Step | Hyp | Ref
| Expression |
1 | | xp1st 7731 |
. . . . . . . . 9
⊢ (𝑞 ∈ (𝐴 × 𝐵) → (1st ‘𝑞) ∈ 𝐴) |
2 | 1 | ad2antrl 727 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → (1st ‘𝑞) ∈ 𝐴) |
3 | | xp1st 7731 |
. . . . . . . . 9
⊢ (𝑟 ∈ (𝐴 × 𝐵) → (1st ‘𝑟) ∈ 𝐴) |
4 | 3 | ad2antll 728 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → (1st ‘𝑟) ∈ 𝐴) |
5 | | simpl 486 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → 𝜑) |
6 | | disjxpin.3 |
. . . . . . . . . . 11
⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐶) |
7 | | disjors 5017 |
. . . . . . . . . . 11
⊢
(Disj 𝑥
∈ 𝐴 𝐶 ↔ ∀𝑎 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (𝑎 = 𝑐 ∨ (⦋𝑎 / 𝑥⦌𝐶 ∩ ⦋𝑐 / 𝑥⦌𝐶) = ∅)) |
8 | 6, 7 | sylib 221 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (𝑎 = 𝑐 ∨ (⦋𝑎 / 𝑥⦌𝐶 ∩ ⦋𝑐 / 𝑥⦌𝐶) = ∅)) |
9 | | eqeq1 2762 |
. . . . . . . . . . . 12
⊢ (𝑎 = (1st ‘𝑞) → (𝑎 = 𝑐 ↔ (1st ‘𝑞) = 𝑐)) |
10 | | csbeq1 3810 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (1st ‘𝑞) → ⦋𝑎 / 𝑥⦌𝐶 = ⦋(1st
‘𝑞) / 𝑥⦌𝐶) |
11 | 10 | ineq1d 4118 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (1st ‘𝑞) → (⦋𝑎 / 𝑥⦌𝐶 ∩ ⦋𝑐 / 𝑥⦌𝐶) = (⦋(1st
‘𝑞) / 𝑥⦌𝐶 ∩ ⦋𝑐 / 𝑥⦌𝐶)) |
12 | 11 | eqeq1d 2760 |
. . . . . . . . . . . 12
⊢ (𝑎 = (1st ‘𝑞) → ((⦋𝑎 / 𝑥⦌𝐶 ∩ ⦋𝑐 / 𝑥⦌𝐶) = ∅ ↔
(⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋𝑐 / 𝑥⦌𝐶) = ∅)) |
13 | 9, 12 | orbi12d 916 |
. . . . . . . . . . 11
⊢ (𝑎 = (1st ‘𝑞) → ((𝑎 = 𝑐 ∨ (⦋𝑎 / 𝑥⦌𝐶 ∩ ⦋𝑐 / 𝑥⦌𝐶) = ∅) ↔ ((1st
‘𝑞) = 𝑐 ∨
(⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋𝑐 / 𝑥⦌𝐶) = ∅))) |
14 | | eqeq2 2770 |
. . . . . . . . . . . 12
⊢ (𝑐 = (1st ‘𝑟) → ((1st
‘𝑞) = 𝑐 ↔ (1st
‘𝑞) = (1st
‘𝑟))) |
15 | | csbeq1 3810 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = (1st ‘𝑟) → ⦋𝑐 / 𝑥⦌𝐶 = ⦋(1st
‘𝑟) / 𝑥⦌𝐶) |
16 | 15 | ineq2d 4119 |
. . . . . . . . . . . . 13
⊢ (𝑐 = (1st ‘𝑟) →
(⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋𝑐 / 𝑥⦌𝐶) = (⦋(1st
‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶)) |
17 | 16 | eqeq1d 2760 |
. . . . . . . . . . . 12
⊢ (𝑐 = (1st ‘𝑟) →
((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋𝑐 / 𝑥⦌𝐶) = ∅ ↔
(⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅)) |
18 | 14, 17 | orbi12d 916 |
. . . . . . . . . . 11
⊢ (𝑐 = (1st ‘𝑟) → (((1st
‘𝑞) = 𝑐 ∨
(⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋𝑐 / 𝑥⦌𝐶) = ∅) ↔ ((1st
‘𝑞) = (1st
‘𝑟) ∨
(⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅))) |
19 | 13, 18 | rspc2v 3553 |
. . . . . . . . . 10
⊢
(((1st ‘𝑞) ∈ 𝐴 ∧ (1st ‘𝑟) ∈ 𝐴) → (∀𝑎 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (𝑎 = 𝑐 ∨ (⦋𝑎 / 𝑥⦌𝐶 ∩ ⦋𝑐 / 𝑥⦌𝐶) = ∅) → ((1st
‘𝑞) = (1st
‘𝑟) ∨
(⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅))) |
20 | 8, 19 | syl5 34 |
. . . . . . . . 9
⊢
(((1st ‘𝑞) ∈ 𝐴 ∧ (1st ‘𝑟) ∈ 𝐴) → (𝜑 → ((1st ‘𝑞) = (1st ‘𝑟) ∨
(⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅))) |
21 | 20 | imp 410 |
. . . . . . . 8
⊢
((((1st ‘𝑞) ∈ 𝐴 ∧ (1st ‘𝑟) ∈ 𝐴) ∧ 𝜑) → ((1st ‘𝑞) = (1st ‘𝑟) ∨
(⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅)) |
22 | 2, 4, 5, 21 | syl21anc 836 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → ((1st ‘𝑞) = (1st ‘𝑟) ∨
(⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅)) |
23 | | xp2nd 7732 |
. . . . . . . . 9
⊢ (𝑞 ∈ (𝐴 × 𝐵) → (2nd ‘𝑞) ∈ 𝐵) |
24 | 23 | ad2antrl 727 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → (2nd ‘𝑞) ∈ 𝐵) |
25 | | xp2nd 7732 |
. . . . . . . . 9
⊢ (𝑟 ∈ (𝐴 × 𝐵) → (2nd ‘𝑟) ∈ 𝐵) |
26 | 25 | ad2antll 728 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → (2nd ‘𝑟) ∈ 𝐵) |
27 | | disjxpin.4 |
. . . . . . . . . . 11
⊢ (𝜑 → Disj 𝑦 ∈ 𝐵 𝐷) |
28 | | disjors 5017 |
. . . . . . . . . . 11
⊢
(Disj 𝑦
∈ 𝐵 𝐷 ↔ ∀𝑏 ∈ 𝐵 ∀𝑑 ∈ 𝐵 (𝑏 = 𝑑 ∨ (⦋𝑏 / 𝑦⦌𝐷 ∩ ⦋𝑑 / 𝑦⦌𝐷) = ∅)) |
29 | 27, 28 | sylib 221 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑏 ∈ 𝐵 ∀𝑑 ∈ 𝐵 (𝑏 = 𝑑 ∨ (⦋𝑏 / 𝑦⦌𝐷 ∩ ⦋𝑑 / 𝑦⦌𝐷) = ∅)) |
30 | | eqeq1 2762 |
. . . . . . . . . . . 12
⊢ (𝑏 = (2nd ‘𝑞) → (𝑏 = 𝑑 ↔ (2nd ‘𝑞) = 𝑑)) |
31 | | csbeq1 3810 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = (2nd ‘𝑞) → ⦋𝑏 / 𝑦⦌𝐷 = ⦋(2nd
‘𝑞) / 𝑦⦌𝐷) |
32 | 31 | ineq1d 4118 |
. . . . . . . . . . . . 13
⊢ (𝑏 = (2nd ‘𝑞) → (⦋𝑏 / 𝑦⦌𝐷 ∩ ⦋𝑑 / 𝑦⦌𝐷) = (⦋(2nd
‘𝑞) / 𝑦⦌𝐷 ∩ ⦋𝑑 / 𝑦⦌𝐷)) |
33 | 32 | eqeq1d 2760 |
. . . . . . . . . . . 12
⊢ (𝑏 = (2nd ‘𝑞) → ((⦋𝑏 / 𝑦⦌𝐷 ∩ ⦋𝑑 / 𝑦⦌𝐷) = ∅ ↔
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋𝑑 / 𝑦⦌𝐷) = ∅)) |
34 | 30, 33 | orbi12d 916 |
. . . . . . . . . . 11
⊢ (𝑏 = (2nd ‘𝑞) → ((𝑏 = 𝑑 ∨ (⦋𝑏 / 𝑦⦌𝐷 ∩ ⦋𝑑 / 𝑦⦌𝐷) = ∅) ↔ ((2nd
‘𝑞) = 𝑑 ∨
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋𝑑 / 𝑦⦌𝐷) = ∅))) |
35 | | eqeq2 2770 |
. . . . . . . . . . . 12
⊢ (𝑑 = (2nd ‘𝑟) → ((2nd
‘𝑞) = 𝑑 ↔ (2nd
‘𝑞) = (2nd
‘𝑟))) |
36 | | csbeq1 3810 |
. . . . . . . . . . . . . 14
⊢ (𝑑 = (2nd ‘𝑟) → ⦋𝑑 / 𝑦⦌𝐷 = ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) |
37 | 36 | ineq2d 4119 |
. . . . . . . . . . . . 13
⊢ (𝑑 = (2nd ‘𝑟) →
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋𝑑 / 𝑦⦌𝐷) = (⦋(2nd
‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷)) |
38 | 37 | eqeq1d 2760 |
. . . . . . . . . . . 12
⊢ (𝑑 = (2nd ‘𝑟) →
((⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋𝑑 / 𝑦⦌𝐷) = ∅ ↔
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅)) |
39 | 35, 38 | orbi12d 916 |
. . . . . . . . . . 11
⊢ (𝑑 = (2nd ‘𝑟) → (((2nd
‘𝑞) = 𝑑 ∨
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋𝑑 / 𝑦⦌𝐷) = ∅) ↔ ((2nd
‘𝑞) = (2nd
‘𝑟) ∨
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅))) |
40 | 34, 39 | rspc2v 3553 |
. . . . . . . . . 10
⊢
(((2nd ‘𝑞) ∈ 𝐵 ∧ (2nd ‘𝑟) ∈ 𝐵) → (∀𝑏 ∈ 𝐵 ∀𝑑 ∈ 𝐵 (𝑏 = 𝑑 ∨ (⦋𝑏 / 𝑦⦌𝐷 ∩ ⦋𝑑 / 𝑦⦌𝐷) = ∅) → ((2nd
‘𝑞) = (2nd
‘𝑟) ∨
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅))) |
41 | 29, 40 | syl5 34 |
. . . . . . . . 9
⊢
(((2nd ‘𝑞) ∈ 𝐵 ∧ (2nd ‘𝑟) ∈ 𝐵) → (𝜑 → ((2nd ‘𝑞) = (2nd ‘𝑟) ∨
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅))) |
42 | 41 | imp 410 |
. . . . . . . 8
⊢
((((2nd ‘𝑞) ∈ 𝐵 ∧ (2nd ‘𝑟) ∈ 𝐵) ∧ 𝜑) → ((2nd ‘𝑞) = (2nd ‘𝑟) ∨
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅)) |
43 | 24, 26, 5, 42 | syl21anc 836 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → ((2nd ‘𝑞) = (2nd ‘𝑟) ∨
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅)) |
44 | 22, 43 | jca 515 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → (((1st ‘𝑞) = (1st ‘𝑟) ∨
(⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅) ∧ ((2nd
‘𝑞) = (2nd
‘𝑟) ∨
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅))) |
45 | | anddi 1008 |
. . . . . 6
⊢
((((1st ‘𝑞) = (1st ‘𝑟) ∨ (⦋(1st
‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅) ∧ ((2nd
‘𝑞) = (2nd
‘𝑟) ∨
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅)) ↔ ((((1st
‘𝑞) = (1st
‘𝑟) ∧
(2nd ‘𝑞) =
(2nd ‘𝑟))
∨ ((1st ‘𝑞) = (1st ‘𝑟) ∧ (⦋(2nd
‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅)) ∨
(((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧ (2nd
‘𝑞) = (2nd
‘𝑟)) ∨
((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅)))) |
46 | 44, 45 | sylib 221 |
. . . . 5
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → ((((1st ‘𝑞) = (1st ‘𝑟) ∧ (2nd
‘𝑞) = (2nd
‘𝑟)) ∨
((1st ‘𝑞)
= (1st ‘𝑟)
∧ (⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅)) ∨
(((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧ (2nd
‘𝑞) = (2nd
‘𝑟)) ∨
((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅)))) |
47 | | orass 919 |
. . . . 5
⊢
(((((1st ‘𝑞) = (1st ‘𝑟) ∧ (2nd ‘𝑞) = (2nd ‘𝑟)) ∨ ((1st
‘𝑞) = (1st
‘𝑟) ∧
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅)) ∨
(((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧ (2nd
‘𝑞) = (2nd
‘𝑟)) ∨
((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅))) ↔ (((1st
‘𝑞) = (1st
‘𝑟) ∧
(2nd ‘𝑞) =
(2nd ‘𝑟))
∨ (((1st ‘𝑞) = (1st ‘𝑟) ∧ (⦋(2nd
‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅) ∨
(((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧ (2nd
‘𝑞) = (2nd
‘𝑟)) ∨
((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅))))) |
48 | 46, 47 | sylib 221 |
. . . 4
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → (((1st ‘𝑞) = (1st ‘𝑟) ∧ (2nd
‘𝑞) = (2nd
‘𝑟)) ∨
(((1st ‘𝑞)
= (1st ‘𝑟)
∧ (⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅) ∨
(((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧ (2nd
‘𝑞) = (2nd
‘𝑟)) ∨
((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅))))) |
49 | | xpopth 7740 |
. . . . . . 7
⊢ ((𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵)) → (((1st ‘𝑞) = (1st ‘𝑟) ∧ (2nd
‘𝑞) = (2nd
‘𝑟)) ↔ 𝑞 = 𝑟)) |
50 | 49 | adantl 485 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → (((1st ‘𝑞) = (1st ‘𝑟) ∧ (2nd
‘𝑞) = (2nd
‘𝑟)) ↔ 𝑞 = 𝑟)) |
51 | 50 | biimpd 232 |
. . . . 5
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → (((1st ‘𝑞) = (1st ‘𝑟) ∧ (2nd
‘𝑞) = (2nd
‘𝑟)) → 𝑞 = 𝑟)) |
52 | | inss2 4136 |
. . . . . . . . . 10
⊢
((⦋𝑞 /
𝑝⦌𝐸 ∩ ⦋𝑟 / 𝑝⦌𝐸) ∩ (⦋𝑞 / 𝑝⦌𝐹 ∩ ⦋𝑟 / 𝑝⦌𝐹)) ⊆ (⦋𝑞 / 𝑝⦌𝐹 ∩ ⦋𝑟 / 𝑝⦌𝐹) |
53 | | csbin 4339 |
. . . . . . . . . . . 12
⊢
⦋𝑞 /
𝑝⦌(𝐸 ∩ 𝐹) = (⦋𝑞 / 𝑝⦌𝐸 ∩ ⦋𝑞 / 𝑝⦌𝐹) |
54 | | csbin 4339 |
. . . . . . . . . . . 12
⊢
⦋𝑟 /
𝑝⦌(𝐸 ∩ 𝐹) = (⦋𝑟 / 𝑝⦌𝐸 ∩ ⦋𝑟 / 𝑝⦌𝐹) |
55 | 53, 54 | ineq12i 4117 |
. . . . . . . . . . 11
⊢
(⦋𝑞 /
𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ((⦋𝑞 / 𝑝⦌𝐸 ∩ ⦋𝑞 / 𝑝⦌𝐹) ∩ (⦋𝑟 / 𝑝⦌𝐸 ∩ ⦋𝑟 / 𝑝⦌𝐹)) |
56 | | in4 4132 |
. . . . . . . . . . 11
⊢
((⦋𝑞 /
𝑝⦌𝐸 ∩ ⦋𝑞 / 𝑝⦌𝐹) ∩ (⦋𝑟 / 𝑝⦌𝐸 ∩ ⦋𝑟 / 𝑝⦌𝐹)) = ((⦋𝑞 / 𝑝⦌𝐸 ∩ ⦋𝑟 / 𝑝⦌𝐸) ∩ (⦋𝑞 / 𝑝⦌𝐹 ∩ ⦋𝑟 / 𝑝⦌𝐹)) |
57 | 55, 56 | eqtri 2781 |
. . . . . . . . . 10
⊢
(⦋𝑞 /
𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ((⦋𝑞 / 𝑝⦌𝐸 ∩ ⦋𝑟 / 𝑝⦌𝐸) ∩ (⦋𝑞 / 𝑝⦌𝐹 ∩ ⦋𝑟 / 𝑝⦌𝐹)) |
58 | | vex 3413 |
. . . . . . . . . . . . 13
⊢ 𝑞 ∈ V |
59 | | csbnestgw 4321 |
. . . . . . . . . . . . 13
⊢ (𝑞 ∈ V →
⦋𝑞 / 𝑝⦌⦋(2nd
‘𝑝) / 𝑦⦌𝐷 = ⦋⦋𝑞 / 𝑝⦌(2nd ‘𝑝) / 𝑦⦌𝐷) |
60 | 58, 59 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
⦋𝑞 /
𝑝⦌⦋(2nd
‘𝑝) / 𝑦⦌𝐷 = ⦋⦋𝑞 / 𝑝⦌(2nd ‘𝑝) / 𝑦⦌𝐷 |
61 | | fvex 6676 |
. . . . . . . . . . . . . 14
⊢
(2nd ‘𝑝) ∈ V |
62 | | disjxpin.2 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (2nd ‘𝑝) → 𝐷 = 𝐹) |
63 | 61, 62 | csbie 3842 |
. . . . . . . . . . . . 13
⊢
⦋(2nd ‘𝑝) / 𝑦⦌𝐷 = 𝐹 |
64 | 63 | csbeq2i 3815 |
. . . . . . . . . . . 12
⊢
⦋𝑞 /
𝑝⦌⦋(2nd
‘𝑝) / 𝑦⦌𝐷 = ⦋𝑞 / 𝑝⦌𝐹 |
65 | | csbfv 6708 |
. . . . . . . . . . . . 13
⊢
⦋𝑞 /
𝑝⦌(2nd ‘𝑝) = (2nd ‘𝑞) |
66 | | csbeq1 3810 |
. . . . . . . . . . . . 13
⊢
(⦋𝑞 /
𝑝⦌(2nd ‘𝑝) = (2nd ‘𝑞) →
⦋⦋𝑞 / 𝑝⦌(2nd ‘𝑝) / 𝑦⦌𝐷 = ⦋(2nd
‘𝑞) / 𝑦⦌𝐷) |
67 | 65, 66 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
⦋⦋𝑞 / 𝑝⦌(2nd ‘𝑝) / 𝑦⦌𝐷 = ⦋(2nd
‘𝑞) / 𝑦⦌𝐷 |
68 | 60, 64, 67 | 3eqtr3ri 2790 |
. . . . . . . . . . 11
⊢
⦋(2nd ‘𝑞) / 𝑦⦌𝐷 = ⦋𝑞 / 𝑝⦌𝐹 |
69 | | vex 3413 |
. . . . . . . . . . . . 13
⊢ 𝑟 ∈ V |
70 | | csbnestgw 4321 |
. . . . . . . . . . . . 13
⊢ (𝑟 ∈ V →
⦋𝑟 / 𝑝⦌⦋(2nd
‘𝑝) / 𝑦⦌𝐷 = ⦋⦋𝑟 / 𝑝⦌(2nd ‘𝑝) / 𝑦⦌𝐷) |
71 | 69, 70 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
⦋𝑟 /
𝑝⦌⦋(2nd
‘𝑝) / 𝑦⦌𝐷 = ⦋⦋𝑟 / 𝑝⦌(2nd ‘𝑝) / 𝑦⦌𝐷 |
72 | 63 | csbeq2i 3815 |
. . . . . . . . . . . 12
⊢
⦋𝑟 /
𝑝⦌⦋(2nd
‘𝑝) / 𝑦⦌𝐷 = ⦋𝑟 / 𝑝⦌𝐹 |
73 | | csbfv 6708 |
. . . . . . . . . . . . 13
⊢
⦋𝑟 /
𝑝⦌(2nd ‘𝑝) = (2nd ‘𝑟) |
74 | | csbeq1 3810 |
. . . . . . . . . . . . 13
⊢
(⦋𝑟 /
𝑝⦌(2nd ‘𝑝) = (2nd ‘𝑟) →
⦋⦋𝑟 / 𝑝⦌(2nd ‘𝑝) / 𝑦⦌𝐷 = ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) |
75 | 73, 74 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
⦋⦋𝑟 / 𝑝⦌(2nd ‘𝑝) / 𝑦⦌𝐷 = ⦋(2nd
‘𝑟) / 𝑦⦌𝐷 |
76 | 71, 72, 75 | 3eqtr3ri 2790 |
. . . . . . . . . . 11
⊢
⦋(2nd ‘𝑟) / 𝑦⦌𝐷 = ⦋𝑟 / 𝑝⦌𝐹 |
77 | 68, 76 | ineq12i 4117 |
. . . . . . . . . 10
⊢
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = (⦋𝑞 / 𝑝⦌𝐹 ∩ ⦋𝑟 / 𝑝⦌𝐹) |
78 | 52, 57, 77 | 3sstr4i 3937 |
. . . . . . . . 9
⊢
(⦋𝑞 /
𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) ⊆ (⦋(2nd
‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) |
79 | | sseq0 4298 |
. . . . . . . . 9
⊢
(((⦋𝑞
/ 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) ⊆ (⦋(2nd
‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) ∧ (⦋(2nd
‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅) → (⦋𝑞 / 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ∅) |
80 | 78, 79 | mpan 689 |
. . . . . . . 8
⊢
((⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅ → (⦋𝑞 / 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ∅) |
81 | 80 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → ((⦋(2nd
‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅ → (⦋𝑞 / 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ∅)) |
82 | 81 | adantld 494 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → (((1st ‘𝑞) = (1st ‘𝑟) ∧
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅) → (⦋𝑞 / 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ∅)) |
83 | | inss1 4135 |
. . . . . . . . . . 11
⊢
((⦋𝑞 /
𝑝⦌𝐸 ∩ ⦋𝑟 / 𝑝⦌𝐸) ∩ (⦋𝑞 / 𝑝⦌𝐹 ∩ ⦋𝑟 / 𝑝⦌𝐹)) ⊆ (⦋𝑞 / 𝑝⦌𝐸 ∩ ⦋𝑟 / 𝑝⦌𝐸) |
84 | | csbnestgw 4321 |
. . . . . . . . . . . . . 14
⊢ (𝑞 ∈ V →
⦋𝑞 / 𝑝⦌⦋(1st
‘𝑝) / 𝑥⦌𝐶 = ⦋⦋𝑞 / 𝑝⦌(1st ‘𝑝) / 𝑥⦌𝐶) |
85 | 58, 84 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
⦋𝑞 /
𝑝⦌⦋(1st
‘𝑝) / 𝑥⦌𝐶 = ⦋⦋𝑞 / 𝑝⦌(1st ‘𝑝) / 𝑥⦌𝐶 |
86 | | fvex 6676 |
. . . . . . . . . . . . . . 15
⊢
(1st ‘𝑝) ∈ V |
87 | | disjxpin.1 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (1st ‘𝑝) → 𝐶 = 𝐸) |
88 | 86, 87 | csbie 3842 |
. . . . . . . . . . . . . 14
⊢
⦋(1st ‘𝑝) / 𝑥⦌𝐶 = 𝐸 |
89 | 88 | csbeq2i 3815 |
. . . . . . . . . . . . 13
⊢
⦋𝑞 /
𝑝⦌⦋(1st
‘𝑝) / 𝑥⦌𝐶 = ⦋𝑞 / 𝑝⦌𝐸 |
90 | | csbfv 6708 |
. . . . . . . . . . . . . 14
⊢
⦋𝑞 /
𝑝⦌(1st ‘𝑝) = (1st ‘𝑞) |
91 | | csbeq1 3810 |
. . . . . . . . . . . . . 14
⊢
(⦋𝑞 /
𝑝⦌(1st ‘𝑝) = (1st ‘𝑞) →
⦋⦋𝑞 / 𝑝⦌(1st ‘𝑝) / 𝑥⦌𝐶 = ⦋(1st
‘𝑞) / 𝑥⦌𝐶) |
92 | 90, 91 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
⦋⦋𝑞 / 𝑝⦌(1st ‘𝑝) / 𝑥⦌𝐶 = ⦋(1st
‘𝑞) / 𝑥⦌𝐶 |
93 | 85, 89, 92 | 3eqtr3ri 2790 |
. . . . . . . . . . . 12
⊢
⦋(1st ‘𝑞) / 𝑥⦌𝐶 = ⦋𝑞 / 𝑝⦌𝐸 |
94 | | csbnestgw 4321 |
. . . . . . . . . . . . . 14
⊢ (𝑟 ∈ V →
⦋𝑟 / 𝑝⦌⦋(1st
‘𝑝) / 𝑥⦌𝐶 = ⦋⦋𝑟 / 𝑝⦌(1st ‘𝑝) / 𝑥⦌𝐶) |
95 | 69, 94 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
⦋𝑟 /
𝑝⦌⦋(1st
‘𝑝) / 𝑥⦌𝐶 = ⦋⦋𝑟 / 𝑝⦌(1st ‘𝑝) / 𝑥⦌𝐶 |
96 | 88 | csbeq2i 3815 |
. . . . . . . . . . . . 13
⊢
⦋𝑟 /
𝑝⦌⦋(1st
‘𝑝) / 𝑥⦌𝐶 = ⦋𝑟 / 𝑝⦌𝐸 |
97 | | csbfv 6708 |
. . . . . . . . . . . . . 14
⊢
⦋𝑟 /
𝑝⦌(1st ‘𝑝) = (1st ‘𝑟) |
98 | | csbeq1 3810 |
. . . . . . . . . . . . . 14
⊢
(⦋𝑟 /
𝑝⦌(1st ‘𝑝) = (1st ‘𝑟) →
⦋⦋𝑟 / 𝑝⦌(1st ‘𝑝) / 𝑥⦌𝐶 = ⦋(1st
‘𝑟) / 𝑥⦌𝐶) |
99 | 97, 98 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
⦋⦋𝑟 / 𝑝⦌(1st ‘𝑝) / 𝑥⦌𝐶 = ⦋(1st
‘𝑟) / 𝑥⦌𝐶 |
100 | 95, 96, 99 | 3eqtr3ri 2790 |
. . . . . . . . . . . 12
⊢
⦋(1st ‘𝑟) / 𝑥⦌𝐶 = ⦋𝑟 / 𝑝⦌𝐸 |
101 | 93, 100 | ineq12i 4117 |
. . . . . . . . . . 11
⊢
(⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = (⦋𝑞 / 𝑝⦌𝐸 ∩ ⦋𝑟 / 𝑝⦌𝐸) |
102 | 83, 57, 101 | 3sstr4i 3937 |
. . . . . . . . . 10
⊢
(⦋𝑞 /
𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) ⊆ (⦋(1st
‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) |
103 | | sseq0 4298 |
. . . . . . . . . 10
⊢
(((⦋𝑞
/ 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) ⊆ (⦋(1st
‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) ∧ (⦋(1st
‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅) → (⦋𝑞 / 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ∅) |
104 | 102, 103 | mpan 689 |
. . . . . . . . 9
⊢
((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ → (⦋𝑞 / 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ∅) |
105 | 104 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → ((⦋(1st
‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ → (⦋𝑞 / 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ∅)) |
106 | 105 | adantrd 495 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → (((⦋(1st
‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧ (2nd
‘𝑞) = (2nd
‘𝑟)) →
(⦋𝑞 / 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ∅)) |
107 | 81 | adantld 494 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → (((⦋(1st
‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅) → (⦋𝑞 / 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ∅)) |
108 | 106, 107 | jaod 856 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) →
((((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧ (2nd
‘𝑞) = (2nd
‘𝑟)) ∨
((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅)) → (⦋𝑞 / 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ∅)) |
109 | 82, 108 | jaod 856 |
. . . . 5
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → ((((1st ‘𝑞) = (1st ‘𝑟) ∧
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅) ∨
(((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧ (2nd
‘𝑞) = (2nd
‘𝑟)) ∨
((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅))) → (⦋𝑞 / 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ∅)) |
110 | 51, 109 | orim12d 962 |
. . . 4
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → ((((1st ‘𝑞) = (1st ‘𝑟) ∧ (2nd
‘𝑞) = (2nd
‘𝑟)) ∨
(((1st ‘𝑞)
= (1st ‘𝑟)
∧ (⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅) ∨
(((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧ (2nd
‘𝑞) = (2nd
‘𝑟)) ∨
((⦋(1st ‘𝑞) / 𝑥⦌𝐶 ∩ ⦋(1st
‘𝑟) / 𝑥⦌𝐶) = ∅ ∧
(⦋(2nd ‘𝑞) / 𝑦⦌𝐷 ∩ ⦋(2nd
‘𝑟) / 𝑦⦌𝐷) = ∅)))) → (𝑞 = 𝑟 ∨ (⦋𝑞 / 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ∅))) |
111 | 48, 110 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴 × 𝐵) ∧ 𝑟 ∈ (𝐴 × 𝐵))) → (𝑞 = 𝑟 ∨ (⦋𝑞 / 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ∅)) |
112 | 111 | ralrimivva 3120 |
. 2
⊢ (𝜑 → ∀𝑞 ∈ (𝐴 × 𝐵)∀𝑟 ∈ (𝐴 × 𝐵)(𝑞 = 𝑟 ∨ (⦋𝑞 / 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ∅)) |
113 | | disjors 5017 |
. 2
⊢
(Disj 𝑝
∈ (𝐴 × 𝐵)(𝐸 ∩ 𝐹) ↔ ∀𝑞 ∈ (𝐴 × 𝐵)∀𝑟 ∈ (𝐴 × 𝐵)(𝑞 = 𝑟 ∨ (⦋𝑞 / 𝑝⦌(𝐸 ∩ 𝐹) ∩ ⦋𝑟 / 𝑝⦌(𝐸 ∩ 𝐹)) = ∅)) |
114 | 112, 113 | sylibr 237 |
1
⊢ (𝜑 → Disj 𝑝 ∈ (𝐴 × 𝐵)(𝐸 ∩ 𝐹)) |