MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funun Structured version   Visualization version   GIF version

Theorem funun 6624
Description: The union of functions with disjoint domains is a function. Theorem 4.6 of [Monk1] p. 43. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
funun (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Fun (𝐹𝐺))

Proof of Theorem funun
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funrel 6595 . . . . 5 (Fun 𝐹 → Rel 𝐹)
2 funrel 6595 . . . . 5 (Fun 𝐺 → Rel 𝐺)
31, 2anim12i 612 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺) → (Rel 𝐹 ∧ Rel 𝐺))
4 relun 5835 . . . 4 (Rel (𝐹𝐺) ↔ (Rel 𝐹 ∧ Rel 𝐺))
53, 4sylibr 234 . . 3 ((Fun 𝐹 ∧ Fun 𝐺) → Rel (𝐹𝐺))
65adantr 480 . 2 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Rel (𝐹𝐺))
7 elun 4176 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∨ ⟨𝑥, 𝑦⟩ ∈ 𝐺))
8 elun 4176 . . . . . . . 8 (⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺) ↔ (⟨𝑥, 𝑧⟩ ∈ 𝐹 ∨ ⟨𝑥, 𝑧⟩ ∈ 𝐺))
97, 8anbi12i 627 . . . . . . 7 ((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∨ ⟨𝑥, 𝑦⟩ ∈ 𝐺) ∧ (⟨𝑥, 𝑧⟩ ∈ 𝐹 ∨ ⟨𝑥, 𝑧⟩ ∈ 𝐺)))
10 anddi 1011 . . . . . . 7 (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∨ ⟨𝑥, 𝑦⟩ ∈ 𝐺) ∧ (⟨𝑥, 𝑧⟩ ∈ 𝐹 ∨ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) ↔ (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) ∨ ((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))))
119, 10bitri 275 . . . . . 6 ((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) ↔ (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) ∨ ((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))))
12 disj1 4475 . . . . . . . . . . . . 13 ((dom 𝐹 ∩ dom 𝐺) = ∅ ↔ ∀𝑥(𝑥 ∈ dom 𝐹 → ¬ 𝑥 ∈ dom 𝐺))
1312biimpi 216 . . . . . . . . . . . 12 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ∀𝑥(𝑥 ∈ dom 𝐹 → ¬ 𝑥 ∈ dom 𝐺))
141319.21bi 2190 . . . . . . . . . . 11 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (𝑥 ∈ dom 𝐹 → ¬ 𝑥 ∈ dom 𝐺))
15 imnan 399 . . . . . . . . . . 11 ((𝑥 ∈ dom 𝐹 → ¬ 𝑥 ∈ dom 𝐺) ↔ ¬ (𝑥 ∈ dom 𝐹𝑥 ∈ dom 𝐺))
1614, 15sylib 218 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ¬ (𝑥 ∈ dom 𝐹𝑥 ∈ dom 𝐺))
17 vex 3492 . . . . . . . . . . . 12 𝑥 ∈ V
18 vex 3492 . . . . . . . . . . . 12 𝑦 ∈ V
1917, 18opeldm 5932 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐹)
20 vex 3492 . . . . . . . . . . . 12 𝑧 ∈ V
2117, 20opeldm 5932 . . . . . . . . . . 11 (⟨𝑥, 𝑧⟩ ∈ 𝐺𝑥 ∈ dom 𝐺)
2219, 21anim12i 612 . . . . . . . . . 10 ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → (𝑥 ∈ dom 𝐹𝑥 ∈ dom 𝐺))
2316, 22nsyl 140 . . . . . . . . 9 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ¬ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))
24 orel2 889 . . . . . . . . 9 (¬ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹)))
2523, 24syl 17 . . . . . . . 8 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹)))
2614con2d 134 . . . . . . . . . . 11 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (𝑥 ∈ dom 𝐺 → ¬ 𝑥 ∈ dom 𝐹))
27 imnan 399 . . . . . . . . . . 11 ((𝑥 ∈ dom 𝐺 → ¬ 𝑥 ∈ dom 𝐹) ↔ ¬ (𝑥 ∈ dom 𝐺𝑥 ∈ dom 𝐹))
2826, 27sylib 218 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ¬ (𝑥 ∈ dom 𝐺𝑥 ∈ dom 𝐹))
2917, 18opeldm 5932 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ 𝐺𝑥 ∈ dom 𝐺)
3017, 20opeldm 5932 . . . . . . . . . . 11 (⟨𝑥, 𝑧⟩ ∈ 𝐹𝑥 ∈ dom 𝐹)
3129, 30anim12i 612 . . . . . . . . . 10 ((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → (𝑥 ∈ dom 𝐺𝑥 ∈ dom 𝐹))
3228, 31nsyl 140 . . . . . . . . 9 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ¬ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹))
33 orel1 887 . . . . . . . . 9 (¬ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → (((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)))
3432, 33syl 17 . . . . . . . 8 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)))
3525, 34orim12d 965 . . . . . . 7 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ((((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) ∨ ((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))))
3635adantl 481 . . . . . 6 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) ∨ ((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))))
3711, 36biimtrid 242 . . . . 5 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))))
38 dffun4 6589 . . . . . . . . . 10 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧)))
3938simprbi 496 . . . . . . . . 9 (Fun 𝐹 → ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
403919.21bi 2190 . . . . . . . 8 (Fun 𝐹 → ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
414019.21bbi 2191 . . . . . . 7 (Fun 𝐹 → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
42 dffun4 6589 . . . . . . . . . 10 (Fun 𝐺 ↔ (Rel 𝐺 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → 𝑦 = 𝑧)))
4342simprbi 496 . . . . . . . . 9 (Fun 𝐺 → ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → 𝑦 = 𝑧))
444319.21bi 2190 . . . . . . . 8 (Fun 𝐺 → ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → 𝑦 = 𝑧))
454419.21bbi 2191 . . . . . . 7 (Fun 𝐺 → ((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → 𝑦 = 𝑧))
4641, 45jaao 955 . . . . . 6 ((Fun 𝐹 ∧ Fun 𝐺) → (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → 𝑦 = 𝑧))
4746adantr 480 . . . . 5 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → 𝑦 = 𝑧))
4837, 47syld 47 . . . 4 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) → 𝑦 = 𝑧))
4948alrimiv 1926 . . 3 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ∀𝑧((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) → 𝑦 = 𝑧))
5049alrimivv 1927 . 2 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) → 𝑦 = 𝑧))
51 dffun4 6589 . 2 (Fun (𝐹𝐺) ↔ (Rel (𝐹𝐺) ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) → 𝑦 = 𝑧)))
526, 50, 51sylanbrc 582 1 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Fun (𝐹𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846  wal 1535   = wceq 1537  wcel 2108  cun 3974  cin 3975  c0 4352  cop 4654  dom cdm 5700  Rel wrel 5705  Fun wfun 6567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-fun 6575
This theorem is referenced by:  funprg  6632  funtpg  6633  funtp  6635  funcnvpr  6640  funcnvtp  6641  funcnvqp  6642  fnun  6693  fvun  7012  wfrlem13OLD  8377  tfrlem10  8443  sbthlem7  9155  sbthlem8  9156  fodomr  9194  fodomfir  9396  funsnfsupp  9461  axdc3lem4  10522  strleun  17204  setsfun  17218  setsfun0  17219  cnfldfunALT  21402  cnfldfunALTOLD  21415  cnfldfunALTOLDOLD  21416  noextend  27729  noextendseq  27730  bnj1421  35018  satffunlem1  35375  satffunlem2  35376
  Copyright terms: Public domain W3C validator