Step | Hyp | Ref
| Expression |
1 | | isbasisrelowl.1 |
. . . 4
⊢ 𝐼 = ([,) “ (ℝ ×
ℝ)) |
2 | 1 | icoreelrnab 35452 |
. . 3
⊢ (𝑦 ∈ 𝐼 ↔ ∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)}) |
3 | 1 | icoreelrnab 35452 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) |
4 | 1 | isbasisrelowllem1 35453 |
. . . . . . . . . . . . 13
⊢ ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) ∧ (𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑)) → (𝑥 ∩ 𝑦) ∈ 𝐼) |
5 | 4 | ex 412 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) → ((𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑) → (𝑥 ∩ 𝑦) ∈ 𝐼)) |
6 | 1 | isbasisrelowllem2 35454 |
. . . . . . . . . . . . 13
⊢ ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) ∧ (𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏)) → (𝑥 ∩ 𝑦) ∈ 𝐼) |
7 | 6 | ex 412 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) → ((𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏) → (𝑥 ∩ 𝑦) ∈ 𝐼)) |
8 | 5, 7 | jaod 855 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) → (((𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑) ∨ (𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏)) → (𝑥 ∩ 𝑦) ∈ 𝐼)) |
9 | | incom 4131 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∩ 𝑥) = (𝑥 ∩ 𝑦) |
10 | 1 | isbasisrelowllem2 35454 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)}) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)})) ∧ (𝑐 ≤ 𝑎 ∧ 𝑏 ≤ 𝑑)) → (𝑦 ∩ 𝑥) ∈ 𝐼) |
11 | 9, 10 | eqeltrrid 2844 |
. . . . . . . . . . . . . 14
⊢ ((((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)}) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)})) ∧ (𝑐 ≤ 𝑎 ∧ 𝑏 ≤ 𝑑)) → (𝑥 ∩ 𝑦) ∈ 𝐼) |
12 | 11 | ancom1s 649 |
. . . . . . . . . . . . 13
⊢ ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) ∧ (𝑐 ≤ 𝑎 ∧ 𝑏 ≤ 𝑑)) → (𝑥 ∩ 𝑦) ∈ 𝐼) |
13 | 12 | ex 412 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) → ((𝑐 ≤ 𝑎 ∧ 𝑏 ≤ 𝑑) → (𝑥 ∩ 𝑦) ∈ 𝐼)) |
14 | 1 | isbasisrelowllem1 35453 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)}) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)})) ∧ (𝑐 ≤ 𝑎 ∧ 𝑑 ≤ 𝑏)) → (𝑦 ∩ 𝑥) ∈ 𝐼) |
15 | 9, 14 | eqeltrrid 2844 |
. . . . . . . . . . . . . 14
⊢ ((((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)}) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)})) ∧ (𝑐 ≤ 𝑎 ∧ 𝑑 ≤ 𝑏)) → (𝑥 ∩ 𝑦) ∈ 𝐼) |
16 | 15 | ancom1s 649 |
. . . . . . . . . . . . 13
⊢ ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) ∧ (𝑐 ≤ 𝑎 ∧ 𝑑 ≤ 𝑏)) → (𝑥 ∩ 𝑦) ∈ 𝐼) |
17 | 16 | ex 412 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) → ((𝑐 ≤ 𝑎 ∧ 𝑑 ≤ 𝑏) → (𝑥 ∩ 𝑦) ∈ 𝐼)) |
18 | 13, 17 | jaod 855 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) → (((𝑐 ≤ 𝑎 ∧ 𝑏 ≤ 𝑑) ∨ (𝑐 ≤ 𝑎 ∧ 𝑑 ≤ 𝑏)) → (𝑥 ∩ 𝑦) ∈ 𝐼)) |
19 | | 3simpa 1146 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)) |
20 | | 3simpa 1146 |
. . . . . . . . . . . 12
⊢ ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)}) → (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) |
21 | | letric 11005 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝑎 ≤ 𝑐 ∨ 𝑐 ≤ 𝑎)) |
22 | | letric 11005 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑏 ≤ 𝑑 ∨ 𝑑 ≤ 𝑏)) |
23 | 21, 22 | anim12i 612 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ) ∧ (𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → ((𝑎 ≤ 𝑐 ∨ 𝑐 ≤ 𝑎) ∧ (𝑏 ≤ 𝑑 ∨ 𝑑 ≤ 𝑏))) |
24 | | anddi 1007 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ≤ 𝑐 ∨ 𝑐 ≤ 𝑎) ∧ (𝑏 ≤ 𝑑 ∨ 𝑑 ≤ 𝑏)) ↔ (((𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑) ∨ (𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏)) ∨ ((𝑐 ≤ 𝑎 ∧ 𝑏 ≤ 𝑑) ∨ (𝑐 ≤ 𝑎 ∧ 𝑑 ≤ 𝑏)))) |
25 | 23, 24 | sylib 217 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ) ∧ (𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ)) →
(((𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑) ∨ (𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏)) ∨ ((𝑐 ≤ 𝑎 ∧ 𝑏 ≤ 𝑑) ∨ (𝑐 ≤ 𝑎 ∧ 𝑑 ≤ 𝑏)))) |
26 | 25 | an4s 656 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) →
(((𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑) ∨ (𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏)) ∨ ((𝑐 ≤ 𝑎 ∧ 𝑏 ≤ 𝑑) ∨ (𝑐 ≤ 𝑎 ∧ 𝑑 ≤ 𝑏)))) |
27 | 19, 20, 26 | syl2an 595 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) → (((𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑) ∨ (𝑎 ≤ 𝑐 ∧ 𝑑 ≤ 𝑏)) ∨ ((𝑐 ≤ 𝑎 ∧ 𝑏 ≤ 𝑑) ∨ (𝑐 ≤ 𝑎 ∧ 𝑑 ≤ 𝑏)))) |
28 | 8, 18, 27 | mpjaod 856 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)})) → (𝑥 ∩ 𝑦) ∈ 𝐼) |
29 | 28 | ex 412 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)}) → ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)}) → (𝑥 ∩ 𝑦) ∈ 𝐼)) |
30 | 29 | 3expia 1119 |
. . . . . . . 8
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)} → ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)}) → (𝑥 ∩ 𝑦) ∈ 𝐼))) |
31 | 30 | rexlimivv 3220 |
. . . . . . 7
⊢
(∃𝑎 ∈
ℝ ∃𝑏 ∈
ℝ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏)} → ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)}) → (𝑥 ∩ 𝑦) ∈ 𝐼)) |
32 | 3, 31 | sylbi 216 |
. . . . . 6
⊢ (𝑥 ∈ 𝐼 → ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)}) → (𝑥 ∩ 𝑦) ∈ 𝐼)) |
33 | 32 | com12 32 |
. . . . 5
⊢ ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)}) → (𝑥 ∈ 𝐼 → (𝑥 ∩ 𝑦) ∈ 𝐼)) |
34 | 33 | 3expia 1119 |
. . . 4
⊢ ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)} → (𝑥 ∈ 𝐼 → (𝑥 ∩ 𝑦) ∈ 𝐼))) |
35 | 34 | rexlimivv 3220 |
. . 3
⊢
(∃𝑐 ∈
ℝ ∃𝑑 ∈
ℝ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑)} → (𝑥 ∈ 𝐼 → (𝑥 ∩ 𝑦) ∈ 𝐼)) |
36 | 2, 35 | sylbi 216 |
. 2
⊢ (𝑦 ∈ 𝐼 → (𝑥 ∈ 𝐼 → (𝑥 ∩ 𝑦) ∈ 𝐼)) |
37 | 36 | impcom 407 |
1
⊢ ((𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼) → (𝑥 ∩ 𝑦) ∈ 𝐼) |