![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nzin | Structured version Visualization version GIF version |
Description: The intersection of the set of multiples of m, mℤ, and those of n, nℤ, is the set of multiples of their least common multiple. Roughly Lemma 2.1(c) of https://www.mscs.dal.ca/~selinger/3343/handouts/ideals.pdf p. 5 and Problem 1(b) of https://people.math.binghamton.edu/mazur/teach/40107/40107h16sol.pdf p. 1, with mℤ and nℤ as images of the divides relation under m and n. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
Ref | Expression |
---|---|
nzin.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
nzin.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
Ref | Expression |
---|---|
nzin | ⊢ (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) = ( ∥ “ {(𝑀 lcm 𝑁)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdszrcl 16261 | . . . . . . . . 9 ⊢ (𝑀 ∥ 𝑛 → (𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ)) | |
2 | dvdszrcl 16261 | . . . . . . . . 9 ⊢ (𝑁 ∥ 𝑛 → (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ)) | |
3 | 1, 2 | anim12i 611 | . . . . . . . 8 ⊢ ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) → ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ))) |
4 | anandir 675 | . . . . . . . 8 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ))) | |
5 | 3, 4 | sylibr 233 | . . . . . . 7 ⊢ ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 ∈ ℤ)) |
6 | 5 | ancomd 460 | . . . . . 6 ⊢ ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) → (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) |
7 | lcmdvds 16609 | . . . . . . 7 ⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) → (𝑀 lcm 𝑁) ∥ 𝑛)) | |
8 | 7 | 3expb 1117 | . . . . . 6 ⊢ ((𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) → (𝑀 lcm 𝑁) ∥ 𝑛)) |
9 | 6, 8 | mpcom 38 | . . . . 5 ⊢ ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) → (𝑀 lcm 𝑁) ∥ 𝑛) |
10 | elin 3963 | . . . . . 6 ⊢ (𝑛 ∈ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ↔ (𝑛 ∈ ( ∥ “ {𝑀}) ∧ 𝑛 ∈ ( ∥ “ {𝑁}))) | |
11 | reldvds 43989 | . . . . . . . 8 ⊢ Rel ∥ | |
12 | elrelimasn 6095 | . . . . . . . 8 ⊢ (Rel ∥ → (𝑛 ∈ ( ∥ “ {𝑀}) ↔ 𝑀 ∥ 𝑛)) | |
13 | 11, 12 | ax-mp 5 | . . . . . . 7 ⊢ (𝑛 ∈ ( ∥ “ {𝑀}) ↔ 𝑀 ∥ 𝑛) |
14 | elrelimasn 6095 | . . . . . . . 8 ⊢ (Rel ∥ → (𝑛 ∈ ( ∥ “ {𝑁}) ↔ 𝑁 ∥ 𝑛)) | |
15 | 11, 14 | ax-mp 5 | . . . . . . 7 ⊢ (𝑛 ∈ ( ∥ “ {𝑁}) ↔ 𝑁 ∥ 𝑛) |
16 | 13, 15 | anbi12i 626 | . . . . . 6 ⊢ ((𝑛 ∈ ( ∥ “ {𝑀}) ∧ 𝑛 ∈ ( ∥ “ {𝑁})) ↔ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)) |
17 | 10, 16 | bitri 274 | . . . . 5 ⊢ (𝑛 ∈ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ↔ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)) |
18 | elrelimasn 6095 | . . . . . 6 ⊢ (Rel ∥ → (𝑛 ∈ ( ∥ “ {(𝑀 lcm 𝑁)}) ↔ (𝑀 lcm 𝑁) ∥ 𝑛)) | |
19 | 11, 18 | ax-mp 5 | . . . . 5 ⊢ (𝑛 ∈ ( ∥ “ {(𝑀 lcm 𝑁)}) ↔ (𝑀 lcm 𝑁) ∥ 𝑛) |
20 | 9, 17, 19 | 3imtr4i 291 | . . . 4 ⊢ (𝑛 ∈ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) → 𝑛 ∈ ( ∥ “ {(𝑀 lcm 𝑁)})) |
21 | 20 | ssriv 3983 | . . 3 ⊢ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ⊆ ( ∥ “ {(𝑀 lcm 𝑁)}) |
22 | 21 | a1i 11 | . 2 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ⊆ ( ∥ “ {(𝑀 lcm 𝑁)})) |
23 | nzin.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
24 | nzin.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
25 | dvdslcm 16599 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁))) | |
26 | 23, 24, 25 | syl2anc 582 | . . . . 5 ⊢ (𝜑 → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁))) |
27 | 26 | simpld 493 | . . . 4 ⊢ (𝜑 → 𝑀 ∥ (𝑀 lcm 𝑁)) |
28 | lcmcl 16602 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0) | |
29 | 23, 24, 28 | syl2anc 582 | . . . . . 6 ⊢ (𝜑 → (𝑀 lcm 𝑁) ∈ ℕ0) |
30 | 29 | nn0zd 12636 | . . . . 5 ⊢ (𝜑 → (𝑀 lcm 𝑁) ∈ ℤ) |
31 | 30, 23 | nzss 43991 | . . . 4 ⊢ (𝜑 → (( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑀}) ↔ 𝑀 ∥ (𝑀 lcm 𝑁))) |
32 | 27, 31 | mpbird 256 | . . 3 ⊢ (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑀})) |
33 | 26 | simprd 494 | . . . 4 ⊢ (𝜑 → 𝑁 ∥ (𝑀 lcm 𝑁)) |
34 | 30, 24 | nzss 43991 | . . . 4 ⊢ (𝜑 → (( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑁}) ↔ 𝑁 ∥ (𝑀 lcm 𝑁))) |
35 | 33, 34 | mpbird 256 | . . 3 ⊢ (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑁})) |
36 | 32, 35 | ssind 4234 | . 2 ⊢ (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁}))) |
37 | 22, 36 | eqssd 3997 | 1 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) = ( ∥ “ {(𝑀 lcm 𝑁)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∩ cin 3946 ⊆ wss 3947 {csn 4633 class class class wbr 5153 “ cima 5685 Rel wrel 5687 (class class class)co 7424 ℕ0cn0 12524 ℤcz 12610 ∥ cdvds 16256 lcm clcm 16589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-sup 9485 df-inf 9486 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12611 df-uz 12875 df-rp 13029 df-fl 13812 df-mod 13890 df-seq 14022 df-exp 14082 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-dvds 16257 df-gcd 16495 df-lcm 16591 |
This theorem is referenced by: nzprmdif 43993 |
Copyright terms: Public domain | W3C validator |