Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoreclin Structured version   Visualization version   GIF version

Theorem icoreclin 37474
Description: The set of closed-below, open-above intervals of reals is closed under finite intersection. (Contributed by ML, 27-Jul-2020.)
Hypothesis
Ref Expression
isbasisrelowl.1 𝐼 = ([,) “ (ℝ × ℝ))
Assertion
Ref Expression
icoreclin ((𝑥𝐼𝑦𝐼) → (𝑥𝑦) ∈ 𝐼)
Distinct variable group:   𝑥,𝐼,𝑦

Proof of Theorem icoreclin
Dummy variables 𝑧 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isbasisrelowl.1 . . . 4 𝐼 = ([,) “ (ℝ × ℝ))
21icoreelrnab 37471 . . 3 (𝑦𝐼 ↔ ∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})
31icoreelrnab 37471 . . . . . . 7 (𝑥𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})
41isbasisrelowllem1 37472 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑏𝑑)) → (𝑥𝑦) ∈ 𝐼)
54ex 412 . . . . . . . . . . . 12 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) → ((𝑎𝑐𝑏𝑑) → (𝑥𝑦) ∈ 𝐼))
61isbasisrelowllem2 37473 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (𝑥𝑦) ∈ 𝐼)
76ex 412 . . . . . . . . . . . 12 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) → ((𝑎𝑐𝑑𝑏) → (𝑥𝑦) ∈ 𝐼))
85, 7jaod 859 . . . . . . . . . . 11 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) → (((𝑎𝑐𝑏𝑑) ∨ (𝑎𝑐𝑑𝑏)) → (𝑥𝑦) ∈ 𝐼))
9 incom 4158 . . . . . . . . . . . . . . 15 (𝑦𝑥) = (𝑥𝑦)
101isbasisrelowllem2 37473 . . . . . . . . . . . . . . 15 ((((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})) ∧ (𝑐𝑎𝑏𝑑)) → (𝑦𝑥) ∈ 𝐼)
119, 10eqeltrrid 2838 . . . . . . . . . . . . . 14 ((((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})) ∧ (𝑐𝑎𝑏𝑑)) → (𝑥𝑦) ∈ 𝐼)
1211ancom1s 653 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑐𝑎𝑏𝑑)) → (𝑥𝑦) ∈ 𝐼)
1312ex 412 . . . . . . . . . . . 12 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) → ((𝑐𝑎𝑏𝑑) → (𝑥𝑦) ∈ 𝐼))
141isbasisrelowllem1 37472 . . . . . . . . . . . . . . 15 ((((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})) ∧ (𝑐𝑎𝑑𝑏)) → (𝑦𝑥) ∈ 𝐼)
159, 14eqeltrrid 2838 . . . . . . . . . . . . . 14 ((((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})) ∧ (𝑐𝑎𝑑𝑏)) → (𝑥𝑦) ∈ 𝐼)
1615ancom1s 653 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑐𝑎𝑑𝑏)) → (𝑥𝑦) ∈ 𝐼)
1716ex 412 . . . . . . . . . . . 12 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) → ((𝑐𝑎𝑑𝑏) → (𝑥𝑦) ∈ 𝐼))
1813, 17jaod 859 . . . . . . . . . . 11 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) → (((𝑐𝑎𝑏𝑑) ∨ (𝑐𝑎𝑑𝑏)) → (𝑥𝑦) ∈ 𝐼))
19 3simpa 1148 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ))
20 3simpa 1148 . . . . . . . . . . . 12 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ))
21 letric 11224 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝑎𝑐𝑐𝑎))
22 letric 11224 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑏𝑑𝑑𝑏))
2321, 22anim12i 613 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ) ∧ (𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → ((𝑎𝑐𝑐𝑎) ∧ (𝑏𝑑𝑑𝑏)))
24 anddi 1012 . . . . . . . . . . . . . 14 (((𝑎𝑐𝑐𝑎) ∧ (𝑏𝑑𝑑𝑏)) ↔ (((𝑎𝑐𝑏𝑑) ∨ (𝑎𝑐𝑑𝑏)) ∨ ((𝑐𝑎𝑏𝑑) ∨ (𝑐𝑎𝑑𝑏))))
2523, 24sylib 218 . . . . . . . . . . . . 13 (((𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ) ∧ (𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (((𝑎𝑐𝑏𝑑) ∨ (𝑎𝑐𝑑𝑏)) ∨ ((𝑐𝑎𝑏𝑑) ∨ (𝑐𝑎𝑑𝑏))))
2625an4s 660 . . . . . . . . . . . 12 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (((𝑎𝑐𝑏𝑑) ∨ (𝑎𝑐𝑑𝑏)) ∨ ((𝑐𝑎𝑏𝑑) ∨ (𝑐𝑎𝑑𝑏))))
2719, 20, 26syl2an 596 . . . . . . . . . . 11 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) → (((𝑎𝑐𝑏𝑑) ∨ (𝑎𝑐𝑑𝑏)) ∨ ((𝑐𝑎𝑏𝑑) ∨ (𝑐𝑎𝑑𝑏))))
288, 18, 27mpjaod 860 . . . . . . . . . 10 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) → (𝑥𝑦) ∈ 𝐼)
2928ex 412 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) → ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → (𝑥𝑦) ∈ 𝐼))
30293expia 1121 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)} → ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → (𝑥𝑦) ∈ 𝐼)))
3130rexlimivv 3175 . . . . . . 7 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)} → ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → (𝑥𝑦) ∈ 𝐼))
323, 31sylbi 217 . . . . . 6 (𝑥𝐼 → ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → (𝑥𝑦) ∈ 𝐼))
3332com12 32 . . . . 5 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → (𝑥𝐼 → (𝑥𝑦) ∈ 𝐼))
34333expia 1121 . . . 4 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)} → (𝑥𝐼 → (𝑥𝑦) ∈ 𝐼)))
3534rexlimivv 3175 . . 3 (∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)} → (𝑥𝐼 → (𝑥𝑦) ∈ 𝐼))
362, 35sylbi 217 . 2 (𝑦𝐼 → (𝑥𝐼 → (𝑥𝑦) ∈ 𝐼))
3736impcom 407 1 ((𝑥𝐼𝑦𝐼) → (𝑥𝑦) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wrex 3057  {crab 3396  cin 3897   class class class wbr 5095   × cxp 5619  cima 5624  cr 11016   < clt 11157  cle 11158  [,)cico 13254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-pre-lttri 11091  ax-pre-lttrn 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-ico 13258
This theorem is referenced by:  isbasisrelowl  37475
  Copyright terms: Public domain W3C validator