MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsproplem2 Structured version   Visualization version   GIF version

Theorem addsproplem2 27853
Description: Lemma for surreal addition properties. When proving closure for operations defined using norec and norec2, it is a strictly stronger statement to say that the cut defined is actually a cut than it is to say that the operation is closed. We will often prove this stronger statement. Here, we do so for the cut involved in surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
addsproplem2.2 (𝜑𝑋 No )
addsproplem2.3 (𝜑𝑌 No )
Assertion
Ref Expression
addsproplem2 (𝜑 → ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}))
Distinct variable groups:   𝑋,𝑞,𝑡   𝑋,𝑝,𝑤   𝑌,𝑝,𝑤   𝑌,𝑞,𝑡   𝑥,𝑍,𝑦,𝑧   𝜑,𝑝,𝑟,𝑤   𝑋,𝑙,𝑚,𝑟,𝑠,𝑥,𝑦,𝑧   𝑌,𝑙,𝑚,𝑟,𝑠,𝑥,𝑦,𝑧   𝜑,𝑙,𝑞,𝑚,𝑠   𝜑,𝑡,𝑟,𝑠   𝑝,𝑙,𝑞,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝑍(𝑤,𝑡,𝑚,𝑠,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem addsproplem2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6853 . . . . 5 ( L ‘𝑋) ∈ V
21abrexex 7920 . . . 4 {𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∈ V
32a1i 11 . . 3 (𝜑 → {𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∈ V)
4 fvex 6853 . . . . 5 ( L ‘𝑌) ∈ V
54abrexex 7920 . . . 4 {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)} ∈ V
65a1i 11 . . 3 (𝜑 → {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)} ∈ V)
73, 6unexd 7710 . 2 (𝜑 → ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) ∈ V)
8 fvex 6853 . . . . 5 ( R ‘𝑋) ∈ V
98abrexex 7920 . . . 4 {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∈ V
109a1i 11 . . 3 (𝜑 → {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∈ V)
11 fvex 6853 . . . . 5 ( R ‘𝑌) ∈ V
1211abrexex 7920 . . . 4 {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)} ∈ V
1312a1i 11 . . 3 (𝜑 → {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)} ∈ V)
1410, 13unexd 7710 . 2 (𝜑 → ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}) ∈ V)
15 addsproplem.1 . . . . . . . . 9 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
1615adantr 480 . . . . . . . 8 ((𝜑𝑙 ∈ ( L ‘𝑋)) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
17 leftssno 27768 . . . . . . . . . 10 ( L ‘𝑋) ⊆ No
1817sseli 3939 . . . . . . . . 9 (𝑙 ∈ ( L ‘𝑋) → 𝑙 No )
1918adantl 481 . . . . . . . 8 ((𝜑𝑙 ∈ ( L ‘𝑋)) → 𝑙 No )
20 addsproplem2.3 . . . . . . . . 9 (𝜑𝑌 No )
2120adantr 480 . . . . . . . 8 ((𝜑𝑙 ∈ ( L ‘𝑋)) → 𝑌 No )
22 0sno 27714 . . . . . . . . 9 0s No
2322a1i 11 . . . . . . . 8 ((𝜑𝑙 ∈ ( L ‘𝑋)) → 0s No )
24 bday0s 27716 . . . . . . . . . . . . 13 ( bday ‘ 0s ) = ∅
2524oveq2i 7380 . . . . . . . . . . . 12 (( bday 𝑙) +no ( bday ‘ 0s )) = (( bday 𝑙) +no ∅)
26 bdayelon 27664 . . . . . . . . . . . . 13 ( bday 𝑙) ∈ On
27 naddrid 8624 . . . . . . . . . . . . 13 (( bday 𝑙) ∈ On → (( bday 𝑙) +no ∅) = ( bday 𝑙))
2826, 27ax-mp 5 . . . . . . . . . . . 12 (( bday 𝑙) +no ∅) = ( bday 𝑙)
2925, 28eqtri 2752 . . . . . . . . . . 11 (( bday 𝑙) +no ( bday ‘ 0s )) = ( bday 𝑙)
3029uneq2i 4124 . . . . . . . . . 10 ((( bday 𝑙) +no ( bday 𝑌)) ∪ (( bday 𝑙) +no ( bday ‘ 0s ))) = ((( bday 𝑙) +no ( bday 𝑌)) ∪ ( bday 𝑙))
31 bdayelon 27664 . . . . . . . . . . . 12 ( bday 𝑌) ∈ On
32 naddword1 8632 . . . . . . . . . . . 12 ((( bday 𝑙) ∈ On ∧ ( bday 𝑌) ∈ On) → ( bday 𝑙) ⊆ (( bday 𝑙) +no ( bday 𝑌)))
3326, 31, 32mp2an 692 . . . . . . . . . . 11 ( bday 𝑙) ⊆ (( bday 𝑙) +no ( bday 𝑌))
34 ssequn2 4148 . . . . . . . . . . 11 (( bday 𝑙) ⊆ (( bday 𝑙) +no ( bday 𝑌)) ↔ ((( bday 𝑙) +no ( bday 𝑌)) ∪ ( bday 𝑙)) = (( bday 𝑙) +no ( bday 𝑌)))
3533, 34mpbi 230 . . . . . . . . . 10 ((( bday 𝑙) +no ( bday 𝑌)) ∪ ( bday 𝑙)) = (( bday 𝑙) +no ( bday 𝑌))
3630, 35eqtri 2752 . . . . . . . . 9 ((( bday 𝑙) +no ( bday 𝑌)) ∪ (( bday 𝑙) +no ( bday ‘ 0s ))) = (( bday 𝑙) +no ( bday 𝑌))
37 leftssold 27766 . . . . . . . . . . . . . 14 ( L ‘𝑋) ⊆ ( O ‘( bday 𝑋))
3837sseli 3939 . . . . . . . . . . . . 13 (𝑙 ∈ ( L ‘𝑋) → 𝑙 ∈ ( O ‘( bday 𝑋)))
39 bdayelon 27664 . . . . . . . . . . . . . 14 ( bday 𝑋) ∈ On
40 oldbday 27788 . . . . . . . . . . . . . 14 ((( bday 𝑋) ∈ On ∧ 𝑙 No ) → (𝑙 ∈ ( O ‘( bday 𝑋)) ↔ ( bday 𝑙) ∈ ( bday 𝑋)))
4139, 18, 40sylancr 587 . . . . . . . . . . . . 13 (𝑙 ∈ ( L ‘𝑋) → (𝑙 ∈ ( O ‘( bday 𝑋)) ↔ ( bday 𝑙) ∈ ( bday 𝑋)))
4238, 41mpbid 232 . . . . . . . . . . . 12 (𝑙 ∈ ( L ‘𝑋) → ( bday 𝑙) ∈ ( bday 𝑋))
43 naddel1 8628 . . . . . . . . . . . . 13 ((( bday 𝑙) ∈ On ∧ ( bday 𝑋) ∈ On ∧ ( bday 𝑌) ∈ On) → (( bday 𝑙) ∈ ( bday 𝑋) ↔ (( bday 𝑙) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
4426, 39, 31, 43mp3an 1463 . . . . . . . . . . . 12 (( bday 𝑙) ∈ ( bday 𝑋) ↔ (( bday 𝑙) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
4542, 44sylib 218 . . . . . . . . . . 11 (𝑙 ∈ ( L ‘𝑋) → (( bday 𝑙) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
4645adantl 481 . . . . . . . . . 10 ((𝜑𝑙 ∈ ( L ‘𝑋)) → (( bday 𝑙) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
47 elun1 4141 . . . . . . . . . 10 ((( bday 𝑙) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)) → (( bday 𝑙) +no ( bday 𝑌)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
4846, 47syl 17 . . . . . . . . 9 ((𝜑𝑙 ∈ ( L ‘𝑋)) → (( bday 𝑙) +no ( bday 𝑌)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
4936, 48eqeltrid 2832 . . . . . . . 8 ((𝜑𝑙 ∈ ( L ‘𝑋)) → ((( bday 𝑙) +no ( bday 𝑌)) ∪ (( bday 𝑙) +no ( bday ‘ 0s ))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
5016, 19, 21, 23, 49addsproplem1 27852 . . . . . . 7 ((𝜑𝑙 ∈ ( L ‘𝑋)) → ((𝑙 +s 𝑌) ∈ No ∧ (𝑌 <s 0s → (𝑌 +s 𝑙) <s ( 0s +s 𝑙))))
5150simpld 494 . . . . . 6 ((𝜑𝑙 ∈ ( L ‘𝑋)) → (𝑙 +s 𝑌) ∈ No )
52 eleq1a 2823 . . . . . 6 ((𝑙 +s 𝑌) ∈ No → (𝑝 = (𝑙 +s 𝑌) → 𝑝 No ))
5351, 52syl 17 . . . . 5 ((𝜑𝑙 ∈ ( L ‘𝑋)) → (𝑝 = (𝑙 +s 𝑌) → 𝑝 No ))
5453rexlimdva 3134 . . . 4 (𝜑 → (∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌) → 𝑝 No ))
5554abssdv 4028 . . 3 (𝜑 → {𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ⊆ No )
5615adantr 480 . . . . . . . 8 ((𝜑𝑚 ∈ ( L ‘𝑌)) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
57 addsproplem2.2 . . . . . . . . 9 (𝜑𝑋 No )
5857adantr 480 . . . . . . . 8 ((𝜑𝑚 ∈ ( L ‘𝑌)) → 𝑋 No )
59 leftssno 27768 . . . . . . . . . 10 ( L ‘𝑌) ⊆ No
6059sseli 3939 . . . . . . . . 9 (𝑚 ∈ ( L ‘𝑌) → 𝑚 No )
6160adantl 481 . . . . . . . 8 ((𝜑𝑚 ∈ ( L ‘𝑌)) → 𝑚 No )
6222a1i 11 . . . . . . . 8 ((𝜑𝑚 ∈ ( L ‘𝑌)) → 0s No )
6324oveq2i 7380 . . . . . . . . . . . 12 (( bday 𝑋) +no ( bday ‘ 0s )) = (( bday 𝑋) +no ∅)
64 naddrid 8624 . . . . . . . . . . . . 13 (( bday 𝑋) ∈ On → (( bday 𝑋) +no ∅) = ( bday 𝑋))
6539, 64ax-mp 5 . . . . . . . . . . . 12 (( bday 𝑋) +no ∅) = ( bday 𝑋)
6663, 65eqtri 2752 . . . . . . . . . . 11 (( bday 𝑋) +no ( bday ‘ 0s )) = ( bday 𝑋)
6766uneq2i 4124 . . . . . . . . . 10 ((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday ‘ 0s ))) = ((( bday 𝑋) +no ( bday 𝑚)) ∪ ( bday 𝑋))
68 bdayelon 27664 . . . . . . . . . . . 12 ( bday 𝑚) ∈ On
69 naddword1 8632 . . . . . . . . . . . 12 ((( bday 𝑋) ∈ On ∧ ( bday 𝑚) ∈ On) → ( bday 𝑋) ⊆ (( bday 𝑋) +no ( bday 𝑚)))
7039, 68, 69mp2an 692 . . . . . . . . . . 11 ( bday 𝑋) ⊆ (( bday 𝑋) +no ( bday 𝑚))
71 ssequn2 4148 . . . . . . . . . . 11 (( bday 𝑋) ⊆ (( bday 𝑋) +no ( bday 𝑚)) ↔ ((( bday 𝑋) +no ( bday 𝑚)) ∪ ( bday 𝑋)) = (( bday 𝑋) +no ( bday 𝑚)))
7270, 71mpbi 230 . . . . . . . . . 10 ((( bday 𝑋) +no ( bday 𝑚)) ∪ ( bday 𝑋)) = (( bday 𝑋) +no ( bday 𝑚))
7367, 72eqtri 2752 . . . . . . . . 9 ((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday ‘ 0s ))) = (( bday 𝑋) +no ( bday 𝑚))
74 leftssold 27766 . . . . . . . . . . . . . 14 ( L ‘𝑌) ⊆ ( O ‘( bday 𝑌))
7574sseli 3939 . . . . . . . . . . . . 13 (𝑚 ∈ ( L ‘𝑌) → 𝑚 ∈ ( O ‘( bday 𝑌)))
76 oldbday 27788 . . . . . . . . . . . . . 14 ((( bday 𝑌) ∈ On ∧ 𝑚 No ) → (𝑚 ∈ ( O ‘( bday 𝑌)) ↔ ( bday 𝑚) ∈ ( bday 𝑌)))
7731, 60, 76sylancr 587 . . . . . . . . . . . . 13 (𝑚 ∈ ( L ‘𝑌) → (𝑚 ∈ ( O ‘( bday 𝑌)) ↔ ( bday 𝑚) ∈ ( bday 𝑌)))
7875, 77mpbid 232 . . . . . . . . . . . 12 (𝑚 ∈ ( L ‘𝑌) → ( bday 𝑚) ∈ ( bday 𝑌))
79 naddel2 8629 . . . . . . . . . . . . 13 ((( bday 𝑚) ∈ On ∧ ( bday 𝑌) ∈ On ∧ ( bday 𝑋) ∈ On) → (( bday 𝑚) ∈ ( bday 𝑌) ↔ (( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
8068, 31, 39, 79mp3an 1463 . . . . . . . . . . . 12 (( bday 𝑚) ∈ ( bday 𝑌) ↔ (( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
8178, 80sylib 218 . . . . . . . . . . 11 (𝑚 ∈ ( L ‘𝑌) → (( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
8281adantl 481 . . . . . . . . . 10 ((𝜑𝑚 ∈ ( L ‘𝑌)) → (( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
83 elun1 4141 . . . . . . . . . 10 ((( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)) → (( bday 𝑋) +no ( bday 𝑚)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
8482, 83syl 17 . . . . . . . . 9 ((𝜑𝑚 ∈ ( L ‘𝑌)) → (( bday 𝑋) +no ( bday 𝑚)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
8573, 84eqeltrid 2832 . . . . . . . 8 ((𝜑𝑚 ∈ ( L ‘𝑌)) → ((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday ‘ 0s ))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
8656, 58, 61, 62, 85addsproplem1 27852 . . . . . . 7 ((𝜑𝑚 ∈ ( L ‘𝑌)) → ((𝑋 +s 𝑚) ∈ No ∧ (𝑚 <s 0s → (𝑚 +s 𝑋) <s ( 0s +s 𝑋))))
8786simpld 494 . . . . . 6 ((𝜑𝑚 ∈ ( L ‘𝑌)) → (𝑋 +s 𝑚) ∈ No )
88 eleq1a 2823 . . . . . 6 ((𝑋 +s 𝑚) ∈ No → (𝑞 = (𝑋 +s 𝑚) → 𝑞 No ))
8987, 88syl 17 . . . . 5 ((𝜑𝑚 ∈ ( L ‘𝑌)) → (𝑞 = (𝑋 +s 𝑚) → 𝑞 No ))
9089rexlimdva 3134 . . . 4 (𝜑 → (∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚) → 𝑞 No ))
9190abssdv 4028 . . 3 (𝜑 → {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)} ⊆ No )
9255, 91unssd 4151 . 2 (𝜑 → ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) ⊆ No )
9315adantr 480 . . . . . . . 8 ((𝜑𝑟 ∈ ( R ‘𝑋)) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
94 rightssno 27769 . . . . . . . . . 10 ( R ‘𝑋) ⊆ No
9594sseli 3939 . . . . . . . . 9 (𝑟 ∈ ( R ‘𝑋) → 𝑟 No )
9695adantl 481 . . . . . . . 8 ((𝜑𝑟 ∈ ( R ‘𝑋)) → 𝑟 No )
9720adantr 480 . . . . . . . 8 ((𝜑𝑟 ∈ ( R ‘𝑋)) → 𝑌 No )
9822a1i 11 . . . . . . . 8 ((𝜑𝑟 ∈ ( R ‘𝑋)) → 0s No )
9924oveq2i 7380 . . . . . . . . . . . 12 (( bday 𝑟) +no ( bday ‘ 0s )) = (( bday 𝑟) +no ∅)
100 bdayelon 27664 . . . . . . . . . . . . 13 ( bday 𝑟) ∈ On
101 naddrid 8624 . . . . . . . . . . . . 13 (( bday 𝑟) ∈ On → (( bday 𝑟) +no ∅) = ( bday 𝑟))
102100, 101ax-mp 5 . . . . . . . . . . . 12 (( bday 𝑟) +no ∅) = ( bday 𝑟)
10399, 102eqtri 2752 . . . . . . . . . . 11 (( bday 𝑟) +no ( bday ‘ 0s )) = ( bday 𝑟)
104103uneq2i 4124 . . . . . . . . . 10 ((( bday 𝑟) +no ( bday 𝑌)) ∪ (( bday 𝑟) +no ( bday ‘ 0s ))) = ((( bday 𝑟) +no ( bday 𝑌)) ∪ ( bday 𝑟))
105 naddword1 8632 . . . . . . . . . . . 12 ((( bday 𝑟) ∈ On ∧ ( bday 𝑌) ∈ On) → ( bday 𝑟) ⊆ (( bday 𝑟) +no ( bday 𝑌)))
106100, 31, 105mp2an 692 . . . . . . . . . . 11 ( bday 𝑟) ⊆ (( bday 𝑟) +no ( bday 𝑌))
107 ssequn2 4148 . . . . . . . . . . 11 (( bday 𝑟) ⊆ (( bday 𝑟) +no ( bday 𝑌)) ↔ ((( bday 𝑟) +no ( bday 𝑌)) ∪ ( bday 𝑟)) = (( bday 𝑟) +no ( bday 𝑌)))
108106, 107mpbi 230 . . . . . . . . . 10 ((( bday 𝑟) +no ( bday 𝑌)) ∪ ( bday 𝑟)) = (( bday 𝑟) +no ( bday 𝑌))
109104, 108eqtri 2752 . . . . . . . . 9 ((( bday 𝑟) +no ( bday 𝑌)) ∪ (( bday 𝑟) +no ( bday ‘ 0s ))) = (( bday 𝑟) +no ( bday 𝑌))
110 rightssold 27767 . . . . . . . . . . . . . 14 ( R ‘𝑋) ⊆ ( O ‘( bday 𝑋))
111110sseli 3939 . . . . . . . . . . . . 13 (𝑟 ∈ ( R ‘𝑋) → 𝑟 ∈ ( O ‘( bday 𝑋)))
112 oldbday 27788 . . . . . . . . . . . . . 14 ((( bday 𝑋) ∈ On ∧ 𝑟 No ) → (𝑟 ∈ ( O ‘( bday 𝑋)) ↔ ( bday 𝑟) ∈ ( bday 𝑋)))
11339, 95, 112sylancr 587 . . . . . . . . . . . . 13 (𝑟 ∈ ( R ‘𝑋) → (𝑟 ∈ ( O ‘( bday 𝑋)) ↔ ( bday 𝑟) ∈ ( bday 𝑋)))
114111, 113mpbid 232 . . . . . . . . . . . 12 (𝑟 ∈ ( R ‘𝑋) → ( bday 𝑟) ∈ ( bday 𝑋))
115 naddel1 8628 . . . . . . . . . . . . 13 ((( bday 𝑟) ∈ On ∧ ( bday 𝑋) ∈ On ∧ ( bday 𝑌) ∈ On) → (( bday 𝑟) ∈ ( bday 𝑋) ↔ (( bday 𝑟) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
116100, 39, 31, 115mp3an 1463 . . . . . . . . . . . 12 (( bday 𝑟) ∈ ( bday 𝑋) ↔ (( bday 𝑟) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
117114, 116sylib 218 . . . . . . . . . . 11 (𝑟 ∈ ( R ‘𝑋) → (( bday 𝑟) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
118117adantl 481 . . . . . . . . . 10 ((𝜑𝑟 ∈ ( R ‘𝑋)) → (( bday 𝑟) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
119 elun1 4141 . . . . . . . . . 10 ((( bday 𝑟) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)) → (( bday 𝑟) +no ( bday 𝑌)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
120118, 119syl 17 . . . . . . . . 9 ((𝜑𝑟 ∈ ( R ‘𝑋)) → (( bday 𝑟) +no ( bday 𝑌)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
121109, 120eqeltrid 2832 . . . . . . . 8 ((𝜑𝑟 ∈ ( R ‘𝑋)) → ((( bday 𝑟) +no ( bday 𝑌)) ∪ (( bday 𝑟) +no ( bday ‘ 0s ))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
12293, 96, 97, 98, 121addsproplem1 27852 . . . . . . 7 ((𝜑𝑟 ∈ ( R ‘𝑋)) → ((𝑟 +s 𝑌) ∈ No ∧ (𝑌 <s 0s → (𝑌 +s 𝑟) <s ( 0s +s 𝑟))))
123122simpld 494 . . . . . 6 ((𝜑𝑟 ∈ ( R ‘𝑋)) → (𝑟 +s 𝑌) ∈ No )
124 eleq1a 2823 . . . . . 6 ((𝑟 +s 𝑌) ∈ No → (𝑤 = (𝑟 +s 𝑌) → 𝑤 No ))
125123, 124syl 17 . . . . 5 ((𝜑𝑟 ∈ ( R ‘𝑋)) → (𝑤 = (𝑟 +s 𝑌) → 𝑤 No ))
126125rexlimdva 3134 . . . 4 (𝜑 → (∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌) → 𝑤 No ))
127126abssdv 4028 . . 3 (𝜑 → {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ⊆ No )
12815adantr 480 . . . . . . . 8 ((𝜑𝑠 ∈ ( R ‘𝑌)) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
12957adantr 480 . . . . . . . 8 ((𝜑𝑠 ∈ ( R ‘𝑌)) → 𝑋 No )
130 rightssno 27769 . . . . . . . . . 10 ( R ‘𝑌) ⊆ No
131130sseli 3939 . . . . . . . . 9 (𝑠 ∈ ( R ‘𝑌) → 𝑠 No )
132131adantl 481 . . . . . . . 8 ((𝜑𝑠 ∈ ( R ‘𝑌)) → 𝑠 No )
13322a1i 11 . . . . . . . 8 ((𝜑𝑠 ∈ ( R ‘𝑌)) → 0s No )
13466uneq2i 4124 . . . . . . . . . 10 ((( bday 𝑋) +no ( bday 𝑠)) ∪ (( bday 𝑋) +no ( bday ‘ 0s ))) = ((( bday 𝑋) +no ( bday 𝑠)) ∪ ( bday 𝑋))
135 bdayelon 27664 . . . . . . . . . . . 12 ( bday 𝑠) ∈ On
136 naddword1 8632 . . . . . . . . . . . 12 ((( bday 𝑋) ∈ On ∧ ( bday 𝑠) ∈ On) → ( bday 𝑋) ⊆ (( bday 𝑋) +no ( bday 𝑠)))
13739, 135, 136mp2an 692 . . . . . . . . . . 11 ( bday 𝑋) ⊆ (( bday 𝑋) +no ( bday 𝑠))
138 ssequn2 4148 . . . . . . . . . . 11 (( bday 𝑋) ⊆ (( bday 𝑋) +no ( bday 𝑠)) ↔ ((( bday 𝑋) +no ( bday 𝑠)) ∪ ( bday 𝑋)) = (( bday 𝑋) +no ( bday 𝑠)))
139137, 138mpbi 230 . . . . . . . . . 10 ((( bday 𝑋) +no ( bday 𝑠)) ∪ ( bday 𝑋)) = (( bday 𝑋) +no ( bday 𝑠))
140134, 139eqtri 2752 . . . . . . . . 9 ((( bday 𝑋) +no ( bday 𝑠)) ∪ (( bday 𝑋) +no ( bday ‘ 0s ))) = (( bday 𝑋) +no ( bday 𝑠))
141 rightssold 27767 . . . . . . . . . . . . . 14 ( R ‘𝑌) ⊆ ( O ‘( bday 𝑌))
142141sseli 3939 . . . . . . . . . . . . 13 (𝑠 ∈ ( R ‘𝑌) → 𝑠 ∈ ( O ‘( bday 𝑌)))
143 oldbday 27788 . . . . . . . . . . . . . 14 ((( bday 𝑌) ∈ On ∧ 𝑠 No ) → (𝑠 ∈ ( O ‘( bday 𝑌)) ↔ ( bday 𝑠) ∈ ( bday 𝑌)))
14431, 131, 143sylancr 587 . . . . . . . . . . . . 13 (𝑠 ∈ ( R ‘𝑌) → (𝑠 ∈ ( O ‘( bday 𝑌)) ↔ ( bday 𝑠) ∈ ( bday 𝑌)))
145142, 144mpbid 232 . . . . . . . . . . . 12 (𝑠 ∈ ( R ‘𝑌) → ( bday 𝑠) ∈ ( bday 𝑌))
146 naddel2 8629 . . . . . . . . . . . . 13 ((( bday 𝑠) ∈ On ∧ ( bday 𝑌) ∈ On ∧ ( bday 𝑋) ∈ On) → (( bday 𝑠) ∈ ( bday 𝑌) ↔ (( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
147135, 31, 39, 146mp3an 1463 . . . . . . . . . . . 12 (( bday 𝑠) ∈ ( bday 𝑌) ↔ (( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
148145, 147sylib 218 . . . . . . . . . . 11 (𝑠 ∈ ( R ‘𝑌) → (( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
149148adantl 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ ( R ‘𝑌)) → (( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
150 elun1 4141 . . . . . . . . . 10 ((( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)) → (( bday 𝑋) +no ( bday 𝑠)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
151149, 150syl 17 . . . . . . . . 9 ((𝜑𝑠 ∈ ( R ‘𝑌)) → (( bday 𝑋) +no ( bday 𝑠)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
152140, 151eqeltrid 2832 . . . . . . . 8 ((𝜑𝑠 ∈ ( R ‘𝑌)) → ((( bday 𝑋) +no ( bday 𝑠)) ∪ (( bday 𝑋) +no ( bday ‘ 0s ))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
153128, 129, 132, 133, 152addsproplem1 27852 . . . . . . 7 ((𝜑𝑠 ∈ ( R ‘𝑌)) → ((𝑋 +s 𝑠) ∈ No ∧ (𝑠 <s 0s → (𝑠 +s 𝑋) <s ( 0s +s 𝑋))))
154153simpld 494 . . . . . 6 ((𝜑𝑠 ∈ ( R ‘𝑌)) → (𝑋 +s 𝑠) ∈ No )
155 eleq1a 2823 . . . . . 6 ((𝑋 +s 𝑠) ∈ No → (𝑡 = (𝑋 +s 𝑠) → 𝑡 No ))
156154, 155syl 17 . . . . 5 ((𝜑𝑠 ∈ ( R ‘𝑌)) → (𝑡 = (𝑋 +s 𝑠) → 𝑡 No ))
157156rexlimdva 3134 . . . 4 (𝜑 → (∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠) → 𝑡 No ))
158157abssdv 4028 . . 3 (𝜑 → {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)} ⊆ No )
159127, 158unssd 4151 . 2 (𝜑 → ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}) ⊆ No )
160 elun 4112 . . . . . . 7 (𝑎 ∈ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) ↔ (𝑎 ∈ {𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∨ 𝑎 ∈ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}))
161 vex 3448 . . . . . . . . 9 𝑎 ∈ V
162 eqeq1 2733 . . . . . . . . . 10 (𝑝 = 𝑎 → (𝑝 = (𝑙 +s 𝑌) ↔ 𝑎 = (𝑙 +s 𝑌)))
163162rexbidv 3157 . . . . . . . . 9 (𝑝 = 𝑎 → (∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌) ↔ ∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌)))
164161, 163elab 3643 . . . . . . . 8 (𝑎 ∈ {𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ↔ ∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌))
165 eqeq1 2733 . . . . . . . . . 10 (𝑞 = 𝑎 → (𝑞 = (𝑋 +s 𝑚) ↔ 𝑎 = (𝑋 +s 𝑚)))
166165rexbidv 3157 . . . . . . . . 9 (𝑞 = 𝑎 → (∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚) ↔ ∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚)))
167161, 166elab 3643 . . . . . . . 8 (𝑎 ∈ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)} ↔ ∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚))
168164, 167orbi12i 914 . . . . . . 7 ((𝑎 ∈ {𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∨ 𝑎 ∈ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) ↔ (∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∨ ∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚)))
169160, 168bitri 275 . . . . . 6 (𝑎 ∈ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) ↔ (∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∨ ∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚)))
170 elun 4112 . . . . . . 7 (𝑏 ∈ ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}) ↔ (𝑏 ∈ {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∨ 𝑏 ∈ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}))
171 vex 3448 . . . . . . . . 9 𝑏 ∈ V
172 eqeq1 2733 . . . . . . . . . 10 (𝑤 = 𝑏 → (𝑤 = (𝑟 +s 𝑌) ↔ 𝑏 = (𝑟 +s 𝑌)))
173172rexbidv 3157 . . . . . . . . 9 (𝑤 = 𝑏 → (∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌) ↔ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)))
174171, 173elab 3643 . . . . . . . 8 (𝑏 ∈ {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ↔ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌))
175 eqeq1 2733 . . . . . . . . . 10 (𝑡 = 𝑏 → (𝑡 = (𝑋 +s 𝑠) ↔ 𝑏 = (𝑋 +s 𝑠)))
176175rexbidv 3157 . . . . . . . . 9 (𝑡 = 𝑏 → (∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠) ↔ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠)))
177171, 176elab 3643 . . . . . . . 8 (𝑏 ∈ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)} ↔ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠))
178174, 177orbi12i 914 . . . . . . 7 ((𝑏 ∈ {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∨ 𝑏 ∈ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}) ↔ (∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌) ∨ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠)))
179170, 178bitri 275 . . . . . 6 (𝑏 ∈ ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}) ↔ (∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌) ∨ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠)))
180169, 179anbi12i 628 . . . . 5 ((𝑎 ∈ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) ∧ 𝑏 ∈ ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)})) ↔ ((∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∨ ∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚)) ∧ (∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌) ∨ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠))))
181 anddi 1012 . . . . 5 (((∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∨ ∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚)) ∧ (∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌) ∨ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠))) ↔ (((∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)) ∨ (∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠))) ∨ ((∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)) ∨ (∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠)))))
182180, 181bitri 275 . . . 4 ((𝑎 ∈ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) ∧ 𝑏 ∈ ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)})) ↔ (((∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)) ∨ (∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠))) ∨ ((∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)) ∨ (∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠)))))
183 reeanv 3207 . . . . . . 7 (∃𝑙 ∈ ( L ‘𝑋)∃𝑟 ∈ ( R ‘𝑋)(𝑎 = (𝑙 +s 𝑌) ∧ 𝑏 = (𝑟 +s 𝑌)) ↔ (∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)))
184 lltropt 27760 . . . . . . . . . . . 12 ( L ‘𝑋) <<s ( R ‘𝑋)
185184a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → ( L ‘𝑋) <<s ( R ‘𝑋))
186 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑙 ∈ ( L ‘𝑋))
187 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑟 ∈ ( R ‘𝑋))
188185, 186, 187ssltsepcd 27682 . . . . . . . . . 10 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑙 <s 𝑟)
18915adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
19020adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑌 No )
19118ad2antrl 728 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑙 No )
19295ad2antll 729 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑟 No )
193 naddcom 8623 . . . . . . . . . . . . . . . 16 ((( bday 𝑌) ∈ On ∧ ( bday 𝑙) ∈ On) → (( bday 𝑌) +no ( bday 𝑙)) = (( bday 𝑙) +no ( bday 𝑌)))
19431, 26, 193mp2an 692 . . . . . . . . . . . . . . 15 (( bday 𝑌) +no ( bday 𝑙)) = (( bday 𝑙) +no ( bday 𝑌))
19545ad2antrl 728 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑙) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
196194, 195eqeltrid 2832 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑌) +no ( bday 𝑙)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
197 naddcom 8623 . . . . . . . . . . . . . . . 16 ((( bday 𝑌) ∈ On ∧ ( bday 𝑟) ∈ On) → (( bday 𝑌) +no ( bday 𝑟)) = (( bday 𝑟) +no ( bday 𝑌)))
19831, 100, 197mp2an 692 . . . . . . . . . . . . . . 15 (( bday 𝑌) +no ( bday 𝑟)) = (( bday 𝑟) +no ( bday 𝑌))
199117ad2antll 729 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑟) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
200198, 199eqeltrid 2832 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑌) +no ( bday 𝑟)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
201 naddcl 8618 . . . . . . . . . . . . . . . 16 ((( bday 𝑌) ∈ On ∧ ( bday 𝑙) ∈ On) → (( bday 𝑌) +no ( bday 𝑙)) ∈ On)
20231, 26, 201mp2an 692 . . . . . . . . . . . . . . 15 (( bday 𝑌) +no ( bday 𝑙)) ∈ On
203 naddcl 8618 . . . . . . . . . . . . . . . 16 ((( bday 𝑌) ∈ On ∧ ( bday 𝑟) ∈ On) → (( bday 𝑌) +no ( bday 𝑟)) ∈ On)
20431, 100, 203mp2an 692 . . . . . . . . . . . . . . 15 (( bday 𝑌) +no ( bday 𝑟)) ∈ On
205 naddcl 8618 . . . . . . . . . . . . . . . 16 ((( bday 𝑋) ∈ On ∧ ( bday 𝑌) ∈ On) → (( bday 𝑋) +no ( bday 𝑌)) ∈ On)
20639, 31, 205mp2an 692 . . . . . . . . . . . . . . 15 (( bday 𝑋) +no ( bday 𝑌)) ∈ On
207 onunel 6427 . . . . . . . . . . . . . . 15 (((( bday 𝑌) +no ( bday 𝑙)) ∈ On ∧ (( bday 𝑌) +no ( bday 𝑟)) ∈ On ∧ (( bday 𝑋) +no ( bday 𝑌)) ∈ On) → (((( bday 𝑌) +no ( bday 𝑙)) ∪ (( bday 𝑌) +no ( bday 𝑟))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑌) +no ( bday 𝑙)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑌) +no ( bday 𝑟)) ∈ (( bday 𝑋) +no ( bday 𝑌)))))
208202, 204, 206, 207mp3an 1463 . . . . . . . . . . . . . 14 (((( bday 𝑌) +no ( bday 𝑙)) ∪ (( bday 𝑌) +no ( bday 𝑟))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑌) +no ( bday 𝑙)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑌) +no ( bday 𝑟)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
209196, 200, 208sylanbrc 583 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((( bday 𝑌) +no ( bday 𝑙)) ∪ (( bday 𝑌) +no ( bday 𝑟))) ∈ (( bday 𝑋) +no ( bday 𝑌)))
210 elun1 4141 . . . . . . . . . . . . 13 (((( bday 𝑌) +no ( bday 𝑙)) ∪ (( bday 𝑌) +no ( bday 𝑟))) ∈ (( bday 𝑋) +no ( bday 𝑌)) → ((( bday 𝑌) +no ( bday 𝑙)) ∪ (( bday 𝑌) +no ( bday 𝑟))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
211209, 210syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((( bday 𝑌) +no ( bday 𝑙)) ∪ (( bday 𝑌) +no ( bday 𝑟))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
212189, 190, 191, 192, 211addsproplem1 27852 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((𝑌 +s 𝑙) ∈ No ∧ (𝑙 <s 𝑟 → (𝑙 +s 𝑌) <s (𝑟 +s 𝑌))))
213212simprd 495 . . . . . . . . . 10 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑙 <s 𝑟 → (𝑙 +s 𝑌) <s (𝑟 +s 𝑌)))
214188, 213mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑙 +s 𝑌) <s (𝑟 +s 𝑌))
215 breq12 5107 . . . . . . . . 9 ((𝑎 = (𝑙 +s 𝑌) ∧ 𝑏 = (𝑟 +s 𝑌)) → (𝑎 <s 𝑏 ↔ (𝑙 +s 𝑌) <s (𝑟 +s 𝑌)))
216214, 215syl5ibrcom 247 . . . . . . . 8 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((𝑎 = (𝑙 +s 𝑌) ∧ 𝑏 = (𝑟 +s 𝑌)) → 𝑎 <s 𝑏))
217216rexlimdvva 3192 . . . . . . 7 (𝜑 → (∃𝑙 ∈ ( L ‘𝑋)∃𝑟 ∈ ( R ‘𝑋)(𝑎 = (𝑙 +s 𝑌) ∧ 𝑏 = (𝑟 +s 𝑌)) → 𝑎 <s 𝑏))
218183, 217biimtrrid 243 . . . . . 6 (𝜑 → ((∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)) → 𝑎 <s 𝑏))
219 reeanv 3207 . . . . . . 7 (∃𝑙 ∈ ( L ‘𝑋)∃𝑠 ∈ ( R ‘𝑌)(𝑎 = (𝑙 +s 𝑌) ∧ 𝑏 = (𝑋 +s 𝑠)) ↔ (∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠)))
22051adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑙 +s 𝑌) ∈ No )
22115adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
22218ad2antrl 728 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑙 No )
223131ad2antll 729 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑠 No )
22422a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → 0s No )
22529uneq2i 4124 . . . . . . . . . . . . . 14 ((( bday 𝑙) +no ( bday 𝑠)) ∪ (( bday 𝑙) +no ( bday ‘ 0s ))) = ((( bday 𝑙) +no ( bday 𝑠)) ∪ ( bday 𝑙))
226 naddword1 8632 . . . . . . . . . . . . . . . 16 ((( bday 𝑙) ∈ On ∧ ( bday 𝑠) ∈ On) → ( bday 𝑙) ⊆ (( bday 𝑙) +no ( bday 𝑠)))
22726, 135, 226mp2an 692 . . . . . . . . . . . . . . 15 ( bday 𝑙) ⊆ (( bday 𝑙) +no ( bday 𝑠))
228 ssequn2 4148 . . . . . . . . . . . . . . 15 (( bday 𝑙) ⊆ (( bday 𝑙) +no ( bday 𝑠)) ↔ ((( bday 𝑙) +no ( bday 𝑠)) ∪ ( bday 𝑙)) = (( bday 𝑙) +no ( bday 𝑠)))
229227, 228mpbi 230 . . . . . . . . . . . . . 14 ((( bday 𝑙) +no ( bday 𝑠)) ∪ ( bday 𝑙)) = (( bday 𝑙) +no ( bday 𝑠))
230225, 229eqtri 2752 . . . . . . . . . . . . 13 ((( bday 𝑙) +no ( bday 𝑠)) ∪ (( bday 𝑙) +no ( bday ‘ 0s ))) = (( bday 𝑙) +no ( bday 𝑠))
231 naddel1 8628 . . . . . . . . . . . . . . . . . 18 ((( bday 𝑙) ∈ On ∧ ( bday 𝑋) ∈ On ∧ ( bday 𝑠) ∈ On) → (( bday 𝑙) ∈ ( bday 𝑋) ↔ (( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑠))))
23226, 39, 135, 231mp3an 1463 . . . . . . . . . . . . . . . . 17 (( bday 𝑙) ∈ ( bday 𝑋) ↔ (( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑠)))
23342, 232sylib 218 . . . . . . . . . . . . . . . 16 (𝑙 ∈ ( L ‘𝑋) → (( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑠)))
234233ad2antrl 728 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑠)))
235148ad2antll 729 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
236 ontr1 6367 . . . . . . . . . . . . . . . 16 ((( bday 𝑋) +no ( bday 𝑌)) ∈ On → (((( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑠)) ∧ (( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌))) → (( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
237206, 236ax-mp 5 . . . . . . . . . . . . . . 15 (((( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑠)) ∧ (( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌))) → (( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
238234, 235, 237syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
239 elun1 4141 . . . . . . . . . . . . . 14 ((( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)) → (( bday 𝑙) +no ( bday 𝑠)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
240238, 239syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (( bday 𝑙) +no ( bday 𝑠)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
241230, 240eqeltrid 2832 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((( bday 𝑙) +no ( bday 𝑠)) ∪ (( bday 𝑙) +no ( bday ‘ 0s ))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
242221, 222, 223, 224, 241addsproplem1 27852 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((𝑙 +s 𝑠) ∈ No ∧ (𝑠 <s 0s → (𝑠 +s 𝑙) <s ( 0s +s 𝑙))))
243242simpld 494 . . . . . . . . . 10 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑙 +s 𝑠) ∈ No )
244154adantrl 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑋 +s 𝑠) ∈ No )
245 rightgt 27752 . . . . . . . . . . . . 13 (𝑠 ∈ ( R ‘𝑌) → 𝑌 <s 𝑠)
246245ad2antll 729 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑌 <s 𝑠)
24720adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑌 No )
24845ad2antrl 728 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (( bday 𝑙) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
249 naddcl 8618 . . . . . . . . . . . . . . . . . 18 ((( bday 𝑙) ∈ On ∧ ( bday 𝑌) ∈ On) → (( bday 𝑙) +no ( bday 𝑌)) ∈ On)
25026, 31, 249mp2an 692 . . . . . . . . . . . . . . . . 17 (( bday 𝑙) +no ( bday 𝑌)) ∈ On
251 naddcl 8618 . . . . . . . . . . . . . . . . . 18 ((( bday 𝑙) ∈ On ∧ ( bday 𝑠) ∈ On) → (( bday 𝑙) +no ( bday 𝑠)) ∈ On)
25226, 135, 251mp2an 692 . . . . . . . . . . . . . . . . 17 (( bday 𝑙) +no ( bday 𝑠)) ∈ On
253 onunel 6427 . . . . . . . . . . . . . . . . 17 (((( bday 𝑙) +no ( bday 𝑌)) ∈ On ∧ (( bday 𝑙) +no ( bday 𝑠)) ∈ On ∧ (( bday 𝑋) +no ( bday 𝑌)) ∈ On) → (((( bday 𝑙) +no ( bday 𝑌)) ∪ (( bday 𝑙) +no ( bday 𝑠))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑙) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)))))
254250, 252, 206, 253mp3an 1463 . . . . . . . . . . . . . . . 16 (((( bday 𝑙) +no ( bday 𝑌)) ∪ (( bday 𝑙) +no ( bday 𝑠))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑙) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
255248, 238, 254sylanbrc 583 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((( bday 𝑙) +no ( bday 𝑌)) ∪ (( bday 𝑙) +no ( bday 𝑠))) ∈ (( bday 𝑋) +no ( bday 𝑌)))
256 elun1 4141 . . . . . . . . . . . . . . 15 (((( bday 𝑙) +no ( bday 𝑌)) ∪ (( bday 𝑙) +no ( bday 𝑠))) ∈ (( bday 𝑋) +no ( bday 𝑌)) → ((( bday 𝑙) +no ( bday 𝑌)) ∪ (( bday 𝑙) +no ( bday 𝑠))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
257255, 256syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((( bday 𝑙) +no ( bday 𝑌)) ∪ (( bday 𝑙) +no ( bday 𝑠))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
258221, 222, 247, 223, 257addsproplem1 27852 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((𝑙 +s 𝑌) ∈ No ∧ (𝑌 <s 𝑠 → (𝑌 +s 𝑙) <s (𝑠 +s 𝑙))))
259258simprd 495 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑌 <s 𝑠 → (𝑌 +s 𝑙) <s (𝑠 +s 𝑙)))
260246, 259mpd 15 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑌 +s 𝑙) <s (𝑠 +s 𝑙))
261222, 247addscomd 27850 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑙 +s 𝑌) = (𝑌 +s 𝑙))
262222, 223addscomd 27850 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑙 +s 𝑠) = (𝑠 +s 𝑙))
263260, 261, 2623brtr4d 5134 . . . . . . . . . 10 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑙 +s 𝑌) <s (𝑙 +s 𝑠))
264 leftlt 27751 . . . . . . . . . . . 12 (𝑙 ∈ ( L ‘𝑋) → 𝑙 <s 𝑋)
265264ad2antrl 728 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑙 <s 𝑋)
26657adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑋 No )
267 naddcom 8623 . . . . . . . . . . . . . . . . 17 ((( bday 𝑠) ∈ On ∧ ( bday 𝑙) ∈ On) → (( bday 𝑠) +no ( bday 𝑙)) = (( bday 𝑙) +no ( bday 𝑠)))
268135, 26, 267mp2an 692 . . . . . . . . . . . . . . . 16 (( bday 𝑠) +no ( bday 𝑙)) = (( bday 𝑙) +no ( bday 𝑠))
269268, 238eqeltrid 2832 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (( bday 𝑠) +no ( bday 𝑙)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
270 naddcom 8623 . . . . . . . . . . . . . . . . 17 ((( bday 𝑠) ∈ On ∧ ( bday 𝑋) ∈ On) → (( bday 𝑠) +no ( bday 𝑋)) = (( bday 𝑋) +no ( bday 𝑠)))
271135, 39, 270mp2an 692 . . . . . . . . . . . . . . . 16 (( bday 𝑠) +no ( bday 𝑋)) = (( bday 𝑋) +no ( bday 𝑠))
272271, 235eqeltrid 2832 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (( bday 𝑠) +no ( bday 𝑋)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
273 naddcl 8618 . . . . . . . . . . . . . . . . 17 ((( bday 𝑠) ∈ On ∧ ( bday 𝑙) ∈ On) → (( bday 𝑠) +no ( bday 𝑙)) ∈ On)
274135, 26, 273mp2an 692 . . . . . . . . . . . . . . . 16 (( bday 𝑠) +no ( bday 𝑙)) ∈ On
275 naddcl 8618 . . . . . . . . . . . . . . . . 17 ((( bday 𝑠) ∈ On ∧ ( bday 𝑋) ∈ On) → (( bday 𝑠) +no ( bday 𝑋)) ∈ On)
276135, 39, 275mp2an 692 . . . . . . . . . . . . . . . 16 (( bday 𝑠) +no ( bday 𝑋)) ∈ On
277 onunel 6427 . . . . . . . . . . . . . . . 16 (((( bday 𝑠) +no ( bday 𝑙)) ∈ On ∧ (( bday 𝑠) +no ( bday 𝑋)) ∈ On ∧ (( bday 𝑋) +no ( bday 𝑌)) ∈ On) → (((( bday 𝑠) +no ( bday 𝑙)) ∪ (( bday 𝑠) +no ( bday 𝑋))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑠) +no ( bday 𝑙)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑠) +no ( bday 𝑋)) ∈ (( bday 𝑋) +no ( bday 𝑌)))))
278274, 276, 206, 277mp3an 1463 . . . . . . . . . . . . . . 15 (((( bday 𝑠) +no ( bday 𝑙)) ∪ (( bday 𝑠) +no ( bday 𝑋))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑠) +no ( bday 𝑙)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑠) +no ( bday 𝑋)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
279269, 272, 278sylanbrc 583 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((( bday 𝑠) +no ( bday 𝑙)) ∪ (( bday 𝑠) +no ( bday 𝑋))) ∈ (( bday 𝑋) +no ( bday 𝑌)))
280 elun1 4141 . . . . . . . . . . . . . 14 (((( bday 𝑠) +no ( bday 𝑙)) ∪ (( bday 𝑠) +no ( bday 𝑋))) ∈ (( bday 𝑋) +no ( bday 𝑌)) → ((( bday 𝑠) +no ( bday 𝑙)) ∪ (( bday 𝑠) +no ( bday 𝑋))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
281279, 280syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((( bday 𝑠) +no ( bday 𝑙)) ∪ (( bday 𝑠) +no ( bday 𝑋))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
282221, 223, 222, 266, 281addsproplem1 27852 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((𝑠 +s 𝑙) ∈ No ∧ (𝑙 <s 𝑋 → (𝑙 +s 𝑠) <s (𝑋 +s 𝑠))))
283282simprd 495 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑙 <s 𝑋 → (𝑙 +s 𝑠) <s (𝑋 +s 𝑠)))
284265, 283mpd 15 . . . . . . . . . 10 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑙 +s 𝑠) <s (𝑋 +s 𝑠))
285220, 243, 244, 263, 284slttrd 27647 . . . . . . . . 9 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑙 +s 𝑌) <s (𝑋 +s 𝑠))
286 breq12 5107 . . . . . . . . 9 ((𝑎 = (𝑙 +s 𝑌) ∧ 𝑏 = (𝑋 +s 𝑠)) → (𝑎 <s 𝑏 ↔ (𝑙 +s 𝑌) <s (𝑋 +s 𝑠)))
287285, 286syl5ibrcom 247 . . . . . . . 8 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((𝑎 = (𝑙 +s 𝑌) ∧ 𝑏 = (𝑋 +s 𝑠)) → 𝑎 <s 𝑏))
288287rexlimdvva 3192 . . . . . . 7 (𝜑 → (∃𝑙 ∈ ( L ‘𝑋)∃𝑠 ∈ ( R ‘𝑌)(𝑎 = (𝑙 +s 𝑌) ∧ 𝑏 = (𝑋 +s 𝑠)) → 𝑎 <s 𝑏))
289219, 288biimtrrid 243 . . . . . 6 (𝜑 → ((∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠)) → 𝑎 <s 𝑏))
290218, 289jaod 859 . . . . 5 (𝜑 → (((∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)) ∨ (∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠))) → 𝑎 <s 𝑏))
291 reeanv 3207 . . . . . . 7 (∃𝑚 ∈ ( L ‘𝑌)∃𝑟 ∈ ( R ‘𝑋)(𝑎 = (𝑋 +s 𝑚) ∧ 𝑏 = (𝑟 +s 𝑌)) ↔ (∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)))
29215adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
29357adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑋 No )
29460ad2antrl 728 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑚 No )
29522a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → 0s No )
29681ad2antrl 728 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
297296, 83syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑋) +no ( bday 𝑚)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
29873, 297eqeltrid 2832 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday ‘ 0s ))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
299292, 293, 294, 295, 298addsproplem1 27852 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((𝑋 +s 𝑚) ∈ No ∧ (𝑚 <s 0s → (𝑚 +s 𝑋) <s ( 0s +s 𝑋))))
300299simpld 494 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑋 +s 𝑚) ∈ No )
30195ad2antll 729 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑟 No )
302103uneq2i 4124 . . . . . . . . . . . . . 14 ((( bday 𝑟) +no ( bday 𝑚)) ∪ (( bday 𝑟) +no ( bday ‘ 0s ))) = ((( bday 𝑟) +no ( bday 𝑚)) ∪ ( bday 𝑟))
303 naddword1 8632 . . . . . . . . . . . . . . . 16 ((( bday 𝑟) ∈ On ∧ ( bday 𝑚) ∈ On) → ( bday 𝑟) ⊆ (( bday 𝑟) +no ( bday 𝑚)))
304100, 68, 303mp2an 692 . . . . . . . . . . . . . . 15 ( bday 𝑟) ⊆ (( bday 𝑟) +no ( bday 𝑚))
305 ssequn2 4148 . . . . . . . . . . . . . . 15 (( bday 𝑟) ⊆ (( bday 𝑟) +no ( bday 𝑚)) ↔ ((( bday 𝑟) +no ( bday 𝑚)) ∪ ( bday 𝑟)) = (( bday 𝑟) +no ( bday 𝑚)))
306304, 305mpbi 230 . . . . . . . . . . . . . 14 ((( bday 𝑟) +no ( bday 𝑚)) ∪ ( bday 𝑟)) = (( bday 𝑟) +no ( bday 𝑚))
307302, 306eqtri 2752 . . . . . . . . . . . . 13 ((( bday 𝑟) +no ( bday 𝑚)) ∪ (( bday 𝑟) +no ( bday ‘ 0s ))) = (( bday 𝑟) +no ( bday 𝑚))
308 naddel1 8628 . . . . . . . . . . . . . . . . . 18 ((( bday 𝑟) ∈ On ∧ ( bday 𝑋) ∈ On ∧ ( bday 𝑚) ∈ On) → (( bday 𝑟) ∈ ( bday 𝑋) ↔ (( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑚))))
309100, 39, 68, 308mp3an 1463 . . . . . . . . . . . . . . . . 17 (( bday 𝑟) ∈ ( bday 𝑋) ↔ (( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑚)))
310114, 309sylib 218 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ( R ‘𝑋) → (( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑚)))
311310ad2antll 729 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑚)))
312 ontr1 6367 . . . . . . . . . . . . . . . 16 ((( bday 𝑋) +no ( bday 𝑌)) ∈ On → (((( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑚)) ∧ (( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌))) → (( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
313206, 312ax-mp 5 . . . . . . . . . . . . . . 15 (((( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑚)) ∧ (( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌))) → (( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
314311, 296, 313syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
315 elun1 4141 . . . . . . . . . . . . . 14 ((( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)) → (( bday 𝑟) +no ( bday 𝑚)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
316314, 315syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑟) +no ( bday 𝑚)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
317307, 316eqeltrid 2832 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((( bday 𝑟) +no ( bday 𝑚)) ∪ (( bday 𝑟) +no ( bday ‘ 0s ))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
318292, 301, 294, 295, 317addsproplem1 27852 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((𝑟 +s 𝑚) ∈ No ∧ (𝑚 <s 0s → (𝑚 +s 𝑟) <s ( 0s +s 𝑟))))
319318simpld 494 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑟 +s 𝑚) ∈ No )
32020adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑌 No )
321117ad2antll 729 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑟) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
322321, 119syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑟) +no ( bday 𝑌)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
323109, 322eqeltrid 2832 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((( bday 𝑟) +no ( bday 𝑌)) ∪ (( bday 𝑟) +no ( bday ‘ 0s ))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
324292, 301, 320, 295, 323addsproplem1 27852 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((𝑟 +s 𝑌) ∈ No ∧ (𝑌 <s 0s → (𝑌 +s 𝑟) <s ( 0s +s 𝑟))))
325324simpld 494 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑟 +s 𝑌) ∈ No )
326 rightval 27748 . . . . . . . . . . . . . . . 16 ( R ‘𝑋) = {𝑟 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑟}
327326eleq2i 2820 . . . . . . . . . . . . . . 15 (𝑟 ∈ ( R ‘𝑋) ↔ 𝑟 ∈ {𝑟 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑟})
328327biimpi 216 . . . . . . . . . . . . . 14 (𝑟 ∈ ( R ‘𝑋) → 𝑟 ∈ {𝑟 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑟})
329328ad2antll 729 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑟 ∈ {𝑟 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑟})
330 rabid 3424 . . . . . . . . . . . . 13 (𝑟 ∈ {𝑟 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑟} ↔ (𝑟 ∈ ( O ‘( bday 𝑋)) ∧ 𝑋 <s 𝑟))
331329, 330sylib 218 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑟 ∈ ( O ‘( bday 𝑋)) ∧ 𝑋 <s 𝑟))
332331simprd 495 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑋 <s 𝑟)
333 naddcom 8623 . . . . . . . . . . . . . . . . 17 ((( bday 𝑚) ∈ On ∧ ( bday 𝑋) ∈ On) → (( bday 𝑚) +no ( bday 𝑋)) = (( bday 𝑋) +no ( bday 𝑚)))
33468, 39, 333mp2an 692 . . . . . . . . . . . . . . . 16 (( bday 𝑚) +no ( bday 𝑋)) = (( bday 𝑋) +no ( bday 𝑚))
335334, 296eqeltrid 2832 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑚) +no ( bday 𝑋)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
336 naddcom 8623 . . . . . . . . . . . . . . . . 17 ((( bday 𝑚) ∈ On ∧ ( bday 𝑟) ∈ On) → (( bday 𝑚) +no ( bday 𝑟)) = (( bday 𝑟) +no ( bday 𝑚)))
33768, 100, 336mp2an 692 . . . . . . . . . . . . . . . 16 (( bday 𝑚) +no ( bday 𝑟)) = (( bday 𝑟) +no ( bday 𝑚))
338337, 314eqeltrid 2832 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑚) +no ( bday 𝑟)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
339 naddcl 8618 . . . . . . . . . . . . . . . . 17 ((( bday 𝑚) ∈ On ∧ ( bday 𝑋) ∈ On) → (( bday 𝑚) +no ( bday 𝑋)) ∈ On)
34068, 39, 339mp2an 692 . . . . . . . . . . . . . . . 16 (( bday 𝑚) +no ( bday 𝑋)) ∈ On
341 naddcl 8618 . . . . . . . . . . . . . . . . 17 ((( bday 𝑚) ∈ On ∧ ( bday 𝑟) ∈ On) → (( bday 𝑚) +no ( bday 𝑟)) ∈ On)
34268, 100, 341mp2an 692 . . . . . . . . . . . . . . . 16 (( bday 𝑚) +no ( bday 𝑟)) ∈ On
343 onunel 6427 . . . . . . . . . . . . . . . 16 (((( bday 𝑚) +no ( bday 𝑋)) ∈ On ∧ (( bday 𝑚) +no ( bday 𝑟)) ∈ On ∧ (( bday 𝑋) +no ( bday 𝑌)) ∈ On) → (((( bday 𝑚) +no ( bday 𝑋)) ∪ (( bday 𝑚) +no ( bday 𝑟))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑚) +no ( bday 𝑋)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑚) +no ( bday 𝑟)) ∈ (( bday 𝑋) +no ( bday 𝑌)))))
344340, 342, 206, 343mp3an 1463 . . . . . . . . . . . . . . 15 (((( bday 𝑚) +no ( bday 𝑋)) ∪ (( bday 𝑚) +no ( bday 𝑟))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑚) +no ( bday 𝑋)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑚) +no ( bday 𝑟)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
345335, 338, 344sylanbrc 583 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((( bday 𝑚) +no ( bday 𝑋)) ∪ (( bday 𝑚) +no ( bday 𝑟))) ∈ (( bday 𝑋) +no ( bday 𝑌)))
346 elun1 4141 . . . . . . . . . . . . . 14 (((( bday 𝑚) +no ( bday 𝑋)) ∪ (( bday 𝑚) +no ( bday 𝑟))) ∈ (( bday 𝑋) +no ( bday 𝑌)) → ((( bday 𝑚) +no ( bday 𝑋)) ∪ (( bday 𝑚) +no ( bday 𝑟))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
347345, 346syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((( bday 𝑚) +no ( bday 𝑋)) ∪ (( bday 𝑚) +no ( bday 𝑟))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
348292, 294, 293, 301, 347addsproplem1 27852 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((𝑚 +s 𝑋) ∈ No ∧ (𝑋 <s 𝑟 → (𝑋 +s 𝑚) <s (𝑟 +s 𝑚))))
349348simprd 495 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑋 <s 𝑟 → (𝑋 +s 𝑚) <s (𝑟 +s 𝑚)))
350332, 349mpd 15 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑋 +s 𝑚) <s (𝑟 +s 𝑚))
351 leftval 27747 . . . . . . . . . . . . . . . . 17 ( L ‘𝑌) = {𝑚 ∈ ( O ‘( bday 𝑌)) ∣ 𝑚 <s 𝑌}
352351eleq2i 2820 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ( L ‘𝑌) ↔ 𝑚 ∈ {𝑚 ∈ ( O ‘( bday 𝑌)) ∣ 𝑚 <s 𝑌})
353352biimpi 216 . . . . . . . . . . . . . . 15 (𝑚 ∈ ( L ‘𝑌) → 𝑚 ∈ {𝑚 ∈ ( O ‘( bday 𝑌)) ∣ 𝑚 <s 𝑌})
354353ad2antrl 728 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑚 ∈ {𝑚 ∈ ( O ‘( bday 𝑌)) ∣ 𝑚 <s 𝑌})
355 rabid 3424 . . . . . . . . . . . . . 14 (𝑚 ∈ {𝑚 ∈ ( O ‘( bday 𝑌)) ∣ 𝑚 <s 𝑌} ↔ (𝑚 ∈ ( O ‘( bday 𝑌)) ∧ 𝑚 <s 𝑌))
356354, 355sylib 218 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑚 ∈ ( O ‘( bday 𝑌)) ∧ 𝑚 <s 𝑌))
357356simprd 495 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑚 <s 𝑌)
358 naddcl 8618 . . . . . . . . . . . . . . . . . 18 ((( bday 𝑟) ∈ On ∧ ( bday 𝑚) ∈ On) → (( bday 𝑟) +no ( bday 𝑚)) ∈ On)
359100, 68, 358mp2an 692 . . . . . . . . . . . . . . . . 17 (( bday 𝑟) +no ( bday 𝑚)) ∈ On
360 naddcl 8618 . . . . . . . . . . . . . . . . . 18 ((( bday 𝑟) ∈ On ∧ ( bday 𝑌) ∈ On) → (( bday 𝑟) +no ( bday 𝑌)) ∈ On)
361100, 31, 360mp2an 692 . . . . . . . . . . . . . . . . 17 (( bday 𝑟) +no ( bday 𝑌)) ∈ On
362 onunel 6427 . . . . . . . . . . . . . . . . 17 (((( bday 𝑟) +no ( bday 𝑚)) ∈ On ∧ (( bday 𝑟) +no ( bday 𝑌)) ∈ On ∧ (( bday 𝑋) +no ( bday 𝑌)) ∈ On) → (((( bday 𝑟) +no ( bday 𝑚)) ∪ (( bday 𝑟) +no ( bday 𝑌))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑟) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))))
363359, 361, 206, 362mp3an 1463 . . . . . . . . . . . . . . . 16 (((( bday 𝑟) +no ( bday 𝑚)) ∪ (( bday 𝑟) +no ( bday 𝑌))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑟) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
364314, 321, 363sylanbrc 583 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((( bday 𝑟) +no ( bday 𝑚)) ∪ (( bday 𝑟) +no ( bday 𝑌))) ∈ (( bday 𝑋) +no ( bday 𝑌)))
365 elun1 4141 . . . . . . . . . . . . . . 15 (((( bday 𝑟) +no ( bday 𝑚)) ∪ (( bday 𝑟) +no ( bday 𝑌))) ∈ (( bday 𝑋) +no ( bday 𝑌)) → ((( bday 𝑟) +no ( bday 𝑚)) ∪ (( bday 𝑟) +no ( bday 𝑌))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
366364, 365syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((( bday 𝑟) +no ( bday 𝑚)) ∪ (( bday 𝑟) +no ( bday 𝑌))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
367292, 301, 294, 320, 366addsproplem1 27852 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((𝑟 +s 𝑚) ∈ No ∧ (𝑚 <s 𝑌 → (𝑚 +s 𝑟) <s (𝑌 +s 𝑟))))
368367simprd 495 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑚 <s 𝑌 → (𝑚 +s 𝑟) <s (𝑌 +s 𝑟)))
369357, 368mpd 15 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑚 +s 𝑟) <s (𝑌 +s 𝑟))
370301, 294addscomd 27850 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑟 +s 𝑚) = (𝑚 +s 𝑟))
371301, 320addscomd 27850 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑟 +s 𝑌) = (𝑌 +s 𝑟))
372369, 370, 3713brtr4d 5134 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑟 +s 𝑚) <s (𝑟 +s 𝑌))
373300, 319, 325, 350, 372slttrd 27647 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑋 +s 𝑚) <s (𝑟 +s 𝑌))
374 breq12 5107 . . . . . . . . 9 ((𝑎 = (𝑋 +s 𝑚) ∧ 𝑏 = (𝑟 +s 𝑌)) → (𝑎 <s 𝑏 ↔ (𝑋 +s 𝑚) <s (𝑟 +s 𝑌)))
375373, 374syl5ibrcom 247 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((𝑎 = (𝑋 +s 𝑚) ∧ 𝑏 = (𝑟 +s 𝑌)) → 𝑎 <s 𝑏))
376375rexlimdvva 3192 . . . . . . 7 (𝜑 → (∃𝑚 ∈ ( L ‘𝑌)∃𝑟 ∈ ( R ‘𝑋)(𝑎 = (𝑋 +s 𝑚) ∧ 𝑏 = (𝑟 +s 𝑌)) → 𝑎 <s 𝑏))
377291, 376biimtrrid 243 . . . . . 6 (𝜑 → ((∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)) → 𝑎 <s 𝑏))
378 reeanv 3207 . . . . . . 7 (∃𝑚 ∈ ( L ‘𝑌)∃𝑠 ∈ ( R ‘𝑌)(𝑎 = (𝑋 +s 𝑚) ∧ 𝑏 = (𝑋 +s 𝑠)) ↔ (∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠)))
379 lltropt 27760 . . . . . . . . . . . . 13 ( L ‘𝑌) <<s ( R ‘𝑌)
380379a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → ( L ‘𝑌) <<s ( R ‘𝑌))
381 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑚 ∈ ( L ‘𝑌))
382 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑠 ∈ ( R ‘𝑌))
383380, 381, 382ssltsepcd 27682 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑚 <s 𝑠)
38415adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
38557adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑋 No )
38660ad2antrl 728 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑚 No )
387131ad2antll 729 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑠 No )
38881ad2antrl 728 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → (( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
389148ad2antll 729 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → (( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
390 naddcl 8618 . . . . . . . . . . . . . . . . 17 ((( bday 𝑋) ∈ On ∧ ( bday 𝑚) ∈ On) → (( bday 𝑋) +no ( bday 𝑚)) ∈ On)
39139, 68, 390mp2an 692 . . . . . . . . . . . . . . . 16 (( bday 𝑋) +no ( bday 𝑚)) ∈ On
392 naddcl 8618 . . . . . . . . . . . . . . . . 17 ((( bday 𝑋) ∈ On ∧ ( bday 𝑠) ∈ On) → (( bday 𝑋) +no ( bday 𝑠)) ∈ On)
39339, 135, 392mp2an 692 . . . . . . . . . . . . . . . 16 (( bday 𝑋) +no ( bday 𝑠)) ∈ On
394 onunel 6427 . . . . . . . . . . . . . . . 16 (((( bday 𝑋) +no ( bday 𝑚)) ∈ On ∧ (( bday 𝑋) +no ( bday 𝑠)) ∈ On ∧ (( bday 𝑋) +no ( bday 𝑌)) ∈ On) → (((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday 𝑠))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)))))
395391, 393, 206, 394mp3an 1463 . . . . . . . . . . . . . . 15 (((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday 𝑠))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
396388, 389, 395sylanbrc 583 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday 𝑠))) ∈ (( bday 𝑋) +no ( bday 𝑌)))
397 elun1 4141 . . . . . . . . . . . . . 14 (((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday 𝑠))) ∈ (( bday 𝑋) +no ( bday 𝑌)) → ((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday 𝑠))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
398396, 397syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday 𝑠))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
399384, 385, 386, 387, 398addsproplem1 27852 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((𝑋 +s 𝑚) ∈ No ∧ (𝑚 <s 𝑠 → (𝑚 +s 𝑋) <s (𝑠 +s 𝑋))))
400399simprd 495 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑚 <s 𝑠 → (𝑚 +s 𝑋) <s (𝑠 +s 𝑋)))
401383, 400mpd 15 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑚 +s 𝑋) <s (𝑠 +s 𝑋))
402385, 386addscomd 27850 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑋 +s 𝑚) = (𝑚 +s 𝑋))
403385, 387addscomd 27850 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑋 +s 𝑠) = (𝑠 +s 𝑋))
404401, 402, 4033brtr4d 5134 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑋 +s 𝑚) <s (𝑋 +s 𝑠))
405 breq12 5107 . . . . . . . . 9 ((𝑎 = (𝑋 +s 𝑚) ∧ 𝑏 = (𝑋 +s 𝑠)) → (𝑎 <s 𝑏 ↔ (𝑋 +s 𝑚) <s (𝑋 +s 𝑠)))
406404, 405syl5ibrcom 247 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((𝑎 = (𝑋 +s 𝑚) ∧ 𝑏 = (𝑋 +s 𝑠)) → 𝑎 <s 𝑏))
407406rexlimdvva 3192 . . . . . . 7 (𝜑 → (∃𝑚 ∈ ( L ‘𝑌)∃𝑠 ∈ ( R ‘𝑌)(𝑎 = (𝑋 +s 𝑚) ∧ 𝑏 = (𝑋 +s 𝑠)) → 𝑎 <s 𝑏))
408378, 407biimtrrid 243 . . . . . 6 (𝜑 → ((∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠)) → 𝑎 <s 𝑏))
409377, 408jaod 859 . . . . 5 (𝜑 → (((∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)) ∨ (∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠))) → 𝑎 <s 𝑏))
410290, 409jaod 859 . . . 4 (𝜑 → ((((∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)) ∨ (∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠))) ∨ ((∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)) ∨ (∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠)))) → 𝑎 <s 𝑏))
411182, 410biimtrid 242 . . 3 (𝜑 → ((𝑎 ∈ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) ∧ 𝑏 ∈ ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)})) → 𝑎 <s 𝑏))
4124113impib 1116 . 2 ((𝜑𝑎 ∈ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) ∧ 𝑏 ∈ ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)})) → 𝑎 <s 𝑏)
4137, 14, 92, 159, 412ssltd 27679 1 (𝜑 → ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  cun 3909  wss 3911  c0 4292   class class class wbr 5102  Oncon0 6320  cfv 6499  (class class class)co 7369   +no cnadd 8606   No csur 27527   <s cslt 27528   bday cbday 27529   <<s csslt 27668   0s c0s 27710   O cold 27727   L cleft 27729   R cright 27730   +s cadds 27842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-1o 8411  df-2o 8412  df-nadd 8607  df-no 27530  df-slt 27531  df-bday 27532  df-sslt 27669  df-scut 27671  df-0s 27712  df-made 27731  df-old 27732  df-left 27734  df-right 27735  df-norec2 27832  df-adds 27843
This theorem is referenced by:  addsproplem3  27854
  Copyright terms: Public domain W3C validator