Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoreclin Structured version   Visualization version   GIF version

Theorem icoreclin 36694
Description: The set of closed-below, open-above intervals of reals is closed under finite intersection. (Contributed by ML, 27-Jul-2020.)
Hypothesis
Ref Expression
isbasisrelowl.1 𝐼 = ([,) “ (ℝ × ℝ))
Assertion
Ref Expression
icoreclin ((𝑥𝐼𝑦𝐼) → (𝑥𝑦) ∈ 𝐼)
Distinct variable group:   𝑥,𝐼,𝑦

Proof of Theorem icoreclin
Dummy variables 𝑧 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isbasisrelowl.1 . . . 4 𝐼 = ([,) “ (ℝ × ℝ))
21icoreelrnab 36691 . . 3 (𝑦𝐼 ↔ ∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})
31icoreelrnab 36691 . . . . . . 7 (𝑥𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})
41isbasisrelowllem1 36692 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑏𝑑)) → (𝑥𝑦) ∈ 𝐼)
54ex 412 . . . . . . . . . . . 12 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) → ((𝑎𝑐𝑏𝑑) → (𝑥𝑦) ∈ 𝐼))
61isbasisrelowllem2 36693 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (𝑥𝑦) ∈ 𝐼)
76ex 412 . . . . . . . . . . . 12 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) → ((𝑎𝑐𝑑𝑏) → (𝑥𝑦) ∈ 𝐼))
85, 7jaod 856 . . . . . . . . . . 11 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) → (((𝑎𝑐𝑏𝑑) ∨ (𝑎𝑐𝑑𝑏)) → (𝑥𝑦) ∈ 𝐼))
9 incom 4193 . . . . . . . . . . . . . . 15 (𝑦𝑥) = (𝑥𝑦)
101isbasisrelowllem2 36693 . . . . . . . . . . . . . . 15 ((((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})) ∧ (𝑐𝑎𝑏𝑑)) → (𝑦𝑥) ∈ 𝐼)
119, 10eqeltrrid 2830 . . . . . . . . . . . . . 14 ((((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})) ∧ (𝑐𝑎𝑏𝑑)) → (𝑥𝑦) ∈ 𝐼)
1211ancom1s 650 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑐𝑎𝑏𝑑)) → (𝑥𝑦) ∈ 𝐼)
1312ex 412 . . . . . . . . . . . 12 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) → ((𝑐𝑎𝑏𝑑) → (𝑥𝑦) ∈ 𝐼))
141isbasisrelowllem1 36692 . . . . . . . . . . . . . . 15 ((((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})) ∧ (𝑐𝑎𝑑𝑏)) → (𝑦𝑥) ∈ 𝐼)
159, 14eqeltrrid 2830 . . . . . . . . . . . . . 14 ((((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) ∧ (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})) ∧ (𝑐𝑎𝑑𝑏)) → (𝑥𝑦) ∈ 𝐼)
1615ancom1s 650 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑐𝑎𝑑𝑏)) → (𝑥𝑦) ∈ 𝐼)
1716ex 412 . . . . . . . . . . . 12 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) → ((𝑐𝑎𝑑𝑏) → (𝑥𝑦) ∈ 𝐼))
1813, 17jaod 856 . . . . . . . . . . 11 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) → (((𝑐𝑎𝑏𝑑) ∨ (𝑐𝑎𝑑𝑏)) → (𝑥𝑦) ∈ 𝐼))
19 3simpa 1145 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ))
20 3simpa 1145 . . . . . . . . . . . 12 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ))
21 letric 11310 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝑎𝑐𝑐𝑎))
22 letric 11310 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑏𝑑𝑑𝑏))
2321, 22anim12i 612 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ) ∧ (𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → ((𝑎𝑐𝑐𝑎) ∧ (𝑏𝑑𝑑𝑏)))
24 anddi 1007 . . . . . . . . . . . . . 14 (((𝑎𝑐𝑐𝑎) ∧ (𝑏𝑑𝑑𝑏)) ↔ (((𝑎𝑐𝑏𝑑) ∨ (𝑎𝑐𝑑𝑏)) ∨ ((𝑐𝑎𝑏𝑑) ∨ (𝑐𝑎𝑑𝑏))))
2523, 24sylib 217 . . . . . . . . . . . . 13 (((𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ) ∧ (𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (((𝑎𝑐𝑏𝑑) ∨ (𝑎𝑐𝑑𝑏)) ∨ ((𝑐𝑎𝑏𝑑) ∨ (𝑐𝑎𝑑𝑏))))
2625an4s 657 . . . . . . . . . . . 12 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (((𝑎𝑐𝑏𝑑) ∨ (𝑎𝑐𝑑𝑏)) ∨ ((𝑐𝑎𝑏𝑑) ∨ (𝑐𝑎𝑑𝑏))))
2719, 20, 26syl2an 595 . . . . . . . . . . 11 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) → (((𝑎𝑐𝑏𝑑) ∨ (𝑎𝑐𝑑𝑏)) ∨ ((𝑐𝑎𝑏𝑑) ∨ (𝑐𝑎𝑑𝑏))))
288, 18, 27mpjaod 857 . . . . . . . . . 10 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) → (𝑥𝑦) ∈ 𝐼)
2928ex 412 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) → ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → (𝑥𝑦) ∈ 𝐼))
30293expia 1118 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)} → ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → (𝑥𝑦) ∈ 𝐼)))
3130rexlimivv 3191 . . . . . . 7 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)} → ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → (𝑥𝑦) ∈ 𝐼))
323, 31sylbi 216 . . . . . 6 (𝑥𝐼 → ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → (𝑥𝑦) ∈ 𝐼))
3332com12 32 . . . . 5 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → (𝑥𝐼 → (𝑥𝑦) ∈ 𝐼))
34333expia 1118 . . . 4 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)} → (𝑥𝐼 → (𝑥𝑦) ∈ 𝐼)))
3534rexlimivv 3191 . . 3 (∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)} → (𝑥𝐼 → (𝑥𝑦) ∈ 𝐼))
362, 35sylbi 216 . 2 (𝑦𝐼 → (𝑥𝐼 → (𝑥𝑦) ∈ 𝐼))
3736impcom 407 1 ((𝑥𝐼𝑦𝐼) → (𝑥𝑦) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 844  w3a 1084   = wceq 1533  wcel 2098  wrex 3062  {crab 3424  cin 3939   class class class wbr 5138   × cxp 5664  cima 5669  cr 11104   < clt 11244  cle 11245  [,)cico 13322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-pre-lttri 11179  ax-pre-lttrn 11180
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-po 5578  df-so 5579  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-ico 13326
This theorem is referenced by:  isbasisrelowl  36695
  Copyright terms: Public domain W3C validator