MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prnebg Structured version   Visualization version   GIF version

Theorem prnebg 4746
Description: A (proper) pair is not equal to another (maybe improper) pair if and only if an element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 16-Jan-2018.)
Assertion
Ref Expression
prnebg (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → (((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) ↔ {𝐴, 𝐵} ≠ {𝐶, 𝐷}))

Proof of Theorem prnebg
StepHypRef Expression
1 prneimg 4745 . . 3 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → (((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) → {𝐴, 𝐵} ≠ {𝐶, 𝐷}))
213adant3 1129 . 2 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → (((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) → {𝐴, 𝐵} ≠ {𝐶, 𝐷}))
3 ioran 981 . . . . 5 (¬ ((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) ↔ (¬ (𝐴𝐶𝐴𝐷) ∧ ¬ (𝐵𝐶𝐵𝐷)))
4 ianor 979 . . . . . . 7 (¬ (𝐴𝐶𝐴𝐷) ↔ (¬ 𝐴𝐶 ∨ ¬ 𝐴𝐷))
5 nne 2991 . . . . . . . 8 𝐴𝐶𝐴 = 𝐶)
6 nne 2991 . . . . . . . 8 𝐴𝐷𝐴 = 𝐷)
75, 6orbi12i 912 . . . . . . 7 ((¬ 𝐴𝐶 ∨ ¬ 𝐴𝐷) ↔ (𝐴 = 𝐶𝐴 = 𝐷))
84, 7bitri 278 . . . . . 6 (¬ (𝐴𝐶𝐴𝐷) ↔ (𝐴 = 𝐶𝐴 = 𝐷))
9 ianor 979 . . . . . . 7 (¬ (𝐵𝐶𝐵𝐷) ↔ (¬ 𝐵𝐶 ∨ ¬ 𝐵𝐷))
10 nne 2991 . . . . . . . 8 𝐵𝐶𝐵 = 𝐶)
11 nne 2991 . . . . . . . 8 𝐵𝐷𝐵 = 𝐷)
1210, 11orbi12i 912 . . . . . . 7 ((¬ 𝐵𝐶 ∨ ¬ 𝐵𝐷) ↔ (𝐵 = 𝐶𝐵 = 𝐷))
139, 12bitri 278 . . . . . 6 (¬ (𝐵𝐶𝐵𝐷) ↔ (𝐵 = 𝐶𝐵 = 𝐷))
148, 13anbi12i 629 . . . . 5 ((¬ (𝐴𝐶𝐴𝐷) ∧ ¬ (𝐵𝐶𝐵𝐷)) ↔ ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷)))
153, 14bitri 278 . . . 4 (¬ ((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) ↔ ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷)))
16 anddi 1008 . . . . 5 (((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷)) ↔ (((𝐴 = 𝐶𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐷)) ∨ ((𝐴 = 𝐷𝐵 = 𝐶) ∨ (𝐴 = 𝐷𝐵 = 𝐷))))
17 eqtr3 2820 . . . . . . . . . 10 ((𝐴 = 𝐶𝐵 = 𝐶) → 𝐴 = 𝐵)
18 eqneqall 2998 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝐴𝐵 → {𝐴, 𝐵} = {𝐶, 𝐷}))
1917, 18syl 17 . . . . . . . . 9 ((𝐴 = 𝐶𝐵 = 𝐶) → (𝐴𝐵 → {𝐴, 𝐵} = {𝐶, 𝐷}))
20 preq12 4631 . . . . . . . . . 10 ((𝐴 = 𝐶𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷})
2120a1d 25 . . . . . . . . 9 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴𝐵 → {𝐴, 𝐵} = {𝐶, 𝐷}))
2219, 21jaoi 854 . . . . . . . 8 (((𝐴 = 𝐶𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐷)) → (𝐴𝐵 → {𝐴, 𝐵} = {𝐶, 𝐷}))
23 preq12 4631 . . . . . . . . . . 11 ((𝐴 = 𝐷𝐵 = 𝐶) → {𝐴, 𝐵} = {𝐷, 𝐶})
24 prcom 4628 . . . . . . . . . . 11 {𝐷, 𝐶} = {𝐶, 𝐷}
2523, 24eqtrdi 2849 . . . . . . . . . 10 ((𝐴 = 𝐷𝐵 = 𝐶) → {𝐴, 𝐵} = {𝐶, 𝐷})
2625a1d 25 . . . . . . . . 9 ((𝐴 = 𝐷𝐵 = 𝐶) → (𝐴𝐵 → {𝐴, 𝐵} = {𝐶, 𝐷}))
27 eqtr3 2820 . . . . . . . . . 10 ((𝐴 = 𝐷𝐵 = 𝐷) → 𝐴 = 𝐵)
2827, 18syl 17 . . . . . . . . 9 ((𝐴 = 𝐷𝐵 = 𝐷) → (𝐴𝐵 → {𝐴, 𝐵} = {𝐶, 𝐷}))
2926, 28jaoi 854 . . . . . . . 8 (((𝐴 = 𝐷𝐵 = 𝐶) ∨ (𝐴 = 𝐷𝐵 = 𝐷)) → (𝐴𝐵 → {𝐴, 𝐵} = {𝐶, 𝐷}))
3022, 29jaoi 854 . . . . . . 7 ((((𝐴 = 𝐶𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐷)) ∨ ((𝐴 = 𝐷𝐵 = 𝐶) ∨ (𝐴 = 𝐷𝐵 = 𝐷))) → (𝐴𝐵 → {𝐴, 𝐵} = {𝐶, 𝐷}))
3130com12 32 . . . . . 6 (𝐴𝐵 → ((((𝐴 = 𝐶𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐷)) ∨ ((𝐴 = 𝐷𝐵 = 𝐶) ∨ (𝐴 = 𝐷𝐵 = 𝐷))) → {𝐴, 𝐵} = {𝐶, 𝐷}))
32313ad2ant3 1132 . . . . 5 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → ((((𝐴 = 𝐶𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐷)) ∨ ((𝐴 = 𝐷𝐵 = 𝐶) ∨ (𝐴 = 𝐷𝐵 = 𝐷))) → {𝐴, 𝐵} = {𝐶, 𝐷}))
3316, 32syl5bi 245 . . . 4 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → (((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷)) → {𝐴, 𝐵} = {𝐶, 𝐷}))
3415, 33syl5bi 245 . . 3 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → (¬ ((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) → {𝐴, 𝐵} = {𝐶, 𝐷}))
3534necon1ad 3004 . 2 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → ({𝐴, 𝐵} ≠ {𝐶, 𝐷} → ((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷))))
362, 35impbid 215 1 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → (((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) ↔ {𝐴, 𝐵} ≠ {𝐶, 𝐷}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2987  {cpr 4527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-v 3443  df-un 3886  df-sn 4526  df-pr 4528
This theorem is referenced by:  zlmodzxznm  44906
  Copyright terms: Public domain W3C validator