| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | xp1st 8046 | . . . . . . . . 9
⊢ (𝑞 ∈ (𝐴 × 𝐵) → (1st ‘𝑞) ∈ 𝐴) | 
| 2 | 1 | ad2antrl 728 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → (1st ‘𝑞) ∈ 𝐴) | 
| 3 |  | xp1st 8046 | . . . . . . . . 9
⊢ (𝑟 ∈ (𝐴 × 𝐵) → (1st ‘𝑟) ∈ 𝐴) | 
| 4 | 3 | ad2antll 729 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → (1st ‘𝑟) ∈ 𝐴) | 
| 5 |  | simpl 482 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → 𝜑) | 
| 6 |  | disjxpin.3 | . . . . . . . . . . 11
⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐶) | 
| 7 |  | disjors 5126 | . . . . . . . . . . 11
⊢
(Disj 𝑥
∈ 𝐴 𝐶 ↔ ∀𝑎 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (𝑎 = 𝑐 ∨ (⦋𝑎 / 𝑥⦌𝐶 ∩ ⦋𝑐 / 𝑥⦌𝐶) = ∅)) | 
| 8 | 6, 7 | sylib 218 | . . . . . . . . . 10
⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (𝑎 = 𝑐 ∨ (⦋𝑎 / 𝑥⦌𝐶 ∩ ⦋𝑐 / 𝑥⦌𝐶) = ∅)) | 
| 9 |  | eqeq1 2741 | . . . . . . . . . . . 12
⊢ (𝑎 = (1st ‘𝑞) → (𝑎 = 𝑐 ↔ (1st ‘𝑞) = 𝑐)) | 
| 10 |  | csbeq1 3902 | . . . . . . . . . . . . . 14
⊢ (𝑎 = (1st ‘𝑞) → ⦋𝑎 / 𝑥⦌𝐶 = ⦋(1st
‘𝑞) / 𝑥⦌𝐶) | 
| 11 | 10 | ineq1d 4219 | . . . . . . . . . . . . 13
⊢ (𝑎 = (1st ‘𝑞) → (⦋𝑎 / 𝑥⦌𝐶 ∩ ⦋𝑐 / 𝑥⦌𝐶) = (⦋(1st
‘𝑞) / 𝑥⦌𝐶 ∩ ⦋𝑐 / 𝑥⦌𝐶)) | 
| 12 | 11 | eqeq1d 2739 | . . . . . . . . . . . 12
⊢ (𝑎 = (1st ‘𝑞) → ((⦋𝑎 / 𝑥⦌𝐶 ∩ ⦋𝑐 / 𝑥⦌𝐶) = ∅ ↔
(⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋𝑐 / 𝑥⦌𝐶) = ∅)) | 
| 13 | 9, 12 | orbi12d 919 | . . . . . . . . . . 11
⊢ (𝑎 = (1st ‘𝑞) → ((𝑎 = 𝑐 ∨ (⦋𝑎 / 𝑥⦌𝐶 ∩ ⦋𝑐 / 𝑥⦌𝐶) = ∅) ↔ ((1st
‘𝑞) = 𝑐 ∨
(⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋𝑐 / 𝑥⦌𝐶) = ∅))) | 
| 14 |  | eqeq2 2749 | . . . . . . . . . . . 12
⊢ (𝑐 = (1st ‘𝑟) → ((1st
‘𝑞) = 𝑐 ↔ (1st
‘𝑞) = (1st
‘𝑟))) | 
| 15 |  | csbeq1 3902 | . . . . . . . . . . . . . 14
⊢ (𝑐 = (1st ‘𝑟) → ⦋𝑐 / 𝑥⦌𝐶 = ⦋(1st
‘𝑟) / 𝑥⦌𝐶) | 
| 16 | 15 | ineq2d 4220 | . . . . . . . . . . . . 13
⊢ (𝑐 = (1st ‘𝑟) →
(⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋𝑐 / 𝑥⦌𝐶) = (⦋(1st
‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶)) | 
| 17 | 16 | eqeq1d 2739 | . . . . . . . . . . . 12
⊢ (𝑐 = (1st ‘𝑟) →
((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋𝑐 / 𝑥⦌𝐶) = ∅ ↔
(⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅)) | 
| 18 | 14, 17 | orbi12d 919 | . . . . . . . . . . 11
⊢ (𝑐 = (1st ‘𝑟) → (((1st
‘𝑞) = 𝑐 ∨
(⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋𝑐 / 𝑥⦌𝐶) = ∅) ↔ ((1st
‘𝑞) = (1st
‘𝑟) ∨
(⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅))) | 
| 19 | 13, 18 | rspc2v 3633 | . . . . . . . . . 10
⊢
(((1st ‘𝑞) ∈ 𝐴 ∧ (1st ‘𝑟) ∈ 𝐴) → (∀𝑎 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (𝑎 = 𝑐 ∨ (⦋𝑎 / 𝑥⦌𝐶 ∩ ⦋𝑐 / 𝑥⦌𝐶) = ∅) → ((1st
‘𝑞) = (1st
‘𝑟) ∨
(⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅))) | 
| 20 | 8, 19 | syl5 34 | . . . . . . . . 9
⊢
(((1st ‘𝑞) ∈ 𝐴 ∧ (1st ‘𝑟) ∈ 𝐴) → (𝜑 → ((1st ‘𝑞) = (1st ‘𝑟) ∨
(⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅))) | 
| 21 | 20 | imp 406 | . . . . . . . 8
⊢
((((1st ‘𝑞) ∈ 𝐴 ∧ (1st ‘𝑟) ∈ 𝐴) ∧ 𝜑) → ((1st ‘𝑞) = (1st ‘𝑟) ∨
(⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅)) | 
| 22 | 2, 4, 5, 21 | syl21anc 838 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → ((1st ‘𝑞) = (1st ‘𝑟) ∨
(⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅)) | 
| 23 |  | xp2nd 8047 | . . . . . . . . 9
⊢ (𝑞 ∈ (𝐴 × 𝐵) → (2nd ‘𝑞) ∈ 𝐵) | 
| 24 | 23 | ad2antrl 728 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → (2nd ‘𝑞) ∈ 𝐵) | 
| 25 |  | xp2nd 8047 | . . . . . . . . 9
⊢ (𝑟 ∈ (𝐴 × 𝐵) → (2nd ‘𝑟) ∈ 𝐵) | 
| 26 | 25 | ad2antll 729 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → (2nd ‘𝑟) ∈ 𝐵) | 
| 27 |  | disjxpin.4 | . . . . . . . . . . 11
⊢ (𝜑 → Disj 𝑦 ∈ 𝐵 𝐷) | 
| 28 |  | disjors 5126 | . . . . . . . . . . 11
⊢
(Disj 𝑦
∈ 𝐵 𝐷 ↔ ∀𝑏 ∈ 𝐵 ∀𝑑 ∈ 𝐵 (𝑏 = 𝑑 ∨ (⦋𝑏 / 𝑦⦌𝐷 ∩ ⦋𝑑 / 𝑦⦌𝐷) = ∅)) | 
| 29 | 27, 28 | sylib 218 | . . . . . . . . . 10
⊢ (𝜑 → ∀𝑏 ∈ 𝐵 ∀𝑑 ∈ 𝐵 (𝑏 = 𝑑 ∨ (⦋𝑏 / 𝑦⦌𝐷 ∩ ⦋𝑑 / 𝑦⦌𝐷) = ∅)) | 
| 30 |  | eqeq1 2741 | . . . . . . . . . . . 12
⊢ (𝑏 = (2nd ‘𝑞) → (𝑏 = 𝑑 ↔ (2nd ‘𝑞) = 𝑑)) | 
| 31 |  | csbeq1 3902 | . . . . . . . . . . . . . 14
⊢ (𝑏 = (2nd ‘𝑞) → ⦋𝑏 / 𝑦⦌𝐷 = ⦋(2nd
‘𝑞) / 𝑦⦌𝐷) | 
| 32 | 31 | ineq1d 4219 | . . . . . . . . . . . . 13
⊢ (𝑏 = (2nd ‘𝑞) → (⦋𝑏 / 𝑦⦌𝐷 ∩ ⦋𝑑 / 𝑦⦌𝐷) = (⦋(2nd
‘𝑞) / 𝑦⦌𝐷 ∩ ⦋𝑑 / 𝑦⦌𝐷)) | 
| 33 | 32 | eqeq1d 2739 | . . . . . . . . . . . 12
⊢ (𝑏 = (2nd ‘𝑞) → ((⦋𝑏 / 𝑦⦌𝐷 ∩ ⦋𝑑 / 𝑦⦌𝐷) = ∅ ↔
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋𝑑 / 𝑦⦌𝐷) = ∅)) | 
| 34 | 30, 33 | orbi12d 919 | . . . . . . . . . . 11
⊢ (𝑏 = (2nd ‘𝑞) → ((𝑏 = 𝑑 ∨ (⦋𝑏 / 𝑦⦌𝐷 ∩ ⦋𝑑 / 𝑦⦌𝐷) = ∅) ↔ ((2nd
‘𝑞) = 𝑑 ∨
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋𝑑 / 𝑦⦌𝐷) = ∅))) | 
| 35 |  | eqeq2 2749 | . . . . . . . . . . . 12
⊢ (𝑑 = (2nd ‘𝑟) → ((2nd
‘𝑞) = 𝑑 ↔ (2nd
‘𝑞) = (2nd
‘𝑟))) | 
| 36 |  | csbeq1 3902 | . . . . . . . . . . . . . 14
⊢ (𝑑 = (2nd ‘𝑟) → ⦋𝑑 / 𝑦⦌𝐷 = ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) | 
| 37 | 36 | ineq2d 4220 | . . . . . . . . . . . . 13
⊢ (𝑑 = (2nd ‘𝑟) →
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋𝑑 / 𝑦⦌𝐷) = (⦋(2nd
‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷)) | 
| 38 | 37 | eqeq1d 2739 | . . . . . . . . . . . 12
⊢ (𝑑 = (2nd ‘𝑟) →
((⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋𝑑 / 𝑦⦌𝐷) = ∅ ↔
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅)) | 
| 39 | 35, 38 | orbi12d 919 | . . . . . . . . . . 11
⊢ (𝑑 = (2nd ‘𝑟) → (((2nd
‘𝑞) = 𝑑 ∨
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋𝑑 / 𝑦⦌𝐷) = ∅) ↔ ((2nd
‘𝑞) = (2nd
‘𝑟) ∨
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅))) | 
| 40 | 34, 39 | rspc2v 3633 | . . . . . . . . . 10
⊢
(((2nd ‘𝑞) ∈ 𝐵 ∧ (2nd ‘𝑟) ∈ 𝐵) → (∀𝑏 ∈ 𝐵 ∀𝑑 ∈ 𝐵 (𝑏 = 𝑑 ∨ (⦋𝑏 / 𝑦⦌𝐷 ∩ ⦋𝑑 / 𝑦⦌𝐷) = ∅) → ((2nd
‘𝑞) = (2nd
‘𝑟) ∨
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅))) | 
| 41 | 29, 40 | syl5 34 | . . . . . . . . 9
⊢
(((2nd ‘𝑞) ∈ 𝐵 ∧ (2nd ‘𝑟) ∈ 𝐵) → (𝜑 → ((2nd ‘𝑞) = (2nd ‘𝑟) ∨
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅))) | 
| 42 | 41 | imp 406 | . . . . . . . 8
⊢
((((2nd ‘𝑞) ∈ 𝐵 ∧ (2nd ‘𝑟) ∈ 𝐵) ∧ 𝜑) → ((2nd ‘𝑞) = (2nd ‘𝑟) ∨
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅)) | 
| 43 | 24, 26, 5, 42 | syl21anc 838 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → ((2nd ‘𝑞) = (2nd ‘𝑟) ∨
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅)) | 
| 44 | 22, 43 | jca 511 | . . . . . 6
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → (((1st ‘𝑞) = (1st ‘𝑟) ∨
(⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅) ∧ ((2nd
‘𝑞) = (2nd
‘𝑟) ∨
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅))) | 
| 45 |  | anddi 1013 | . . . . . 6
⊢
((((1st ‘𝑞) = (1st ‘𝑟) ∨ (⦋(1st
‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅) ∧ ((2nd
‘𝑞) = (2nd
‘𝑟) ∨
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅)) ↔ ((((1st
‘𝑞) = (1st
‘𝑟) ∧
(2nd ‘𝑞) =
(2nd ‘𝑟))
∨ ((1st ‘𝑞) = (1st ‘𝑟) ∧ (⦋(2nd
‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅)) ∨
(((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧ (2nd
‘𝑞) = (2nd
‘𝑟)) ∨
((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅)))) | 
| 46 | 44, 45 | sylib 218 | . . . . 5
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → ((((1st ‘𝑞) = (1st ‘𝑟) ∧ (2nd
‘𝑞) = (2nd
‘𝑟)) ∨
((1st ‘𝑞)
= (1st ‘𝑟)
∧ (⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅)) ∨
(((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧ (2nd
‘𝑞) = (2nd
‘𝑟)) ∨
((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅)))) | 
| 47 |  | orass 922 | . . . . 5
⊢
(((((1st ‘𝑞) = (1st ‘𝑟) ∧ (2nd ‘𝑞) = (2nd ‘𝑟)) ∨ ((1st
‘𝑞) = (1st
‘𝑟) ∧
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅)) ∨
(((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧ (2nd
‘𝑞) = (2nd
‘𝑟)) ∨
((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅))) ↔ (((1st
‘𝑞) = (1st
‘𝑟) ∧
(2nd ‘𝑞) =
(2nd ‘𝑟))
∨ (((1st ‘𝑞) = (1st ‘𝑟) ∧ (⦋(2nd
‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅) ∨
(((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧ (2nd
‘𝑞) = (2nd
‘𝑟)) ∨
((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅))))) | 
| 48 | 46, 47 | sylib 218 | . . . 4
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → (((1st ‘𝑞) = (1st ‘𝑟) ∧ (2nd
‘𝑞) = (2nd
‘𝑟)) ∨
(((1st ‘𝑞)
= (1st ‘𝑟)
∧ (⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅) ∨
(((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧ (2nd
‘𝑞) = (2nd
‘𝑟)) ∨
((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅))))) | 
| 49 |  | xpopth 8055 | . . . . . . 7
⊢ ((𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵)) → (((1st ‘𝑞) = (1st ‘𝑟) ∧ (2nd
‘𝑞) = (2nd
‘𝑟)) ↔ 𝑞 = 𝑟)) | 
| 50 | 49 | adantl 481 | . . . . . 6
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → (((1st ‘𝑞) = (1st ‘𝑟) ∧ (2nd
‘𝑞) = (2nd
‘𝑟)) ↔ 𝑞 = 𝑟)) | 
| 51 | 50 | biimpd 229 | . . . . 5
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → (((1st ‘𝑞) = (1st ‘𝑟) ∧ (2nd
‘𝑞) = (2nd
‘𝑟)) → 𝑞 = 𝑟)) | 
| 52 |  | inss2 4238 | . . . . . . . . . 10
⊢
((⦋𝑞 /
𝑝⦌𝐸 ∩ ⦋𝑟 / 𝑝⦌𝐸) ∩ (⦋𝑞 / 𝑝⦌𝐹 ∩ ⦋𝑟 / 𝑝⦌𝐹)) ⊆ (⦋𝑞 / 𝑝⦌𝐹 ∩ ⦋𝑟 / 𝑝⦌𝐹) | 
| 53 |  | csbin 4442 | . . . . . . . . . . . 12
⊢
⦋𝑞 /
𝑝⦌(𝐸 ∩ 𝐹) = (⦋𝑞 / 𝑝⦌𝐸 ∩ ⦋𝑞 / 𝑝⦌𝐹) | 
| 54 |  | csbin 4442 | . . . . . . . . . . . 12
⊢
⦋𝑟 /
𝑝⦌(𝐸 ∩ 𝐹) = (⦋𝑟 / 𝑝⦌𝐸 ∩ ⦋𝑟 / 𝑝⦌𝐹) | 
| 55 | 53, 54 | ineq12i 4218 | . . . . . . . . . . 11
⊢
(⦋𝑞 /
𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ((⦋𝑞 / 𝑝⦌𝐸 ∩ ⦋𝑞 / 𝑝⦌𝐹) ∩ (⦋𝑟 / 𝑝⦌𝐸 ∩ ⦋𝑟 / 𝑝⦌𝐹)) | 
| 56 |  | in4 4234 | . . . . . . . . . . 11
⊢
((⦋𝑞 /
𝑝⦌𝐸 ∩ ⦋𝑞 / 𝑝⦌𝐹) ∩ (⦋𝑟 / 𝑝⦌𝐸 ∩ ⦋𝑟 / 𝑝⦌𝐹)) = ((⦋𝑞 / 𝑝⦌𝐸 ∩ ⦋𝑟 / 𝑝⦌𝐸) ∩ (⦋𝑞 / 𝑝⦌𝐹 ∩ ⦋𝑟 / 𝑝⦌𝐹)) | 
| 57 | 55, 56 | eqtri 2765 | . . . . . . . . . 10
⊢
(⦋𝑞 /
𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ((⦋𝑞 / 𝑝⦌𝐸 ∩ ⦋𝑟 / 𝑝⦌𝐸) ∩ (⦋𝑞 / 𝑝⦌𝐹 ∩ ⦋𝑟 / 𝑝⦌𝐹)) | 
| 58 |  | vex 3484 | . . . . . . . . . . . . 13
⊢ 𝑞 ∈ V | 
| 59 |  | csbnestgw 4424 | . . . . . . . . . . . . 13
⊢ (𝑞 ∈ V →
⦋𝑞 / 𝑝⦌⦋(2nd
‘𝑝) / 𝑦⦌𝐷 = ⦋⦋𝑞 / 𝑝⦌(2nd ‘𝑝) / 𝑦⦌𝐷) | 
| 60 | 58, 59 | ax-mp 5 | . . . . . . . . . . . 12
⊢
⦋𝑞 /
𝑝⦌⦋(2nd
‘𝑝) / 𝑦⦌𝐷 = ⦋⦋𝑞 / 𝑝⦌(2nd ‘𝑝) / 𝑦⦌𝐷 | 
| 61 |  | fvex 6919 | . . . . . . . . . . . . . 14
⊢
(2nd ‘𝑝) ∈ V | 
| 62 |  | disjxpin.2 | . . . . . . . . . . . . . 14
⊢ (𝑦 = (2nd ‘𝑝) → 𝐷 = 𝐹) | 
| 63 | 61, 62 | csbie 3934 | . . . . . . . . . . . . 13
⊢
⦋(2nd ‘𝑝) / 𝑦⦌𝐷 = 𝐹 | 
| 64 | 63 | csbeq2i 3907 | . . . . . . . . . . . 12
⊢
⦋𝑞 /
𝑝⦌⦋(2nd
‘𝑝) / 𝑦⦌𝐷 = ⦋𝑞 / 𝑝⦌𝐹 | 
| 65 |  | csbfv 6956 | . . . . . . . . . . . . 13
⊢
⦋𝑞 /
𝑝⦌(2nd ‘𝑝) = (2nd ‘𝑞) | 
| 66 |  | csbeq1 3902 | . . . . . . . . . . . . 13
⊢
(⦋𝑞 /
𝑝⦌(2nd ‘𝑝) = (2nd ‘𝑞) →
⦋⦋𝑞 / 𝑝⦌(2nd ‘𝑝) / 𝑦⦌𝐷 = ⦋(2nd
‘𝑞) / 𝑦⦌𝐷) | 
| 67 | 65, 66 | ax-mp 5 | . . . . . . . . . . . 12
⊢
⦋⦋𝑞 / 𝑝⦌(2nd ‘𝑝) / 𝑦⦌𝐷 = ⦋(2nd
‘𝑞) / 𝑦⦌𝐷 | 
| 68 | 60, 64, 67 | 3eqtr3ri 2774 | . . . . . . . . . . 11
⊢
⦋(2nd ‘𝑞) / 𝑦⦌𝐷 = ⦋𝑞 / 𝑝⦌𝐹 | 
| 69 |  | vex 3484 | . . . . . . . . . . . . 13
⊢ 𝑟 ∈ V | 
| 70 |  | csbnestgw 4424 | . . . . . . . . . . . . 13
⊢ (𝑟 ∈ V →
⦋𝑟 / 𝑝⦌⦋(2nd
‘𝑝) / 𝑦⦌𝐷 = ⦋⦋𝑟 / 𝑝⦌(2nd ‘𝑝) / 𝑦⦌𝐷) | 
| 71 | 69, 70 | ax-mp 5 | . . . . . . . . . . . 12
⊢
⦋𝑟 /
𝑝⦌⦋(2nd
‘𝑝) / 𝑦⦌𝐷 = ⦋⦋𝑟 / 𝑝⦌(2nd ‘𝑝) / 𝑦⦌𝐷 | 
| 72 | 63 | csbeq2i 3907 | . . . . . . . . . . . 12
⊢
⦋𝑟 /
𝑝⦌⦋(2nd
‘𝑝) / 𝑦⦌𝐷 = ⦋𝑟 / 𝑝⦌𝐹 | 
| 73 |  | csbfv 6956 | . . . . . . . . . . . . 13
⊢
⦋𝑟 /
𝑝⦌(2nd ‘𝑝) = (2nd ‘𝑟) | 
| 74 |  | csbeq1 3902 | . . . . . . . . . . . . 13
⊢
(⦋𝑟 /
𝑝⦌(2nd ‘𝑝) = (2nd ‘𝑟) →
⦋⦋𝑟 / 𝑝⦌(2nd ‘𝑝) / 𝑦⦌𝐷 = ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) | 
| 75 | 73, 74 | ax-mp 5 | . . . . . . . . . . . 12
⊢
⦋⦋𝑟 / 𝑝⦌(2nd ‘𝑝) / 𝑦⦌𝐷 = ⦋(2nd
‘𝑟) / 𝑦⦌𝐷 | 
| 76 | 71, 72, 75 | 3eqtr3ri 2774 | . . . . . . . . . . 11
⊢
⦋(2nd ‘𝑟) / 𝑦⦌𝐷 = ⦋𝑟 / 𝑝⦌𝐹 | 
| 77 | 68, 76 | ineq12i 4218 | . . . . . . . . . 10
⊢
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = (⦋𝑞 / 𝑝⦌𝐹 ∩ ⦋𝑟 / 𝑝⦌𝐹) | 
| 78 | 52, 57, 77 | 3sstr4i 4035 | . . . . . . . . 9
⊢
(⦋𝑞 /
𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) ⊆ (⦋(2nd
‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) | 
| 79 |  | sseq0 4403 | . . . . . . . . 9
⊢
(((⦋𝑞
/ 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) ⊆ (⦋(2nd
‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) ∧ (⦋(2nd
‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅) → (⦋𝑞 / 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ∅) | 
| 80 | 78, 79 | mpan 690 | . . . . . . . 8
⊢
((⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅ → (⦋𝑞 / 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ∅) | 
| 81 | 80 | a1i 11 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → ((⦋(2nd
‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅ → (⦋𝑞 / 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ∅)) | 
| 82 | 81 | adantld 490 | . . . . . 6
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → (((1st ‘𝑞) = (1st ‘𝑟) ∧
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅) → (⦋𝑞 / 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ∅)) | 
| 83 |  | inss1 4237 | . . . . . . . . . . 11
⊢
((⦋𝑞 /
𝑝⦌𝐸 ∩ ⦋𝑟 / 𝑝⦌𝐸) ∩ (⦋𝑞 / 𝑝⦌𝐹 ∩ ⦋𝑟 / 𝑝⦌𝐹)) ⊆ (⦋𝑞 / 𝑝⦌𝐸 ∩ ⦋𝑟 / 𝑝⦌𝐸) | 
| 84 |  | csbnestgw 4424 | . . . . . . . . . . . . . 14
⊢ (𝑞 ∈ V →
⦋𝑞 / 𝑝⦌⦋(1st
‘𝑝) / 𝑥⦌𝐶 = ⦋⦋𝑞 / 𝑝⦌(1st ‘𝑝) / 𝑥⦌𝐶) | 
| 85 | 58, 84 | ax-mp 5 | . . . . . . . . . . . . 13
⊢
⦋𝑞 /
𝑝⦌⦋(1st
‘𝑝) / 𝑥⦌𝐶 = ⦋⦋𝑞 / 𝑝⦌(1st ‘𝑝) / 𝑥⦌𝐶 | 
| 86 |  | fvex 6919 | . . . . . . . . . . . . . . 15
⊢
(1st ‘𝑝) ∈ V | 
| 87 |  | disjxpin.1 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = (1st ‘𝑝) → 𝐶 = 𝐸) | 
| 88 | 86, 87 | csbie 3934 | . . . . . . . . . . . . . 14
⊢
⦋(1st ‘𝑝) / 𝑥⦌𝐶 = 𝐸 | 
| 89 | 88 | csbeq2i 3907 | . . . . . . . . . . . . 13
⊢
⦋𝑞 /
𝑝⦌⦋(1st
‘𝑝) / 𝑥⦌𝐶 = ⦋𝑞 / 𝑝⦌𝐸 | 
| 90 |  | csbfv 6956 | . . . . . . . . . . . . . 14
⊢
⦋𝑞 /
𝑝⦌(1st ‘𝑝) = (1st ‘𝑞) | 
| 91 |  | csbeq1 3902 | . . . . . . . . . . . . . 14
⊢
(⦋𝑞 /
𝑝⦌(1st ‘𝑝) = (1st ‘𝑞) →
⦋⦋𝑞 / 𝑝⦌(1st ‘𝑝) / 𝑥⦌𝐶 = ⦋(1st
‘𝑞) / 𝑥⦌𝐶) | 
| 92 | 90, 91 | ax-mp 5 | . . . . . . . . . . . . 13
⊢
⦋⦋𝑞 / 𝑝⦌(1st ‘𝑝) / 𝑥⦌𝐶 = ⦋(1st
‘𝑞) / 𝑥⦌𝐶 | 
| 93 | 85, 89, 92 | 3eqtr3ri 2774 | . . . . . . . . . . . 12
⊢
⦋(1st ‘𝑞) / 𝑥⦌𝐶 = ⦋𝑞 / 𝑝⦌𝐸 | 
| 94 |  | csbnestgw 4424 | . . . . . . . . . . . . . 14
⊢ (𝑟 ∈ V →
⦋𝑟 / 𝑝⦌⦋(1st
‘𝑝) / 𝑥⦌𝐶 = ⦋⦋𝑟 / 𝑝⦌(1st ‘𝑝) / 𝑥⦌𝐶) | 
| 95 | 69, 94 | ax-mp 5 | . . . . . . . . . . . . 13
⊢
⦋𝑟 /
𝑝⦌⦋(1st
‘𝑝) / 𝑥⦌𝐶 = ⦋⦋𝑟 / 𝑝⦌(1st ‘𝑝) / 𝑥⦌𝐶 | 
| 96 | 88 | csbeq2i 3907 | . . . . . . . . . . . . 13
⊢
⦋𝑟 /
𝑝⦌⦋(1st
‘𝑝) / 𝑥⦌𝐶 = ⦋𝑟 / 𝑝⦌𝐸 | 
| 97 |  | csbfv 6956 | . . . . . . . . . . . . . 14
⊢
⦋𝑟 /
𝑝⦌(1st ‘𝑝) = (1st ‘𝑟) | 
| 98 |  | csbeq1 3902 | . . . . . . . . . . . . . 14
⊢
(⦋𝑟 /
𝑝⦌(1st ‘𝑝) = (1st ‘𝑟) →
⦋⦋𝑟 / 𝑝⦌(1st ‘𝑝) / 𝑥⦌𝐶 = ⦋(1st
‘𝑟) / 𝑥⦌𝐶) | 
| 99 | 97, 98 | ax-mp 5 | . . . . . . . . . . . . 13
⊢
⦋⦋𝑟 / 𝑝⦌(1st ‘𝑝) / 𝑥⦌𝐶 = ⦋(1st
‘𝑟) / 𝑥⦌𝐶 | 
| 100 | 95, 96, 99 | 3eqtr3ri 2774 | . . . . . . . . . . . 12
⊢
⦋(1st ‘𝑟) / 𝑥⦌𝐶 = ⦋𝑟 / 𝑝⦌𝐸 | 
| 101 | 93, 100 | ineq12i 4218 | . . . . . . . . . . 11
⊢
(⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = (⦋𝑞 / 𝑝⦌𝐸 ∩ ⦋𝑟 / 𝑝⦌𝐸) | 
| 102 | 83, 57, 101 | 3sstr4i 4035 | . . . . . . . . . 10
⊢
(⦋𝑞 /
𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) ⊆ (⦋(1st
‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) | 
| 103 |  | sseq0 4403 | . . . . . . . . . 10
⊢
(((⦋𝑞
/ 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) ⊆ (⦋(1st
‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) ∧ (⦋(1st
‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅) → (⦋𝑞 / 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ∅) | 
| 104 | 102, 103 | mpan 690 | . . . . . . . . 9
⊢
((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ → (⦋𝑞 / 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ∅) | 
| 105 | 104 | a1i 11 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → ((⦋(1st
‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ → (⦋𝑞 / 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ∅)) | 
| 106 | 105 | adantrd 491 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → (((⦋(1st
‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧ (2nd
‘𝑞) = (2nd
‘𝑟)) →
(⦋𝑞 / 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ∅)) | 
| 107 | 81 | adantld 490 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → (((⦋(1st
‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅) → (⦋𝑞 / 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ∅)) | 
| 108 | 106, 107 | jaod 860 | . . . . . 6
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) →
((((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧ (2nd
‘𝑞) = (2nd
‘𝑟)) ∨
((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅)) → (⦋𝑞 / 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ∅)) | 
| 109 | 82, 108 | jaod 860 | . . . . 5
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → ((((1st ‘𝑞) = (1st ‘𝑟) ∧
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅) ∨
(((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧ (2nd
‘𝑞) = (2nd
‘𝑟)) ∨
((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅))) → (⦋𝑞 / 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ∅)) | 
| 110 | 51, 109 | orim12d 967 | . . . 4
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → ((((1st ‘𝑞) = (1st ‘𝑟) ∧ (2nd
‘𝑞) = (2nd
‘𝑟)) ∨
(((1st ‘𝑞)
= (1st ‘𝑟)
∧ (⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅) ∨
(((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧ (2nd
‘𝑞) = (2nd
‘𝑟)) ∨
((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅)))) → (𝑞 = 𝑟 ∨ (⦋𝑞 / 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ∅))) | 
| 111 | 48, 110 | mpd 15 | . . 3
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → (𝑞 = 𝑟 ∨ (⦋𝑞 / 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ∅)) | 
| 112 | 111 | ralrimivva 3202 | . 2
⊢ (𝜑 → ∀𝑞 ∈ (𝐴 × 𝐵)∀𝑟 ∈ (𝐴 × 𝐵)(𝑞 = 𝑟 ∨ (⦋𝑞 / 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ∅)) | 
| 113 |  | disjors 5126 | . 2
⊢
(Disj 𝑝
∈ (𝐴 × 𝐵)(𝐸 ∩ 𝐹) ↔ ∀𝑞 ∈ (𝐴 × 𝐵)∀𝑟 ∈ (𝐴 × 𝐵)(𝑞 = 𝑟 ∨ (⦋𝑞 / 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ∅)) | 
| 114 | 112, 113 | sylibr 234 | 1
⊢ (𝜑 → Disj 𝑝 ∈ (𝐴 × 𝐵)(𝐸 ∩ 𝐹)) |