Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoreclin Structured version   Visualization version   GIF version

Theorem icoreclin 35528
Description: The set of closed-below, open-above intervals of reals is closed under finite intersection. (Contributed by ML, 27-Jul-2020.)
Hypothesis
Ref Expression
isbasisrelowl.1 𝐼 = ([,) “ (ℝ × ℝ))
Assertion
Ref Expression
icoreclin ((𝑥𝐼𝑦𝐼) → (𝑥𝑦) ∈ 𝐼)
Distinct variable group:   𝑥,𝐼,𝑦

Proof of Theorem icoreclin
Dummy variables 𝑧 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isbasisrelowl.1 . . . 4 𝐼 = ([,) “ (ℝ × ℝ))
21icoreelrnab 35525 . . 3 (𝑦𝐼 ↔ ∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})
31icoreelrnab 35525 . . . . . . 7 (𝑥𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})
41isbasisrelowllem1 35526 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑏𝑑)) → (𝑥𝑦) ∈ 𝐼)
54ex 413 . . . . . . . . . . . 12 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) → ((𝑎𝑐𝑏𝑑) → (𝑥𝑦) ∈ 𝐼))
61isbasisrelowllem2 35527 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (𝑥𝑦) ∈ 𝐼)
76ex 413 . . . . . . . . . . . 12 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) → ((𝑎𝑐𝑑𝑏) → (𝑥𝑦) ∈ 𝐼))
85, 7jaod 856 . . . . . . . . . . 11 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) → (((𝑎𝑐𝑏𝑑) ∨ (𝑎𝑐𝑑𝑏)) → (𝑥𝑦) ∈ 𝐼))
9 incom 4135 . . . . . . . . . . . . . . 15 (𝑦𝑥) = (𝑥𝑦)
101isbasisrelowllem2 35527 . . . . . . . . . . . . . . 15 ((((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})) ∧ (𝑐𝑎𝑏𝑑)) → (𝑦𝑥) ∈ 𝐼)
119, 10eqeltrrid 2844 . . . . . . . . . . . . . 14 ((((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})) ∧ (𝑐𝑎𝑏𝑑)) → (𝑥𝑦) ∈ 𝐼)
1211ancom1s 650 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑐𝑎𝑏𝑑)) → (𝑥𝑦) ∈ 𝐼)
1312ex 413 . . . . . . . . . . . 12 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) → ((𝑐𝑎𝑏𝑑) → (𝑥𝑦) ∈ 𝐼))
141isbasisrelowllem1 35526 . . . . . . . . . . . . . . 15 ((((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})) ∧ (𝑐𝑎𝑑𝑏)) → (𝑦𝑥) ∈ 𝐼)
159, 14eqeltrrid 2844 . . . . . . . . . . . . . 14 ((((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})) ∧ (𝑐𝑎𝑑𝑏)) → (𝑥𝑦) ∈ 𝐼)
1615ancom1s 650 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑐𝑎𝑑𝑏)) → (𝑥𝑦) ∈ 𝐼)
1716ex 413 . . . . . . . . . . . 12 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) → ((𝑐𝑎𝑑𝑏) → (𝑥𝑦) ∈ 𝐼))
1813, 17jaod 856 . . . . . . . . . . 11 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) → (((𝑐𝑎𝑏𝑑) ∨ (𝑐𝑎𝑑𝑏)) → (𝑥𝑦) ∈ 𝐼))
19 3simpa 1147 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ))
20 3simpa 1147 . . . . . . . . . . . 12 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ))
21 letric 11075 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝑎𝑐𝑐𝑎))
22 letric 11075 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑏𝑑𝑑𝑏))
2321, 22anim12i 613 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ) ∧ (𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → ((𝑎𝑐𝑐𝑎) ∧ (𝑏𝑑𝑑𝑏)))
24 anddi 1008 . . . . . . . . . . . . . 14 (((𝑎𝑐𝑐𝑎) ∧ (𝑏𝑑𝑑𝑏)) ↔ (((𝑎𝑐𝑏𝑑) ∨ (𝑎𝑐𝑑𝑏)) ∨ ((𝑐𝑎𝑏𝑑) ∨ (𝑐𝑎𝑑𝑏))))
2523, 24sylib 217 . . . . . . . . . . . . 13 (((𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ) ∧ (𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (((𝑎𝑐𝑏𝑑) ∨ (𝑎𝑐𝑑𝑏)) ∨ ((𝑐𝑎𝑏𝑑) ∨ (𝑐𝑎𝑑𝑏))))
2625an4s 657 . . . . . . . . . . . 12 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (((𝑎𝑐𝑏𝑑) ∨ (𝑎𝑐𝑑𝑏)) ∨ ((𝑐𝑎𝑏𝑑) ∨ (𝑐𝑎𝑑𝑏))))
2719, 20, 26syl2an 596 . . . . . . . . . . 11 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) → (((𝑎𝑐𝑏𝑑) ∨ (𝑎𝑐𝑑𝑏)) ∨ ((𝑐𝑎𝑏𝑑) ∨ (𝑐𝑎𝑑𝑏))))
288, 18, 27mpjaod 857 . . . . . . . . . 10 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) → (𝑥𝑦) ∈ 𝐼)
2928ex 413 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) → ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → (𝑥𝑦) ∈ 𝐼))
30293expia 1120 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)} → ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → (𝑥𝑦) ∈ 𝐼)))
3130rexlimivv 3221 . . . . . . 7 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)} → ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → (𝑥𝑦) ∈ 𝐼))
323, 31sylbi 216 . . . . . 6 (𝑥𝐼 → ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → (𝑥𝑦) ∈ 𝐼))
3332com12 32 . . . . 5 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → (𝑥𝐼 → (𝑥𝑦) ∈ 𝐼))
34333expia 1120 . . . 4 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)} → (𝑥𝐼 → (𝑥𝑦) ∈ 𝐼)))
3534rexlimivv 3221 . . 3 (∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)} → (𝑥𝐼 → (𝑥𝑦) ∈ 𝐼))
362, 35sylbi 216 . 2 (𝑦𝐼 → (𝑥𝐼 → (𝑥𝑦) ∈ 𝐼))
3736impcom 408 1 ((𝑥𝐼𝑦𝐼) → (𝑥𝑦) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  {crab 3068  cin 3886   class class class wbr 5074   × cxp 5587  cima 5592  cr 10870   < clt 11009  cle 11010  [,)cico 13081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-ico 13085
This theorem is referenced by:  isbasisrelowl  35529
  Copyright terms: Public domain W3C validator