HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oalem5 Structured version   Visualization version   GIF version

Theorem 5oalem5 29441
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-May-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oalem5.1 𝐴S
5oalem5.2 𝐵S
5oalem5.3 𝐶S
5oalem5.4 𝐷S
5oalem5.5 𝐹S
5oalem5.6 𝐺S
5oalem5.7 𝑅S
5oalem5.8 𝑆S
Assertion
Ref Expression
5oalem5 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) → (𝑥 𝑧) ∈ ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))

Proof of Theorem 5oalem5
StepHypRef Expression
1 simpr 488 . . . 4 (((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆)) → (𝑣𝑅𝑢𝑆))
21anim2i 619 . . 3 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) → (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑣𝑅𝑢𝑆)))
3 simpl 486 . . 3 ((((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)) → ((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)))
4 5oalem5.1 . . . 4 𝐴S
5 5oalem5.2 . . . 4 𝐵S
6 5oalem5.3 . . . 4 𝐶S
7 5oalem5.4 . . . 4 𝐷S
8 5oalem5.7 . . . 4 𝑅S
9 5oalem5.8 . . . 4 𝑆S
104, 5, 6, 7, 8, 95oalem4 29440 . . 3 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑣𝑅𝑢𝑆)) ∧ ((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢))) → (𝑥 𝑧) ∈ (((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))))
112, 3, 10syl2an 598 . 2 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) → (𝑥 𝑧) ∈ (((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))))
124sheli 28997 . . . . . . . 8 (𝑥𝐴𝑥 ∈ ℋ)
1312adantr 484 . . . . . . 7 ((𝑥𝐴𝑦𝐵) → 𝑥 ∈ ℋ)
146sheli 28997 . . . . . . . 8 (𝑧𝐶𝑧 ∈ ℋ)
1514adantr 484 . . . . . . 7 ((𝑧𝐶𝑤𝐷) → 𝑧 ∈ ℋ)
1613, 15anim12i 615 . . . . . 6 (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) → (𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ))
17 5oalem5.5 . . . . . . . 8 𝐹S
1817sheli 28997 . . . . . . 7 (𝑓𝐹𝑓 ∈ ℋ)
1918adantr 484 . . . . . 6 ((𝑓𝐹𝑔𝐺) → 𝑓 ∈ ℋ)
20 hvsubsub4 28843 . . . . . . . 8 (((𝑥 ∈ ℋ ∧ 𝑓 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑓 ∈ ℋ)) → ((𝑥 𝑓) − (𝑧 𝑓)) = ((𝑥 𝑧) − (𝑓 𝑓)))
2120anandirs 678 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑓 ∈ ℋ) → ((𝑥 𝑓) − (𝑧 𝑓)) = ((𝑥 𝑧) − (𝑓 𝑓)))
22 hvsubid 28809 . . . . . . . . 9 (𝑓 ∈ ℋ → (𝑓 𝑓) = 0)
2322oveq2d 7151 . . . . . . . 8 (𝑓 ∈ ℋ → ((𝑥 𝑧) − (𝑓 𝑓)) = ((𝑥 𝑧) − 0))
24 hvsubcl 28800 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 𝑧) ∈ ℋ)
25 hvsub0 28859 . . . . . . . . 9 ((𝑥 𝑧) ∈ ℋ → ((𝑥 𝑧) − 0) = (𝑥 𝑧))
2624, 25syl 17 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 𝑧) − 0) = (𝑥 𝑧))
2723, 26sylan9eqr 2855 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑓 ∈ ℋ) → ((𝑥 𝑧) − (𝑓 𝑓)) = (𝑥 𝑧))
2821, 27eqtrd 2833 . . . . . 6 (((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑓 ∈ ℋ) → ((𝑥 𝑓) − (𝑧 𝑓)) = (𝑥 𝑧))
2916, 19, 28syl2an 598 . . . . 5 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) → ((𝑥 𝑓) − (𝑧 𝑓)) = (𝑥 𝑧))
3029adantrr 716 . . . 4 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) → ((𝑥 𝑓) − (𝑧 𝑓)) = (𝑥 𝑧))
3130adantr 484 . . 3 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) → ((𝑥 𝑓) − (𝑧 𝑓)) = (𝑥 𝑧))
32 simpl 486 . . . . . . . 8 (((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆)) → (𝑓𝐹𝑔𝐺))
3332anim2i 619 . . . . . . 7 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) → (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)))
34 anandir 676 . . . . . . 7 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ↔ (((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺))))
3533, 34sylib 221 . . . . . 6 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) → (((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺))))
36 simprr 772 . . . . . 6 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) → (𝑣𝑅𝑢𝑆))
3735, 36jca 515 . . . . 5 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) → ((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺))) ∧ (𝑣𝑅𝑢𝑆)))
38 simpl 486 . . . . . . 7 (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) → (𝑥 + 𝑦) = (𝑣 + 𝑢))
3938anim1i 617 . . . . . 6 ((((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)) → ((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)))
40 simpr 488 . . . . . . 7 (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) → (𝑧 + 𝑤) = (𝑣 + 𝑢))
4140anim1i 617 . . . . . 6 ((((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)) → ((𝑧 + 𝑤) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)))
4239, 41jca 515 . . . . 5 ((((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)) → (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)) ∧ ((𝑧 + 𝑤) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))))
43 anandir 676 . . . . . 6 (((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺))) ∧ (𝑣𝑅𝑢𝑆)) ↔ ((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑣𝑅𝑢𝑆)) ∧ (((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑣𝑅𝑢𝑆))))
44 5oalem5.6 . . . . . . . . 9 𝐺S
454, 5, 17, 44, 8, 95oalem4 29440 . . . . . . . 8 (((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑣𝑅𝑢𝑆)) ∧ ((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) → (𝑥 𝑓) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))
466, 7, 17, 44, 8, 95oalem4 29440 . . . . . . . 8 (((((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑣𝑅𝑢𝑆)) ∧ ((𝑧 + 𝑤) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) → (𝑧 𝑓) ∈ (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))
4745, 46anim12i 615 . . . . . . 7 ((((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑣𝑅𝑢𝑆)) ∧ ((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) ∧ ((((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑣𝑅𝑢𝑆)) ∧ ((𝑧 + 𝑤) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)))) → ((𝑥 𝑓) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∧ (𝑧 𝑓) ∈ (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))
4847an4s 659 . . . . . 6 ((((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑣𝑅𝑢𝑆)) ∧ (((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)) ∧ ((𝑧 + 𝑤) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)))) → ((𝑥 𝑓) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∧ (𝑧 𝑓) ∈ (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))
4943, 48sylanb 584 . . . . 5 ((((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺))) ∧ (𝑣𝑅𝑢𝑆)) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)) ∧ ((𝑧 + 𝑤) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)))) → ((𝑥 𝑓) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∧ (𝑧 𝑓) ∈ (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))
5037, 42, 49syl2an 598 . . . 4 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) → ((𝑥 𝑓) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∧ (𝑧 𝑓) ∈ (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))
514, 17shscli 29100 . . . . . . 7 (𝐴 + 𝐹) ∈ S
525, 44shscli 29100 . . . . . . 7 (𝐵 + 𝐺) ∈ S
5351, 52shincli 29145 . . . . . 6 ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∈ S
544, 8shscli 29100 . . . . . . . 8 (𝐴 + 𝑅) ∈ S
555, 9shscli 29100 . . . . . . . 8 (𝐵 + 𝑆) ∈ S
5654, 55shincli 29145 . . . . . . 7 ((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∈ S
5717, 8shscli 29100 . . . . . . . 8 (𝐹 + 𝑅) ∈ S
5844, 9shscli 29100 . . . . . . . 8 (𝐺 + 𝑆) ∈ S
5957, 58shincli 29145 . . . . . . 7 ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)) ∈ S
6056, 59shscli 29100 . . . . . 6 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ∈ S
6153, 60shincli 29145 . . . . 5 (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∈ S
626, 17shscli 29100 . . . . . . 7 (𝐶 + 𝐹) ∈ S
637, 44shscli 29100 . . . . . . 7 (𝐷 + 𝐺) ∈ S
6462, 63shincli 29145 . . . . . 6 ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∈ S
656, 8shscli 29100 . . . . . . . 8 (𝐶 + 𝑅) ∈ S
667, 9shscli 29100 . . . . . . . 8 (𝐷 + 𝑆) ∈ S
6765, 66shincli 29145 . . . . . . 7 ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ∈ S
6867, 59shscli 29100 . . . . . 6 (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ∈ S
6964, 68shincli 29145 . . . . 5 (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∈ S
7061, 69shsvsi 29150 . . . 4 (((𝑥 𝑓) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∧ (𝑧 𝑓) ∈ (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))) → ((𝑥 𝑓) − (𝑧 𝑓)) ∈ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))
7150, 70syl 17 . . 3 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) → ((𝑥 𝑓) − (𝑧 𝑓)) ∈ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))
7231, 71eqeltrrd 2891 . 2 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) → (𝑥 𝑧) ∈ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))
7311, 72elind 4121 1 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) → (𝑥 𝑧) ∈ ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  cin 3880  (class class class)co 7135  chba 28702   + cva 28703  0c0v 28707   cmv 28708   S csh 28711   + cph 28714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-hilex 28782  ax-hfvadd 28783  ax-hvcom 28784  ax-hvass 28785  ax-hv0cl 28786  ax-hvaddid 28787  ax-hfvmul 28788  ax-hvmulid 28789  ax-hvmulass 28790  ax-hvdistr1 28791  ax-hvdistr2 28792  ax-hvmul0 28793
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-ltxr 10669  df-sub 10861  df-neg 10862  df-nn 11626  df-grpo 28276  df-ablo 28328  df-hvsub 28754  df-hlim 28755  df-sh 28990  df-ch 29004  df-shs 29091
This theorem is referenced by:  5oalem6  29442
  Copyright terms: Public domain W3C validator