![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nzin | Structured version Visualization version GIF version |
Description: The intersection of the set of multiples of m, mℤ, and those of n, nℤ, is the set of multiples of their least common multiple. Roughly Lemma 2.1(c) of https://www.mscs.dal.ca/~selinger/3343/handouts/ideals.pdf p. 5 and Problem 1(b) of https://people.math.binghamton.edu/mazur/teach/40107/40107h16sol.pdf p. 1, with mℤ and nℤ as images of the divides relation under m and n. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
Ref | Expression |
---|---|
nzin.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
nzin.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
Ref | Expression |
---|---|
nzin | ⊢ (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) = ( ∥ “ {(𝑀 lcm 𝑁)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdszrcl 16201 | . . . . . . . . 9 ⊢ (𝑀 ∥ 𝑛 → (𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ)) | |
2 | dvdszrcl 16201 | . . . . . . . . 9 ⊢ (𝑁 ∥ 𝑛 → (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ)) | |
3 | 1, 2 | anim12i 612 | . . . . . . . 8 ⊢ ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) → ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ))) |
4 | anandir 674 | . . . . . . . 8 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ))) | |
5 | 3, 4 | sylibr 233 | . . . . . . 7 ⊢ ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 ∈ ℤ)) |
6 | 5 | ancomd 461 | . . . . . 6 ⊢ ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) → (𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) |
7 | lcmdvds 16544 | . . . . . . 7 ⊢ ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) → (𝑀 lcm 𝑁) ∥ 𝑛)) | |
8 | 7 | 3expb 1117 | . . . . . 6 ⊢ ((𝑛 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) → (𝑀 lcm 𝑁) ∥ 𝑛)) |
9 | 6, 8 | mpcom 38 | . . . . 5 ⊢ ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) → (𝑀 lcm 𝑁) ∥ 𝑛) |
10 | elin 3957 | . . . . . 6 ⊢ (𝑛 ∈ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ↔ (𝑛 ∈ ( ∥ “ {𝑀}) ∧ 𝑛 ∈ ( ∥ “ {𝑁}))) | |
11 | reldvds 43588 | . . . . . . . 8 ⊢ Rel ∥ | |
12 | elrelimasn 6075 | . . . . . . . 8 ⊢ (Rel ∥ → (𝑛 ∈ ( ∥ “ {𝑀}) ↔ 𝑀 ∥ 𝑛)) | |
13 | 11, 12 | ax-mp 5 | . . . . . . 7 ⊢ (𝑛 ∈ ( ∥ “ {𝑀}) ↔ 𝑀 ∥ 𝑛) |
14 | elrelimasn 6075 | . . . . . . . 8 ⊢ (Rel ∥ → (𝑛 ∈ ( ∥ “ {𝑁}) ↔ 𝑁 ∥ 𝑛)) | |
15 | 11, 14 | ax-mp 5 | . . . . . . 7 ⊢ (𝑛 ∈ ( ∥ “ {𝑁}) ↔ 𝑁 ∥ 𝑛) |
16 | 13, 15 | anbi12i 626 | . . . . . 6 ⊢ ((𝑛 ∈ ( ∥ “ {𝑀}) ∧ 𝑛 ∈ ( ∥ “ {𝑁})) ↔ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)) |
17 | 10, 16 | bitri 275 | . . . . 5 ⊢ (𝑛 ∈ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ↔ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)) |
18 | elrelimasn 6075 | . . . . . 6 ⊢ (Rel ∥ → (𝑛 ∈ ( ∥ “ {(𝑀 lcm 𝑁)}) ↔ (𝑀 lcm 𝑁) ∥ 𝑛)) | |
19 | 11, 18 | ax-mp 5 | . . . . 5 ⊢ (𝑛 ∈ ( ∥ “ {(𝑀 lcm 𝑁)}) ↔ (𝑀 lcm 𝑁) ∥ 𝑛) |
20 | 9, 17, 19 | 3imtr4i 292 | . . . 4 ⊢ (𝑛 ∈ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) → 𝑛 ∈ ( ∥ “ {(𝑀 lcm 𝑁)})) |
21 | 20 | ssriv 3979 | . . 3 ⊢ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ⊆ ( ∥ “ {(𝑀 lcm 𝑁)}) |
22 | 21 | a1i 11 | . 2 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) ⊆ ( ∥ “ {(𝑀 lcm 𝑁)})) |
23 | nzin.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
24 | nzin.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
25 | dvdslcm 16534 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁))) | |
26 | 23, 24, 25 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁))) |
27 | 26 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝑀 ∥ (𝑀 lcm 𝑁)) |
28 | lcmcl 16537 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0) | |
29 | 23, 24, 28 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (𝑀 lcm 𝑁) ∈ ℕ0) |
30 | 29 | nn0zd 12582 | . . . . 5 ⊢ (𝜑 → (𝑀 lcm 𝑁) ∈ ℤ) |
31 | 30, 23 | nzss 43590 | . . . 4 ⊢ (𝜑 → (( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑀}) ↔ 𝑀 ∥ (𝑀 lcm 𝑁))) |
32 | 27, 31 | mpbird 257 | . . 3 ⊢ (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑀})) |
33 | 26 | simprd 495 | . . . 4 ⊢ (𝜑 → 𝑁 ∥ (𝑀 lcm 𝑁)) |
34 | 30, 24 | nzss 43590 | . . . 4 ⊢ (𝜑 → (( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑁}) ↔ 𝑁 ∥ (𝑀 lcm 𝑁))) |
35 | 33, 34 | mpbird 257 | . . 3 ⊢ (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ ( ∥ “ {𝑁})) |
36 | 32, 35 | ssind 4225 | . 2 ⊢ (𝜑 → ( ∥ “ {(𝑀 lcm 𝑁)}) ⊆ (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁}))) |
37 | 22, 36 | eqssd 3992 | 1 ⊢ (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) = ( ∥ “ {(𝑀 lcm 𝑁)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∩ cin 3940 ⊆ wss 3941 {csn 4621 class class class wbr 5139 “ cima 5670 Rel wrel 5672 (class class class)co 7402 ℕ0cn0 12470 ℤcz 12556 ∥ cdvds 16196 lcm clcm 16524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-sup 9434 df-inf 9435 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-div 11870 df-nn 12211 df-2 12273 df-3 12274 df-n0 12471 df-z 12557 df-uz 12821 df-rp 12973 df-fl 13755 df-mod 13833 df-seq 13965 df-exp 14026 df-cj 15044 df-re 15045 df-im 15046 df-sqrt 15180 df-abs 15181 df-dvds 16197 df-gcd 16435 df-lcm 16526 |
This theorem is referenced by: nzprmdif 43592 |
Copyright terms: Public domain | W3C validator |