MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funun Structured version   Visualization version   GIF version

Theorem funun 6565
Description: The union of functions with disjoint domains is a function. Theorem 4.6 of [Monk1] p. 43. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
funun (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Fun (𝐹𝐺))

Proof of Theorem funun
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funrel 6536 . . . . 5 (Fun 𝐹 → Rel 𝐹)
2 funrel 6536 . . . . 5 (Fun 𝐺 → Rel 𝐺)
31, 2anim12i 613 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺) → (Rel 𝐹 ∧ Rel 𝐺))
4 relun 5777 . . . 4 (Rel (𝐹𝐺) ↔ (Rel 𝐹 ∧ Rel 𝐺))
53, 4sylibr 234 . . 3 ((Fun 𝐹 ∧ Fun 𝐺) → Rel (𝐹𝐺))
65adantr 480 . 2 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Rel (𝐹𝐺))
7 elun 4119 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∨ ⟨𝑥, 𝑦⟩ ∈ 𝐺))
8 elun 4119 . . . . . . . 8 (⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺) ↔ (⟨𝑥, 𝑧⟩ ∈ 𝐹 ∨ ⟨𝑥, 𝑧⟩ ∈ 𝐺))
97, 8anbi12i 628 . . . . . . 7 ((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∨ ⟨𝑥, 𝑦⟩ ∈ 𝐺) ∧ (⟨𝑥, 𝑧⟩ ∈ 𝐹 ∨ ⟨𝑥, 𝑧⟩ ∈ 𝐺)))
10 anddi 1012 . . . . . . 7 (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∨ ⟨𝑥, 𝑦⟩ ∈ 𝐺) ∧ (⟨𝑥, 𝑧⟩ ∈ 𝐹 ∨ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) ↔ (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) ∨ ((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))))
119, 10bitri 275 . . . . . 6 ((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) ↔ (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) ∨ ((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))))
12 disj1 4418 . . . . . . . . . . . . 13 ((dom 𝐹 ∩ dom 𝐺) = ∅ ↔ ∀𝑥(𝑥 ∈ dom 𝐹 → ¬ 𝑥 ∈ dom 𝐺))
1312biimpi 216 . . . . . . . . . . . 12 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ∀𝑥(𝑥 ∈ dom 𝐹 → ¬ 𝑥 ∈ dom 𝐺))
141319.21bi 2190 . . . . . . . . . . 11 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (𝑥 ∈ dom 𝐹 → ¬ 𝑥 ∈ dom 𝐺))
15 imnan 399 . . . . . . . . . . 11 ((𝑥 ∈ dom 𝐹 → ¬ 𝑥 ∈ dom 𝐺) ↔ ¬ (𝑥 ∈ dom 𝐹𝑥 ∈ dom 𝐺))
1614, 15sylib 218 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ¬ (𝑥 ∈ dom 𝐹𝑥 ∈ dom 𝐺))
17 vex 3454 . . . . . . . . . . . 12 𝑥 ∈ V
18 vex 3454 . . . . . . . . . . . 12 𝑦 ∈ V
1917, 18opeldm 5874 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐹)
20 vex 3454 . . . . . . . . . . . 12 𝑧 ∈ V
2117, 20opeldm 5874 . . . . . . . . . . 11 (⟨𝑥, 𝑧⟩ ∈ 𝐺𝑥 ∈ dom 𝐺)
2219, 21anim12i 613 . . . . . . . . . 10 ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → (𝑥 ∈ dom 𝐹𝑥 ∈ dom 𝐺))
2316, 22nsyl 140 . . . . . . . . 9 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ¬ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))
24 orel2 890 . . . . . . . . 9 (¬ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹)))
2523, 24syl 17 . . . . . . . 8 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹)))
2614con2d 134 . . . . . . . . . . 11 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (𝑥 ∈ dom 𝐺 → ¬ 𝑥 ∈ dom 𝐹))
27 imnan 399 . . . . . . . . . . 11 ((𝑥 ∈ dom 𝐺 → ¬ 𝑥 ∈ dom 𝐹) ↔ ¬ (𝑥 ∈ dom 𝐺𝑥 ∈ dom 𝐹))
2826, 27sylib 218 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ¬ (𝑥 ∈ dom 𝐺𝑥 ∈ dom 𝐹))
2917, 18opeldm 5874 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ 𝐺𝑥 ∈ dom 𝐺)
3017, 20opeldm 5874 . . . . . . . . . . 11 (⟨𝑥, 𝑧⟩ ∈ 𝐹𝑥 ∈ dom 𝐹)
3129, 30anim12i 613 . . . . . . . . . 10 ((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → (𝑥 ∈ dom 𝐺𝑥 ∈ dom 𝐹))
3228, 31nsyl 140 . . . . . . . . 9 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ¬ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹))
33 orel1 888 . . . . . . . . 9 (¬ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → (((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)))
3432, 33syl 17 . . . . . . . 8 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)))
3525, 34orim12d 966 . . . . . . 7 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ((((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) ∨ ((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))))
3635adantl 481 . . . . . 6 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) ∨ ((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))))
3711, 36biimtrid 242 . . . . 5 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))))
38 dffun4 6530 . . . . . . . . . 10 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧)))
3938simprbi 496 . . . . . . . . 9 (Fun 𝐹 → ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
403919.21bi 2190 . . . . . . . 8 (Fun 𝐹 → ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
414019.21bbi 2191 . . . . . . 7 (Fun 𝐹 → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
42 dffun4 6530 . . . . . . . . . 10 (Fun 𝐺 ↔ (Rel 𝐺 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → 𝑦 = 𝑧)))
4342simprbi 496 . . . . . . . . 9 (Fun 𝐺 → ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → 𝑦 = 𝑧))
444319.21bi 2190 . . . . . . . 8 (Fun 𝐺 → ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → 𝑦 = 𝑧))
454419.21bbi 2191 . . . . . . 7 (Fun 𝐺 → ((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → 𝑦 = 𝑧))
4641, 45jaao 956 . . . . . 6 ((Fun 𝐹 ∧ Fun 𝐺) → (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → 𝑦 = 𝑧))
4746adantr 480 . . . . 5 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → 𝑦 = 𝑧))
4837, 47syld 47 . . . 4 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) → 𝑦 = 𝑧))
4948alrimiv 1927 . . 3 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ∀𝑧((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) → 𝑦 = 𝑧))
5049alrimivv 1928 . 2 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) → 𝑦 = 𝑧))
51 dffun4 6530 . 2 (Fun (𝐹𝐺) ↔ (Rel (𝐹𝐺) ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) → 𝑦 = 𝑧)))
526, 50, 51sylanbrc 583 1 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Fun (𝐹𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  wal 1538   = wceq 1540  wcel 2109  cun 3915  cin 3916  c0 4299  cop 4598  dom cdm 5641  Rel wrel 5646  Fun wfun 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-fun 6516
This theorem is referenced by:  funprg  6573  funtpg  6574  funtp  6576  funcnvpr  6581  funcnvtp  6582  funcnvqp  6583  fnun  6635  fvun  6954  tfrlem10  8358  sbthlem7  9063  sbthlem8  9064  fodomr  9098  fodomfir  9286  funsnfsupp  9350  axdc3lem4  10413  strleun  17134  setsfun  17148  setsfun0  17149  cnfldfunALT  21286  cnfldfunALTOLD  21299  noextend  27585  noextendseq  27586  bnj1421  35039  satffunlem1  35401  satffunlem2  35402
  Copyright terms: Public domain W3C validator