MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prnebg Structured version   Visualization version   GIF version

Theorem prnebg 4736
Description: A (proper) pair is not equal to another (maybe improper) pair if and only if an element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 16-Jan-2018.)
Assertion
Ref Expression
prnebg (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → (((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) ↔ {𝐴, 𝐵} ≠ {𝐶, 𝐷}))

Proof of Theorem prnebg
StepHypRef Expression
1 prneimg 4735 . . 3 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌)) → (((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) → {𝐴, 𝐵} ≠ {𝐶, 𝐷}))
213adant3 1130 . 2 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → (((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) → {𝐴, 𝐵} ≠ {𝐶, 𝐷}))
3 ioran 982 . . . . 5 (¬ ((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) ↔ (¬ (𝐴𝐶𝐴𝐷) ∧ ¬ (𝐵𝐶𝐵𝐷)))
4 ianor 980 . . . . . . 7 (¬ (𝐴𝐶𝐴𝐷) ↔ (¬ 𝐴𝐶 ∨ ¬ 𝐴𝐷))
5 nne 2953 . . . . . . . 8 𝐴𝐶𝐴 = 𝐶)
6 nne 2953 . . . . . . . 8 𝐴𝐷𝐴 = 𝐷)
75, 6orbi12i 913 . . . . . . 7 ((¬ 𝐴𝐶 ∨ ¬ 𝐴𝐷) ↔ (𝐴 = 𝐶𝐴 = 𝐷))
84, 7bitri 278 . . . . . 6 (¬ (𝐴𝐶𝐴𝐷) ↔ (𝐴 = 𝐶𝐴 = 𝐷))
9 ianor 980 . . . . . . 7 (¬ (𝐵𝐶𝐵𝐷) ↔ (¬ 𝐵𝐶 ∨ ¬ 𝐵𝐷))
10 nne 2953 . . . . . . . 8 𝐵𝐶𝐵 = 𝐶)
11 nne 2953 . . . . . . . 8 𝐵𝐷𝐵 = 𝐷)
1210, 11orbi12i 913 . . . . . . 7 ((¬ 𝐵𝐶 ∨ ¬ 𝐵𝐷) ↔ (𝐵 = 𝐶𝐵 = 𝐷))
139, 12bitri 278 . . . . . 6 (¬ (𝐵𝐶𝐵𝐷) ↔ (𝐵 = 𝐶𝐵 = 𝐷))
148, 13anbi12i 630 . . . . 5 ((¬ (𝐴𝐶𝐴𝐷) ∧ ¬ (𝐵𝐶𝐵𝐷)) ↔ ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷)))
153, 14bitri 278 . . . 4 (¬ ((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) ↔ ((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷)))
16 anddi 1009 . . . . 5 (((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷)) ↔ (((𝐴 = 𝐶𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐷)) ∨ ((𝐴 = 𝐷𝐵 = 𝐶) ∨ (𝐴 = 𝐷𝐵 = 𝐷))))
17 eqtr3 2781 . . . . . . . . . 10 ((𝐴 = 𝐶𝐵 = 𝐶) → 𝐴 = 𝐵)
18 eqneqall 2960 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝐴𝐵 → {𝐴, 𝐵} = {𝐶, 𝐷}))
1917, 18syl 17 . . . . . . . . 9 ((𝐴 = 𝐶𝐵 = 𝐶) → (𝐴𝐵 → {𝐴, 𝐵} = {𝐶, 𝐷}))
20 preq12 4621 . . . . . . . . . 10 ((𝐴 = 𝐶𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷})
2120a1d 25 . . . . . . . . 9 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴𝐵 → {𝐴, 𝐵} = {𝐶, 𝐷}))
2219, 21jaoi 855 . . . . . . . 8 (((𝐴 = 𝐶𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐷)) → (𝐴𝐵 → {𝐴, 𝐵} = {𝐶, 𝐷}))
23 preq12 4621 . . . . . . . . . . 11 ((𝐴 = 𝐷𝐵 = 𝐶) → {𝐴, 𝐵} = {𝐷, 𝐶})
24 prcom 4618 . . . . . . . . . . 11 {𝐷, 𝐶} = {𝐶, 𝐷}
2523, 24eqtrdi 2810 . . . . . . . . . 10 ((𝐴 = 𝐷𝐵 = 𝐶) → {𝐴, 𝐵} = {𝐶, 𝐷})
2625a1d 25 . . . . . . . . 9 ((𝐴 = 𝐷𝐵 = 𝐶) → (𝐴𝐵 → {𝐴, 𝐵} = {𝐶, 𝐷}))
27 eqtr3 2781 . . . . . . . . . 10 ((𝐴 = 𝐷𝐵 = 𝐷) → 𝐴 = 𝐵)
2827, 18syl 17 . . . . . . . . 9 ((𝐴 = 𝐷𝐵 = 𝐷) → (𝐴𝐵 → {𝐴, 𝐵} = {𝐶, 𝐷}))
2926, 28jaoi 855 . . . . . . . 8 (((𝐴 = 𝐷𝐵 = 𝐶) ∨ (𝐴 = 𝐷𝐵 = 𝐷)) → (𝐴𝐵 → {𝐴, 𝐵} = {𝐶, 𝐷}))
3022, 29jaoi 855 . . . . . . 7 ((((𝐴 = 𝐶𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐷)) ∨ ((𝐴 = 𝐷𝐵 = 𝐶) ∨ (𝐴 = 𝐷𝐵 = 𝐷))) → (𝐴𝐵 → {𝐴, 𝐵} = {𝐶, 𝐷}))
3130com12 32 . . . . . 6 (𝐴𝐵 → ((((𝐴 = 𝐶𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐷)) ∨ ((𝐴 = 𝐷𝐵 = 𝐶) ∨ (𝐴 = 𝐷𝐵 = 𝐷))) → {𝐴, 𝐵} = {𝐶, 𝐷}))
32313ad2ant3 1133 . . . . 5 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → ((((𝐴 = 𝐶𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐷)) ∨ ((𝐴 = 𝐷𝐵 = 𝐶) ∨ (𝐴 = 𝐷𝐵 = 𝐷))) → {𝐴, 𝐵} = {𝐶, 𝐷}))
3316, 32syl5bi 245 . . . 4 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → (((𝐴 = 𝐶𝐴 = 𝐷) ∧ (𝐵 = 𝐶𝐵 = 𝐷)) → {𝐴, 𝐵} = {𝐶, 𝐷}))
3415, 33syl5bi 245 . . 3 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → (¬ ((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) → {𝐴, 𝐵} = {𝐶, 𝐷}))
3534necon1ad 2966 . 2 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → ({𝐴, 𝐵} ≠ {𝐶, 𝐷} → ((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷))))
362, 35impbid 215 1 (((𝐴𝑈𝐵𝑉) ∧ (𝐶𝑋𝐷𝑌) ∧ 𝐴𝐵) → (((𝐴𝐶𝐴𝐷) ∨ (𝐵𝐶𝐵𝐷)) ↔ {𝐴, 𝐵} ≠ {𝐶, 𝐷}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 400  wo 845  w3a 1085   = wceq 1539  wcel 2112  wne 2949  {cpr 4517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-v 3409  df-un 3859  df-sn 4516  df-pr 4518
This theorem is referenced by:  zlmodzxznm  45256
  Copyright terms: Public domain W3C validator