HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oalem5 Structured version   Visualization version   GIF version

Theorem 5oalem5 30898
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-May-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oalem5.1 𝐴S
5oalem5.2 𝐵S
5oalem5.3 𝐶S
5oalem5.4 𝐷S
5oalem5.5 𝐹S
5oalem5.6 𝐺S
5oalem5.7 𝑅S
5oalem5.8 𝑆S
Assertion
Ref Expression
5oalem5 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) → (𝑥 𝑧) ∈ ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))

Proof of Theorem 5oalem5
StepHypRef Expression
1 simpr 485 . . . 4 (((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆)) → (𝑣𝑅𝑢𝑆))
21anim2i 617 . . 3 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) → (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑣𝑅𝑢𝑆)))
3 simpl 483 . . 3 ((((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)) → ((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)))
4 5oalem5.1 . . . 4 𝐴S
5 5oalem5.2 . . . 4 𝐵S
6 5oalem5.3 . . . 4 𝐶S
7 5oalem5.4 . . . 4 𝐷S
8 5oalem5.7 . . . 4 𝑅S
9 5oalem5.8 . . . 4 𝑆S
104, 5, 6, 7, 8, 95oalem4 30897 . . 3 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑣𝑅𝑢𝑆)) ∧ ((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢))) → (𝑥 𝑧) ∈ (((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))))
112, 3, 10syl2an 596 . 2 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) → (𝑥 𝑧) ∈ (((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))))
124sheli 30454 . . . . . . . 8 (𝑥𝐴𝑥 ∈ ℋ)
1312adantr 481 . . . . . . 7 ((𝑥𝐴𝑦𝐵) → 𝑥 ∈ ℋ)
146sheli 30454 . . . . . . . 8 (𝑧𝐶𝑧 ∈ ℋ)
1514adantr 481 . . . . . . 7 ((𝑧𝐶𝑤𝐷) → 𝑧 ∈ ℋ)
1613, 15anim12i 613 . . . . . 6 (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) → (𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ))
17 5oalem5.5 . . . . . . . 8 𝐹S
1817sheli 30454 . . . . . . 7 (𝑓𝐹𝑓 ∈ ℋ)
1918adantr 481 . . . . . 6 ((𝑓𝐹𝑔𝐺) → 𝑓 ∈ ℋ)
20 hvsubsub4 30300 . . . . . . . 8 (((𝑥 ∈ ℋ ∧ 𝑓 ∈ ℋ) ∧ (𝑧 ∈ ℋ ∧ 𝑓 ∈ ℋ)) → ((𝑥 𝑓) − (𝑧 𝑓)) = ((𝑥 𝑧) − (𝑓 𝑓)))
2120anandirs 677 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑓 ∈ ℋ) → ((𝑥 𝑓) − (𝑧 𝑓)) = ((𝑥 𝑧) − (𝑓 𝑓)))
22 hvsubid 30266 . . . . . . . . 9 (𝑓 ∈ ℋ → (𝑓 𝑓) = 0)
2322oveq2d 7421 . . . . . . . 8 (𝑓 ∈ ℋ → ((𝑥 𝑧) − (𝑓 𝑓)) = ((𝑥 𝑧) − 0))
24 hvsubcl 30257 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 𝑧) ∈ ℋ)
25 hvsub0 30316 . . . . . . . . 9 ((𝑥 𝑧) ∈ ℋ → ((𝑥 𝑧) − 0) = (𝑥 𝑧))
2624, 25syl 17 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 𝑧) − 0) = (𝑥 𝑧))
2723, 26sylan9eqr 2794 . . . . . . 7 (((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑓 ∈ ℋ) → ((𝑥 𝑧) − (𝑓 𝑓)) = (𝑥 𝑧))
2821, 27eqtrd 2772 . . . . . 6 (((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) ∧ 𝑓 ∈ ℋ) → ((𝑥 𝑓) − (𝑧 𝑓)) = (𝑥 𝑧))
2916, 19, 28syl2an 596 . . . . 5 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) → ((𝑥 𝑓) − (𝑧 𝑓)) = (𝑥 𝑧))
3029adantrr 715 . . . 4 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) → ((𝑥 𝑓) − (𝑧 𝑓)) = (𝑥 𝑧))
3130adantr 481 . . 3 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) → ((𝑥 𝑓) − (𝑧 𝑓)) = (𝑥 𝑧))
32 simpl 483 . . . . . . . 8 (((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆)) → (𝑓𝐹𝑔𝐺))
3332anim2i 617 . . . . . . 7 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) → (((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)))
34 anandir 675 . . . . . . 7 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ (𝑓𝐹𝑔𝐺)) ↔ (((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺))))
3533, 34sylib 217 . . . . . 6 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) → (((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺))))
36 simprr 771 . . . . . 6 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) → (𝑣𝑅𝑢𝑆))
3735, 36jca 512 . . . . 5 ((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) → ((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺))) ∧ (𝑣𝑅𝑢𝑆)))
38 simpl 483 . . . . . . 7 (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) → (𝑥 + 𝑦) = (𝑣 + 𝑢))
3938anim1i 615 . . . . . 6 ((((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)) → ((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)))
40 simpr 485 . . . . . . 7 (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) → (𝑧 + 𝑤) = (𝑣 + 𝑢))
4140anim1i 615 . . . . . 6 ((((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)) → ((𝑧 + 𝑤) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)))
4239, 41jca 512 . . . . 5 ((((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)) → (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)) ∧ ((𝑧 + 𝑤) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))))
43 anandir 675 . . . . . 6 (((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺))) ∧ (𝑣𝑅𝑢𝑆)) ↔ ((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑣𝑅𝑢𝑆)) ∧ (((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑣𝑅𝑢𝑆))))
44 5oalem5.6 . . . . . . . . 9 𝐺S
454, 5, 17, 44, 8, 95oalem4 30897 . . . . . . . 8 (((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑣𝑅𝑢𝑆)) ∧ ((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) → (𝑥 𝑓) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))
466, 7, 17, 44, 8, 95oalem4 30897 . . . . . . . 8 (((((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑣𝑅𝑢𝑆)) ∧ ((𝑧 + 𝑤) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) → (𝑧 𝑓) ∈ (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))
4745, 46anim12i 613 . . . . . . 7 ((((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑣𝑅𝑢𝑆)) ∧ ((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) ∧ ((((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑣𝑅𝑢𝑆)) ∧ ((𝑧 + 𝑤) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)))) → ((𝑥 𝑓) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∧ (𝑧 𝑓) ∈ (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))
4847an4s 658 . . . . . 6 ((((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑣𝑅𝑢𝑆)) ∧ (((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺)) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)) ∧ ((𝑧 + 𝑤) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)))) → ((𝑥 𝑓) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∧ (𝑧 𝑓) ∈ (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))
4943, 48sylanb 581 . . . . 5 ((((((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐹𝑔𝐺)) ∧ ((𝑧𝐶𝑤𝐷) ∧ (𝑓𝐹𝑔𝐺))) ∧ (𝑣𝑅𝑢𝑆)) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)) ∧ ((𝑧 + 𝑤) = (𝑣 + 𝑢) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢)))) → ((𝑥 𝑓) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∧ (𝑧 𝑓) ∈ (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))
5037, 42, 49syl2an 596 . . . 4 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) → ((𝑥 𝑓) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∧ (𝑧 𝑓) ∈ (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))
514, 17shscli 30557 . . . . . . 7 (𝐴 + 𝐹) ∈ S
525, 44shscli 30557 . . . . . . 7 (𝐵 + 𝐺) ∈ S
5351, 52shincli 30602 . . . . . 6 ((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∈ S
544, 8shscli 30557 . . . . . . . 8 (𝐴 + 𝑅) ∈ S
555, 9shscli 30557 . . . . . . . 8 (𝐵 + 𝑆) ∈ S
5654, 55shincli 30602 . . . . . . 7 ((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) ∈ S
5717, 8shscli 30557 . . . . . . . 8 (𝐹 + 𝑅) ∈ S
5844, 9shscli 30557 . . . . . . . 8 (𝐺 + 𝑆) ∈ S
5957, 58shincli 30602 . . . . . . 7 ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)) ∈ S
6056, 59shscli 30557 . . . . . 6 (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ∈ S
6153, 60shincli 30602 . . . . 5 (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∈ S
626, 17shscli 30557 . . . . . . 7 (𝐶 + 𝐹) ∈ S
637, 44shscli 30557 . . . . . . 7 (𝐷 + 𝐺) ∈ S
6462, 63shincli 30602 . . . . . 6 ((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∈ S
656, 8shscli 30557 . . . . . . . 8 (𝐶 + 𝑅) ∈ S
667, 9shscli 30557 . . . . . . . 8 (𝐷 + 𝑆) ∈ S
6765, 66shincli 30602 . . . . . . 7 ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) ∈ S
6867, 59shscli 30557 . . . . . 6 (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))) ∈ S
6964, 68shincli 30602 . . . . 5 (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∈ S
7061, 69shsvsi 30607 . . . 4 (((𝑥 𝑓) ∈ (((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) ∧ (𝑧 𝑓) ∈ (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))) → ((𝑥 𝑓) − (𝑧 𝑓)) ∈ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))
7150, 70syl 17 . . 3 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) → ((𝑥 𝑓) − (𝑧 𝑓)) ∈ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))
7231, 71eqeltrrd 2834 . 2 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) → (𝑥 𝑧) ∈ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆))))))
7311, 72elind 4193 1 (((((𝑥𝐴𝑦𝐵) ∧ (𝑧𝐶𝑤𝐷)) ∧ ((𝑓𝐹𝑔𝐺) ∧ (𝑣𝑅𝑢𝑆))) ∧ (((𝑥 + 𝑦) = (𝑣 + 𝑢) ∧ (𝑧 + 𝑤) = (𝑣 + 𝑢)) ∧ (𝑓 + 𝑔) = (𝑣 + 𝑢))) → (𝑥 𝑧) ∈ ((((𝐴 + 𝐶) ∩ (𝐵 + 𝐷)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)))) ∩ ((((𝐴 + 𝐹) ∩ (𝐵 + 𝐺)) ∩ (((𝐴 + 𝑅) ∩ (𝐵 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))) + (((𝐶 + 𝐹) ∩ (𝐷 + 𝐺)) ∩ (((𝐶 + 𝑅) ∩ (𝐷 + 𝑆)) + ((𝐹 + 𝑅) ∩ (𝐺 + 𝑆)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  cin 3946  (class class class)co 7405  chba 30159   + cva 30160  0c0v 30164   cmv 30165   S csh 30168   + cph 30171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-hilex 30239  ax-hfvadd 30240  ax-hvcom 30241  ax-hvass 30242  ax-hv0cl 30243  ax-hvaddid 30244  ax-hfvmul 30245  ax-hvmulid 30246  ax-hvmulass 30247  ax-hvdistr1 30248  ax-hvdistr2 30249  ax-hvmul0 30250
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-ltxr 11249  df-sub 11442  df-neg 11443  df-nn 12209  df-grpo 29733  df-ablo 29785  df-hvsub 30211  df-hlim 30212  df-sh 30447  df-ch 30461  df-shs 30548
This theorem is referenced by:  5oalem6  30899
  Copyright terms: Public domain W3C validator