MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funun Structured version   Visualization version   GIF version

Theorem funun 6562
Description: The union of functions with disjoint domains is a function. Theorem 4.6 of [Monk1] p. 43. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
funun (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Fun (𝐹𝐺))

Proof of Theorem funun
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funrel 6533 . . . . 5 (Fun 𝐹 → Rel 𝐹)
2 funrel 6533 . . . . 5 (Fun 𝐺 → Rel 𝐺)
31, 2anim12i 613 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺) → (Rel 𝐹 ∧ Rel 𝐺))
4 relun 5774 . . . 4 (Rel (𝐹𝐺) ↔ (Rel 𝐹 ∧ Rel 𝐺))
53, 4sylibr 234 . . 3 ((Fun 𝐹 ∧ Fun 𝐺) → Rel (𝐹𝐺))
65adantr 480 . 2 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Rel (𝐹𝐺))
7 elun 4116 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∨ ⟨𝑥, 𝑦⟩ ∈ 𝐺))
8 elun 4116 . . . . . . . 8 (⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺) ↔ (⟨𝑥, 𝑧⟩ ∈ 𝐹 ∨ ⟨𝑥, 𝑧⟩ ∈ 𝐺))
97, 8anbi12i 628 . . . . . . 7 ((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∨ ⟨𝑥, 𝑦⟩ ∈ 𝐺) ∧ (⟨𝑥, 𝑧⟩ ∈ 𝐹 ∨ ⟨𝑥, 𝑧⟩ ∈ 𝐺)))
10 anddi 1012 . . . . . . 7 (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∨ ⟨𝑥, 𝑦⟩ ∈ 𝐺) ∧ (⟨𝑥, 𝑧⟩ ∈ 𝐹 ∨ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) ↔ (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) ∨ ((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))))
119, 10bitri 275 . . . . . 6 ((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) ↔ (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) ∨ ((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))))
12 disj1 4415 . . . . . . . . . . . . 13 ((dom 𝐹 ∩ dom 𝐺) = ∅ ↔ ∀𝑥(𝑥 ∈ dom 𝐹 → ¬ 𝑥 ∈ dom 𝐺))
1312biimpi 216 . . . . . . . . . . . 12 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ∀𝑥(𝑥 ∈ dom 𝐹 → ¬ 𝑥 ∈ dom 𝐺))
141319.21bi 2190 . . . . . . . . . . 11 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (𝑥 ∈ dom 𝐹 → ¬ 𝑥 ∈ dom 𝐺))
15 imnan 399 . . . . . . . . . . 11 ((𝑥 ∈ dom 𝐹 → ¬ 𝑥 ∈ dom 𝐺) ↔ ¬ (𝑥 ∈ dom 𝐹𝑥 ∈ dom 𝐺))
1614, 15sylib 218 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ¬ (𝑥 ∈ dom 𝐹𝑥 ∈ dom 𝐺))
17 vex 3451 . . . . . . . . . . . 12 𝑥 ∈ V
18 vex 3451 . . . . . . . . . . . 12 𝑦 ∈ V
1917, 18opeldm 5871 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐹)
20 vex 3451 . . . . . . . . . . . 12 𝑧 ∈ V
2117, 20opeldm 5871 . . . . . . . . . . 11 (⟨𝑥, 𝑧⟩ ∈ 𝐺𝑥 ∈ dom 𝐺)
2219, 21anim12i 613 . . . . . . . . . 10 ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → (𝑥 ∈ dom 𝐹𝑥 ∈ dom 𝐺))
2316, 22nsyl 140 . . . . . . . . 9 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ¬ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))
24 orel2 890 . . . . . . . . 9 (¬ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹)))
2523, 24syl 17 . . . . . . . 8 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹)))
2614con2d 134 . . . . . . . . . . 11 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (𝑥 ∈ dom 𝐺 → ¬ 𝑥 ∈ dom 𝐹))
27 imnan 399 . . . . . . . . . . 11 ((𝑥 ∈ dom 𝐺 → ¬ 𝑥 ∈ dom 𝐹) ↔ ¬ (𝑥 ∈ dom 𝐺𝑥 ∈ dom 𝐹))
2826, 27sylib 218 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ¬ (𝑥 ∈ dom 𝐺𝑥 ∈ dom 𝐹))
2917, 18opeldm 5871 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ 𝐺𝑥 ∈ dom 𝐺)
3017, 20opeldm 5871 . . . . . . . . . . 11 (⟨𝑥, 𝑧⟩ ∈ 𝐹𝑥 ∈ dom 𝐹)
3129, 30anim12i 613 . . . . . . . . . 10 ((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → (𝑥 ∈ dom 𝐺𝑥 ∈ dom 𝐹))
3228, 31nsyl 140 . . . . . . . . 9 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ¬ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹))
33 orel1 888 . . . . . . . . 9 (¬ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → (((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)))
3432, 33syl 17 . . . . . . . 8 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)))
3525, 34orim12d 966 . . . . . . 7 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ((((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) ∨ ((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))))
3635adantl 481 . . . . . 6 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) ∨ ((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))))
3711, 36biimtrid 242 . . . . 5 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))))
38 dffun4 6527 . . . . . . . . . 10 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧)))
3938simprbi 496 . . . . . . . . 9 (Fun 𝐹 → ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
403919.21bi 2190 . . . . . . . 8 (Fun 𝐹 → ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
414019.21bbi 2191 . . . . . . 7 (Fun 𝐹 → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
42 dffun4 6527 . . . . . . . . . 10 (Fun 𝐺 ↔ (Rel 𝐺 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → 𝑦 = 𝑧)))
4342simprbi 496 . . . . . . . . 9 (Fun 𝐺 → ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → 𝑦 = 𝑧))
444319.21bi 2190 . . . . . . . 8 (Fun 𝐺 → ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → 𝑦 = 𝑧))
454419.21bbi 2191 . . . . . . 7 (Fun 𝐺 → ((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → 𝑦 = 𝑧))
4641, 45jaao 956 . . . . . 6 ((Fun 𝐹 ∧ Fun 𝐺) → (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → 𝑦 = 𝑧))
4746adantr 480 . . . . 5 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → 𝑦 = 𝑧))
4837, 47syld 47 . . . 4 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) → 𝑦 = 𝑧))
4948alrimiv 1927 . . 3 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ∀𝑧((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) → 𝑦 = 𝑧))
5049alrimivv 1928 . 2 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) → 𝑦 = 𝑧))
51 dffun4 6527 . 2 (Fun (𝐹𝐺) ↔ (Rel (𝐹𝐺) ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) → 𝑦 = 𝑧)))
526, 50, 51sylanbrc 583 1 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Fun (𝐹𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  wal 1538   = wceq 1540  wcel 2109  cun 3912  cin 3913  c0 4296  cop 4595  dom cdm 5638  Rel wrel 5643  Fun wfun 6505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-fun 6513
This theorem is referenced by:  funprg  6570  funtpg  6571  funtp  6573  funcnvpr  6578  funcnvtp  6579  funcnvqp  6580  fnun  6632  fvun  6951  tfrlem10  8355  sbthlem7  9057  sbthlem8  9058  fodomr  9092  fodomfir  9279  funsnfsupp  9343  axdc3lem4  10406  strleun  17127  setsfun  17141  setsfun0  17142  cnfldfunALT  21279  cnfldfunALTOLD  21292  noextend  27578  noextendseq  27579  bnj1421  35032  satffunlem1  35394  satffunlem2  35395
  Copyright terms: Public domain W3C validator