HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oalem5 Structured version   Visualization version   GIF version

Theorem 5oalem5 31602
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-May-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oalem5.1 𝐴S
5oalem5.2 𝐵S
5oalem5.3 𝐶S
5oalem5.4 𝐷S
5oalem5.5 𝐹S
5oalem5.6 𝐺S
5oalem5.7 𝑅S
5oalem5.8 𝑆S
Assertion
Ref Expression
5oalem5 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) → (𝑥 𝑧) ∈ ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))

Proof of Theorem 5oalem5
StepHypRef Expression
1 simpr 484 . . . 4 (((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆)) → (𝑣𝑅𝑢𝑆))
21anim2i 617 . . 3 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) → (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑣𝑅𝑢𝑆)))
3 simpl 482 . . 3 ((((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)) → ((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)))
4 5oalem5.1 . . . 4 𝐴S
5 5oalem5.2 . . . 4 𝐵S
6 5oalem5.3 . . . 4 𝐶S
7 5oalem5.4 . . . 4 𝐷S
8 5oalem5.7 . . . 4 𝑅S
9 5oalem5.8 . . . 4 𝑆S
104, 5, 6, 7, 8, 95oalem4 31601 . . 3 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑣𝑅𝑢𝑆)) ∧ ((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢))) → (𝑥 𝑧) ∈ (((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))))
112, 3, 10syl2an 596 . 2 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) → (𝑥 𝑧) ∈ (((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))))
124sheli 31158 . . . . . . . 8 (𝑥𝐴𝑥 ∈ ℋ)
1312adantr 480 . . . . . . 7 ((𝑥𝐴𝑦𝐵) → 𝑥 ∈ ℋ)
146sheli 31158 . . . . . . . 8 (𝑧𝐶𝑧 ∈ ℋ)
1514adantr 480 . . . . . . 7 ((𝑧𝐶𝑤𝐷) → 𝑧 ∈ ℋ)
1613, 15anim12i 613 . . . . . 6 (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) → (𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ))
17 5oalem5.5 . . . . . . . 8 𝐹S
1817sheli 31158 . . . . . . 7 (𝑓𝐹𝑓 ∈ ℋ)
1918adantr 480 . . . . . 6 ((𝑓𝐹𝑔𝐺) → 𝑓 ∈ ℋ)
20 hvsubsub4 31004 . . . . . . . 8 (((𝑥 ∈ ℋ ∧ 𝑓 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑓 ∈ ℋ)) → ((𝑥 𝑓) − (𝑧 𝑓)) = ((𝑥 𝑧) − (𝑓 𝑓)))
2120anandirs 679 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑓 ∈ ℋ) → ((𝑥 𝑓) − (𝑧 𝑓)) = ((𝑥 𝑧) − (𝑓 𝑓)))
22 hvsubid 30970 . . . . . . . . 9 (𝑓 ∈ ℋ → (𝑓 𝑓) = 0)
2322oveq2d 7365 . . . . . . . 8 (𝑓 ∈ ℋ → ((𝑥 𝑧) − (𝑓 𝑓)) = ((𝑥 𝑧) − 0))
24 hvsubcl 30961 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 𝑧) ∈ ℋ)
25 hvsub0 31020 . . . . . . . . 9 ((𝑥 𝑧) ∈ ℋ → ((𝑥 𝑧) − 0) = (𝑥 𝑧))
2624, 25syl 17 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 𝑧) − 0) = (𝑥 𝑧))
2723, 26sylan9eqr 2786 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑓 ∈ ℋ) → ((𝑥 𝑧) − (𝑓 𝑓)) = (𝑥 𝑧))
2821, 27eqtrd 2764 . . . . . 6 (((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑓 ∈ ℋ) → ((𝑥 𝑓) − (𝑧 𝑓)) = (𝑥 𝑧))
2916, 19, 28syl2an 596 . . . . 5 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) → ((𝑥 𝑓) − (𝑧 𝑓)) = (𝑥 𝑧))
3029adantrr 717 . . . 4 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) → ((𝑥 𝑓) − (𝑧 𝑓)) = (𝑥 𝑧))
3130adantr 480 . . 3 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) → ((𝑥 𝑓) − (𝑧 𝑓)) = (𝑥 𝑧))
32 simpl 482 . . . . . . . 8 (((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆)) → (𝑓𝐹𝑔𝐺))
3332anim2i 617 . . . . . . 7 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) → (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)))
34 anandir 677 . . . . . . 7 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ↔ (((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺))))
3533, 34sylib 218 . . . . . 6 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) → (((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺))))
36 simprr 772 . . . . . 6 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) → (𝑣𝑅𝑢𝑆))
3735, 36jca 511 . . . . 5 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) → ((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺))) ∧ (𝑣𝑅𝑢𝑆)))
38 simpl 482 . . . . . . 7 (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) → (𝑥 + 𝑦) = (𝑣 + 𝑢))
3938anim1i 615 . . . . . 6 ((((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)) → ((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)))
40 simpr 484 . . . . . . 7 (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) → (𝑧 + 𝑤) = (𝑣 + 𝑢))
4140anim1i 615 . . . . . 6 ((((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)) → ((𝑧 + 𝑤) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)))
4239, 41jca 511 . . . . 5 ((((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)) → (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)) ∧ ((𝑧 + 𝑤) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))))
43 anandir 677 . . . . . 6 (((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺))) ∧ (𝑣𝑅𝑢𝑆)) ↔ ((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑣𝑅𝑢𝑆)) ∧ (((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑣𝑅𝑢𝑆))))
44 5oalem5.6 . . . . . . . . 9 𝐺S
454, 5, 17, 44, 8, 95oalem4 31601 . . . . . . . 8 (((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑣𝑅𝑢𝑆)) ∧ ((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) → (𝑥 𝑓) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))
466, 7, 17, 44, 8, 95oalem4 31601 . . . . . . . 8 (((((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑣𝑅𝑢𝑆)) ∧ ((𝑧 + 𝑤) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) → (𝑧 𝑓) ∈ (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))
4745, 46anim12i 613 . . . . . . 7 ((((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑣𝑅𝑢𝑆)) ∧ ((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) ∧ ((((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑣𝑅𝑢𝑆)) ∧ ((𝑧 + 𝑤) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)))) → ((𝑥 𝑓) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∧ (𝑧 𝑓) ∈ (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))
4847an4s 660 . . . . . 6 ((((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑣𝑅𝑢𝑆)) ∧ (((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)) ∧ ((𝑧 + 𝑤) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)))) → ((𝑥 𝑓) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∧ (𝑧 𝑓) ∈ (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))
4943, 48sylanb 581 . . . . 5 ((((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺))) ∧ (𝑣𝑅𝑢𝑆)) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)) ∧ ((𝑧 + 𝑤) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)))) → ((𝑥 𝑓) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∧ (𝑧 𝑓) ∈ (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))
5037, 42, 49syl2an 596 . . . 4 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) → ((𝑥 𝑓) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∧ (𝑧 𝑓) ∈ (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))
514, 17shscli 31261 . . . . . . 7 (𝐴 + 𝐹) ∈ S
525, 44shscli 31261 . . . . . . 7 (𝐵 + 𝐺) ∈ S
5351, 52shincli 31306 . . . . . 6 ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∈ S
544, 8shscli 31261 . . . . . . . 8 (𝐴 + 𝑅) ∈ S
555, 9shscli 31261 . . . . . . . 8 (𝐵 + 𝑆) ∈ S
5654, 55shincli 31306 . . . . . . 7 ((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∈ S
5717, 8shscli 31261 . . . . . . . 8 (𝐹 + 𝑅) ∈ S
5844, 9shscli 31261 . . . . . . . 8 (𝐺 + 𝑆) ∈ S
5957, 58shincli 31306 . . . . . . 7 ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)) ∈ S
6056, 59shscli 31261 . . . . . 6 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ∈ S
6153, 60shincli 31306 . . . . 5 (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∈ S
626, 17shscli 31261 . . . . . . 7 (𝐶 + 𝐹) ∈ S
637, 44shscli 31261 . . . . . . 7 (𝐷 + 𝐺) ∈ S
6462, 63shincli 31306 . . . . . 6 ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∈ S
656, 8shscli 31261 . . . . . . . 8 (𝐶 + 𝑅) ∈ S
667, 9shscli 31261 . . . . . . . 8 (𝐷 + 𝑆) ∈ S
6765, 66shincli 31306 . . . . . . 7 ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ∈ S
6867, 59shscli 31261 . . . . . 6 (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ∈ S
6964, 68shincli 31306 . . . . 5 (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∈ S
7061, 69shsvsi 31311 . . . 4 (((𝑥 𝑓) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∧ (𝑧 𝑓) ∈ (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))) → ((𝑥 𝑓) − (𝑧 𝑓)) ∈ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))
7150, 70syl 17 . . 3 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) → ((𝑥 𝑓) − (𝑧 𝑓)) ∈ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))
7231, 71eqeltrrd 2829 . 2 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) → (𝑥 𝑧) ∈ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))
7311, 72elind 4151 1 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) → (𝑥 𝑧) ∈ ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3902  (class class class)co 7349  chba 30863   + cva 30864  0c0v 30868   cmv 30869   S csh 30872   + cph 30875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-hilex 30943  ax-hfvadd 30944  ax-hvcom 30945  ax-hvass 30946  ax-hv0cl 30947  ax-hvaddid 30948  ax-hfvmul 30949  ax-hvmulid 30950  ax-hvmulass 30951  ax-hvdistr1 30952  ax-hvdistr2 30953  ax-hvmul0 30954
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-ltxr 11154  df-sub 11349  df-neg 11350  df-nn 12129  df-grpo 30437  df-ablo 30489  df-hvsub 30915  df-hlim 30916  df-sh 31151  df-ch 31165  df-shs 31252
This theorem is referenced by:  5oalem6  31603
  Copyright terms: Public domain W3C validator