Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nzin Structured version   Visualization version   GIF version

Theorem nzin 44342
Description: The intersection of the set of multiples of m, mℤ, and those of n, nℤ, is the set of multiples of their least common multiple. Roughly Lemma 2.1(c) of https://www.mscs.dal.ca/~selinger/3343/handouts/ideals.pdf p. 5 and Problem 1(b) of https://people.math.binghamton.edu/mazur/teach/40107/40107h16sol.pdf p. 1, with mℤ and nℤ as images of the divides relation under m and n. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Hypotheses
Ref Expression
nzin.m (𝜑𝑀 ∈ ℤ)
nzin.n (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
nzin (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) = ( ∥ “ {(𝑀 lcm 𝑁)}))

Proof of Theorem nzin
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 dvdszrcl 16296 . . . . . . . . 9 (𝑀𝑛 → (𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ))
2 dvdszrcl 16296 . . . . . . . . 9 (𝑁𝑛 → (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ))
31, 2anim12i 613 . . . . . . . 8 ((𝑀𝑛𝑁𝑛) → ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ)))
4 anandir 677 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ)))
53, 4sylibr 234 . . . . . . 7 ((𝑀𝑛𝑁𝑛) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 ∈ ℤ))
65ancomd 461 . . . . . 6 ((𝑀𝑛𝑁𝑛) → (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)))
7 lcmdvds 16646 . . . . . . 7 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑛𝑁𝑛) → (𝑀 lcm 𝑁) ∥ 𝑛))
873expb 1120 . . . . . 6 ((𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑀𝑛𝑁𝑛) → (𝑀 lcm 𝑁) ∥ 𝑛))
96, 8mpcom 38 . . . . 5 ((𝑀𝑛𝑁𝑛) → (𝑀 lcm 𝑁) ∥ 𝑛)
10 elin 3966 . . . . . 6 (𝑛 ∈ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ↔ (𝑛 ∈ ( ∥ “ {𝑀}) ∧ 𝑛 ∈ ( ∥ “ {𝑁})))
11 reldvds 44339 . . . . . . . 8 Rel ∥
12 elrelimasn 6103 . . . . . . . 8 (Rel ∥ → (𝑛 ∈ ( ∥ “ {𝑀}) ↔ 𝑀𝑛))
1311, 12ax-mp 5 . . . . . . 7 (𝑛 ∈ ( ∥ “ {𝑀}) ↔ 𝑀𝑛)
14 elrelimasn 6103 . . . . . . . 8 (Rel ∥ → (𝑛 ∈ ( ∥ “ {𝑁}) ↔ 𝑁𝑛))
1511, 14ax-mp 5 . . . . . . 7 (𝑛 ∈ ( ∥ “ {𝑁}) ↔ 𝑁𝑛)
1613, 15anbi12i 628 . . . . . 6 ((𝑛 ∈ ( ∥ “ {𝑀}) ∧ 𝑛 ∈ ( ∥ “ {𝑁})) ↔ (𝑀𝑛𝑁𝑛))
1710, 16bitri 275 . . . . 5 (𝑛 ∈ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ↔ (𝑀𝑛𝑁𝑛))
18 elrelimasn 6103 . . . . . 6 (Rel ∥ → (𝑛 ∈ ( ∥ “ {(𝑀 lcm 𝑁)}) ↔ (𝑀 lcm 𝑁) ∥ 𝑛))
1911, 18ax-mp 5 . . . . 5 (𝑛 ∈ ( ∥ “ {(𝑀 lcm 𝑁)}) ↔ (𝑀 lcm 𝑁) ∥ 𝑛)
209, 17, 193imtr4i 292 . . . 4 (𝑛 ∈ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) → 𝑛 ∈ ( ∥ “ {(𝑀 lcm 𝑁)}))
2120ssriv 3986 . . 3 (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ⊆ ( ∥ “ {(𝑀 lcm 𝑁)})
2221a1i 11 . 2 (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ⊆ ( ∥ “ {(𝑀 lcm 𝑁)}))
23 nzin.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
24 nzin.n . . . . . 6 (𝜑𝑁 ∈ ℤ)
25 dvdslcm 16636 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))
2623, 24, 25syl2anc 584 . . . . 5 (𝜑 → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))
2726simpld 494 . . . 4 (𝜑𝑀 ∥ (𝑀 lcm 𝑁))
28 lcmcl 16639 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0)
2923, 24, 28syl2anc 584 . . . . . 6 (𝜑 → (𝑀 lcm 𝑁) ∈ ℕ0)
3029nn0zd 12641 . . . . 5 (𝜑 → (𝑀 lcm 𝑁) ∈ ℤ)
3130, 23nzss 44341 . . . 4 (𝜑 → (( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑀}) ↔ 𝑀 ∥ (𝑀 lcm 𝑁)))
3227, 31mpbird 257 . . 3 (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑀}))
3326simprd 495 . . . 4 (𝜑𝑁 ∥ (𝑀 lcm 𝑁))
3430, 24nzss 44341 . . . 4 (𝜑 → (( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑁}) ↔ 𝑁 ∥ (𝑀 lcm 𝑁)))
3533, 34mpbird 257 . . 3 (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑁}))
3632, 35ssind 4240 . 2 (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})))
3722, 36eqssd 4000 1 (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) = ( ∥ “ {(𝑀 lcm 𝑁)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  cin 3949  wss 3950  {csn 4625   class class class wbr 5142  cima 5687  Rel wrel 5689  (class class class)co 7432  0cn0 12528  cz 12615  cdvds 16291   lcm clcm 16626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-dvds 16292  df-gcd 16533  df-lcm 16628
This theorem is referenced by:  nzprmdif  44343
  Copyright terms: Public domain W3C validator