 6 ((𝑛 ∈ ( ∥ “ {𝑀}) ∧ 𝑛 ∈ ( ∥ “ {𝑁})) ↔ (𝑀𝑛𝑁𝑛))
1710, 16bitri 274 . . . . 5 (𝑛 ∈ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ↔ (𝑀𝑛𝑁𝑛))
18 elrelimasn 6095 . . . . . 6 (Rel ∥ → (𝑛 ∈ ( ∥ “ {(𝑀 lcm 𝑁)}) ↔ (𝑀 lcm 𝑁) ∥ 𝑛))
1911, 18ax-mp 5 . . . . 5 (𝑛 ∈ ( ∥ “ {(𝑀 lcm 𝑁)}) ↔ (𝑀 lcm 𝑁) ∥ 𝑛)
209, 17, 193imtr4i 291 . . . 4 (𝑛 ∈ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) → 𝑛 ∈ ( ∥ “ {(𝑀 lcm 𝑁)}))
2120ssriv 3983 . . 3 (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ⊆ ( ∥ “ {(𝑀 lcm 𝑁)})
2221a1i 11 . 2 (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ⊆ ( ∥ “ {(𝑀 lcm 𝑁)}))
23 nzin.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
24 nzin.n . . . . . 6 (𝜑𝑁 ∈ ℤ)
25 dvdslcm 16599 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))
2623, 24, 25syl2anc 582 . . . . 5 (𝜑 → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))
2726simpld 493 . . . 4 (𝜑𝑀 ∥ (𝑀 lcm 𝑁))
28 lcmcl 16602 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0)
2923, 24, 28syl2anc 582 . . . . . 6 (𝜑 → (𝑀 lcm 𝑁) ∈ ℕ0)
3029nn0zd 12636 . . . . 5 (𝜑 → (𝑀 lcm 𝑁) ∈ ℤ)
3130, 23nzss 43991 . . . 4 (𝜑 → (( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑀}) ↔ 𝑀 ∥ (𝑀 lcm 𝑁)))
3227, 31mpbird 256 . . 3 (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑀}))
3326simprd 494 . . . 4 (𝜑𝑁 ∥ (𝑀 lcm 𝑁))
3430, 24nzss 43991 . . . 4 (𝜑 → (( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑁}) ↔ 𝑁 ∥ (𝑀 lcm 𝑁)))
3533, 34mpbird 256 . . 3 (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑁}))
3632, 35ssind 4234 . 2 (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})))
3722, 36eqssd 3997 1 (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) = ( ∥ “ {(𝑀 lcm 𝑁)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  cin 3946  wss 3947  {csn 4633   class class class wbr 5153  cima 5685  Rel wrel 5687  (class class class)co 7424  0cn0 12524  cz 12610  cdvds 16256   lcm clcm 16589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-sup 9485  df-inf 9486  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12611  df-uz 12875  df-rp 13029  df-fl 13812  df-mod 13890  df-seq 14022  df-exp 14082  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-dvds 16257  df-gcd 16495  df-lcm 16591
This theorem is referenced by:  nzprmdif  43993
  Copyright terms: Public domain W3C validator