MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funun Structured version   Visualization version   GIF version

Theorem funun 6426
Description: The union of functions with disjoint domains is a function. Theorem 4.6 of [Monk1] p. 43. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
funun (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Fun (𝐹𝐺))

Proof of Theorem funun
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funrel 6397 . . . . 5 (Fun 𝐹 → Rel 𝐹)
2 funrel 6397 . . . . 5 (Fun 𝐺 → Rel 𝐺)
31, 2anim12i 616 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺) → (Rel 𝐹 ∧ Rel 𝐺))
4 relun 5681 . . . 4 (Rel (𝐹𝐺) ↔ (Rel 𝐹 ∧ Rel 𝐺))
53, 4sylibr 237 . . 3 ((Fun 𝐹 ∧ Fun 𝐺) → Rel (𝐹𝐺))
65adantr 484 . 2 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Rel (𝐹𝐺))
7 elun 4063 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∨ ⟨𝑥, 𝑦⟩ ∈ 𝐺))
8 elun 4063 . . . . . . . 8 (⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺) ↔ (⟨𝑥, 𝑧⟩ ∈ 𝐹 ∨ ⟨𝑥, 𝑧⟩ ∈ 𝐺))
97, 8anbi12i 630 . . . . . . 7 ((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∨ ⟨𝑥, 𝑦⟩ ∈ 𝐺) ∧ (⟨𝑥, 𝑧⟩ ∈ 𝐹 ∨ ⟨𝑥, 𝑧⟩ ∈ 𝐺)))
10 anddi 1011 . . . . . . 7 (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∨ ⟨𝑥, 𝑦⟩ ∈ 𝐺) ∧ (⟨𝑥, 𝑧⟩ ∈ 𝐹 ∨ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) ↔ (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) ∨ ((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))))
119, 10bitri 278 . . . . . 6 ((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) ↔ (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) ∨ ((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))))
12 disj1 4365 . . . . . . . . . . . . 13 ((dom 𝐹 ∩ dom 𝐺) = ∅ ↔ ∀𝑥(𝑥 ∈ dom 𝐹 → ¬ 𝑥 ∈ dom 𝐺))
1312biimpi 219 . . . . . . . . . . . 12 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ∀𝑥(𝑥 ∈ dom 𝐹 → ¬ 𝑥 ∈ dom 𝐺))
141319.21bi 2186 . . . . . . . . . . 11 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (𝑥 ∈ dom 𝐹 → ¬ 𝑥 ∈ dom 𝐺))
15 imnan 403 . . . . . . . . . . 11 ((𝑥 ∈ dom 𝐹 → ¬ 𝑥 ∈ dom 𝐺) ↔ ¬ (𝑥 ∈ dom 𝐹𝑥 ∈ dom 𝐺))
1614, 15sylib 221 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ¬ (𝑥 ∈ dom 𝐹𝑥 ∈ dom 𝐺))
17 vex 3412 . . . . . . . . . . . 12 𝑥 ∈ V
18 vex 3412 . . . . . . . . . . . 12 𝑦 ∈ V
1917, 18opeldm 5776 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐹)
20 vex 3412 . . . . . . . . . . . 12 𝑧 ∈ V
2117, 20opeldm 5776 . . . . . . . . . . 11 (⟨𝑥, 𝑧⟩ ∈ 𝐺𝑥 ∈ dom 𝐺)
2219, 21anim12i 616 . . . . . . . . . 10 ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → (𝑥 ∈ dom 𝐹𝑥 ∈ dom 𝐺))
2316, 22nsyl 142 . . . . . . . . 9 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ¬ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))
24 orel2 891 . . . . . . . . 9 (¬ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹)))
2523, 24syl 17 . . . . . . . 8 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹)))
2614con2d 136 . . . . . . . . . . 11 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (𝑥 ∈ dom 𝐺 → ¬ 𝑥 ∈ dom 𝐹))
27 imnan 403 . . . . . . . . . . 11 ((𝑥 ∈ dom 𝐺 → ¬ 𝑥 ∈ dom 𝐹) ↔ ¬ (𝑥 ∈ dom 𝐺𝑥 ∈ dom 𝐹))
2826, 27sylib 221 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ¬ (𝑥 ∈ dom 𝐺𝑥 ∈ dom 𝐹))
2917, 18opeldm 5776 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ 𝐺𝑥 ∈ dom 𝐺)
3017, 20opeldm 5776 . . . . . . . . . . 11 (⟨𝑥, 𝑧⟩ ∈ 𝐹𝑥 ∈ dom 𝐹)
3129, 30anim12i 616 . . . . . . . . . 10 ((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → (𝑥 ∈ dom 𝐺𝑥 ∈ dom 𝐹))
3228, 31nsyl 142 . . . . . . . . 9 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ¬ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹))
33 orel1 889 . . . . . . . . 9 (¬ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → (((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)))
3432, 33syl 17 . . . . . . . 8 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)))
3525, 34orim12d 965 . . . . . . 7 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ((((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) ∨ ((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))))
3635adantl 485 . . . . . 6 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) ∨ ((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))))
3711, 36syl5bi 245 . . . . 5 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺))))
38 dffun4 6392 . . . . . . . . . 10 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧)))
3938simprbi 500 . . . . . . . . 9 (Fun 𝐹 → ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
403919.21bi 2186 . . . . . . . 8 (Fun 𝐹 → ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
414019.21bbi 2187 . . . . . . 7 (Fun 𝐹 → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
42 dffun4 6392 . . . . . . . . . 10 (Fun 𝐺 ↔ (Rel 𝐺 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → 𝑦 = 𝑧)))
4342simprbi 500 . . . . . . . . 9 (Fun 𝐺 → ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → 𝑦 = 𝑧))
444319.21bi 2186 . . . . . . . 8 (Fun 𝐺 → ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → 𝑦 = 𝑧))
454419.21bbi 2187 . . . . . . 7 (Fun 𝐺 → ((⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) → 𝑦 = 𝑧))
4641, 45jaao 955 . . . . . 6 ((Fun 𝐹 ∧ Fun 𝐺) → (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → 𝑦 = 𝑧))
4746adantr 484 . . . . 5 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∨ (⟨𝑥, 𝑦⟩ ∈ 𝐺 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺)) → 𝑦 = 𝑧))
4837, 47syld 47 . . . 4 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) → 𝑦 = 𝑧))
4948alrimiv 1935 . . 3 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ∀𝑧((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) → 𝑦 = 𝑧))
5049alrimivv 1936 . 2 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) → 𝑦 = 𝑧))
51 dffun4 6392 . 2 (Fun (𝐹𝐺) ↔ (Rel (𝐹𝐺) ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ (𝐹𝐺) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐹𝐺)) → 𝑦 = 𝑧)))
526, 50, 51sylanbrc 586 1 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → Fun (𝐹𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 847  wal 1541   = wceq 1543  wcel 2110  cun 3864  cin 3865  c0 4237  cop 4547  dom cdm 5551  Rel wrel 5556  Fun wfun 6374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-id 5455  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-fun 6382
This theorem is referenced by:  funprg  6434  funtpg  6435  funtp  6437  funcnvpr  6442  funcnvtp  6443  funcnvqp  6444  fnun  6490  fvun  6801  wfrlem13  8067  tfrlem10  8123  sbthlem7  8762  sbthlem8  8763  fodomr  8797  funsnfsupp  9009  axdc3lem4  10067  strleun  16710  setsfun  16724  setsfun0  16725  cnfldfun  20375  bnj1421  32735  satffunlem1  33082  satffunlem2  33083  noextend  33606  noextendseq  33607
  Copyright terms: Public domain W3C validator