MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsproplem2 Structured version   Visualization version   GIF version

Theorem addsproplem2 27979
Description: Lemma for surreal addition properties. When proving closure for operations defined using norec and norec2, it is a strictly stronger statement to say that the cut defined is actually a cut than it is to say that the operation is closed. We will often prove this stronger statement. Here, we do so for the cut involved in surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
addsproplem2.2 (𝜑𝑋 No )
addsproplem2.3 (𝜑𝑌 No )
Assertion
Ref Expression
addsproplem2 (𝜑 → ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}))
Distinct variable groups:   𝑋,𝑙,𝑚   𝑋,𝑝,𝑞,𝑟   𝑋,𝑠,𝑡,𝑟   𝑤,𝑋   𝑥,𝑋,𝑦,𝑧   𝑌,𝑙,𝑚   𝑌,𝑝,𝑞,𝑟   𝑌,𝑠,𝑡   𝑤,𝑌   𝑥,𝑌,𝑦,𝑧   𝑥,𝑍,𝑦,𝑧   𝜑,𝑙,𝑚   𝜑,𝑝,𝑞,𝑟   𝜑,𝑠,𝑡   𝑝,𝑙,𝑟   𝑠,𝑙,𝑥,𝑦,𝑧   𝑚,𝑞,𝑟,𝑠   𝑥,𝑚,𝑦,𝑧   𝜑,𝑤,𝑟   𝑥,𝑟,𝑦,𝑧,𝑠   𝑞,𝑙   𝑟,𝑝,𝑞   𝑤,𝑝   𝑠,𝑞,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝑍(𝑤,𝑡,𝑚,𝑠,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem addsproplem2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6904 . . . . 5 ( L ‘𝑋) ∈ V
21abrexex 7966 . . . 4 {𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∈ V
32a1i 11 . . 3 (𝜑 → {𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∈ V)
4 fvex 6904 . . . . 5 ( L ‘𝑌) ∈ V
54abrexex 7966 . . . 4 {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)} ∈ V
65a1i 11 . . 3 (𝜑 → {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)} ∈ V)
73, 6unexd 7752 . 2 (𝜑 → ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) ∈ V)
8 fvex 6904 . . . . 5 ( R ‘𝑋) ∈ V
98abrexex 7966 . . . 4 {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∈ V
109a1i 11 . . 3 (𝜑 → {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∈ V)
11 fvex 6904 . . . . 5 ( R ‘𝑌) ∈ V
1211abrexex 7966 . . . 4 {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)} ∈ V
1312a1i 11 . . 3 (𝜑 → {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)} ∈ V)
1410, 13unexd 7752 . 2 (𝜑 → ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}) ∈ V)
15 addsproplem.1 . . . . . . . . 9 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
1615adantr 479 . . . . . . . 8 ((𝜑𝑙 ∈ ( L ‘𝑋)) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
17 leftssno 27899 . . . . . . . . . 10 ( L ‘𝑋) ⊆ No
1817sseli 3975 . . . . . . . . 9 (𝑙 ∈ ( L ‘𝑋) → 𝑙 No )
1918adantl 480 . . . . . . . 8 ((𝜑𝑙 ∈ ( L ‘𝑋)) → 𝑙 No )
20 addsproplem2.3 . . . . . . . . 9 (𝜑𝑌 No )
2120adantr 479 . . . . . . . 8 ((𝜑𝑙 ∈ ( L ‘𝑋)) → 𝑌 No )
22 0sno 27851 . . . . . . . . 9 0s No
2322a1i 11 . . . . . . . 8 ((𝜑𝑙 ∈ ( L ‘𝑋)) → 0s No )
24 bday0s 27853 . . . . . . . . . . . . 13 ( bday ‘ 0s ) = ∅
2524oveq2i 7425 . . . . . . . . . . . 12 (( bday 𝑙) +no ( bday ‘ 0s )) = (( bday 𝑙) +no ∅)
26 bdayelon 27801 . . . . . . . . . . . . 13 ( bday 𝑙) ∈ On
27 naddrid 8703 . . . . . . . . . . . . 13 (( bday 𝑙) ∈ On → (( bday 𝑙) +no ∅) = ( bday 𝑙))
2826, 27ax-mp 5 . . . . . . . . . . . 12 (( bday 𝑙) +no ∅) = ( bday 𝑙)
2925, 28eqtri 2754 . . . . . . . . . . 11 (( bday 𝑙) +no ( bday ‘ 0s )) = ( bday 𝑙)
3029uneq2i 4158 . . . . . . . . . 10 ((( bday 𝑙) +no ( bday 𝑌)) ∪ (( bday 𝑙) +no ( bday ‘ 0s ))) = ((( bday 𝑙) +no ( bday 𝑌)) ∪ ( bday 𝑙))
31 bdayelon 27801 . . . . . . . . . . . 12 ( bday 𝑌) ∈ On
32 naddword1 8711 . . . . . . . . . . . 12 ((( bday 𝑙) ∈ On ∧ ( bday 𝑌) ∈ On) → ( bday 𝑙) ⊆ (( bday 𝑙) +no ( bday 𝑌)))
3326, 31, 32mp2an 690 . . . . . . . . . . 11 ( bday 𝑙) ⊆ (( bday 𝑙) +no ( bday 𝑌))
34 ssequn2 4182 . . . . . . . . . . 11 (( bday 𝑙) ⊆ (( bday 𝑙) +no ( bday 𝑌)) ↔ ((( bday 𝑙) +no ( bday 𝑌)) ∪ ( bday 𝑙)) = (( bday 𝑙) +no ( bday 𝑌)))
3533, 34mpbi 229 . . . . . . . . . 10 ((( bday 𝑙) +no ( bday 𝑌)) ∪ ( bday 𝑙)) = (( bday 𝑙) +no ( bday 𝑌))
3630, 35eqtri 2754 . . . . . . . . 9 ((( bday 𝑙) +no ( bday 𝑌)) ∪ (( bday 𝑙) +no ( bday ‘ 0s ))) = (( bday 𝑙) +no ( bday 𝑌))
37 leftssold 27897 . . . . . . . . . . . . . 14 ( L ‘𝑋) ⊆ ( O ‘( bday 𝑋))
3837sseli 3975 . . . . . . . . . . . . 13 (𝑙 ∈ ( L ‘𝑋) → 𝑙 ∈ ( O ‘( bday 𝑋)))
39 bdayelon 27801 . . . . . . . . . . . . . 14 ( bday 𝑋) ∈ On
40 oldbday 27919 . . . . . . . . . . . . . 14 ((( bday 𝑋) ∈ On ∧ 𝑙 No ) → (𝑙 ∈ ( O ‘( bday 𝑋)) ↔ ( bday 𝑙) ∈ ( bday 𝑋)))
4139, 18, 40sylancr 585 . . . . . . . . . . . . 13 (𝑙 ∈ ( L ‘𝑋) → (𝑙 ∈ ( O ‘( bday 𝑋)) ↔ ( bday 𝑙) ∈ ( bday 𝑋)))
4238, 41mpbid 231 . . . . . . . . . . . 12 (𝑙 ∈ ( L ‘𝑋) → ( bday 𝑙) ∈ ( bday 𝑋))
43 naddel1 8707 . . . . . . . . . . . . 13 ((( bday 𝑙) ∈ On ∧ ( bday 𝑋) ∈ On ∧ ( bday 𝑌) ∈ On) → (( bday 𝑙) ∈ ( bday 𝑋) ↔ (( bday 𝑙) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
4426, 39, 31, 43mp3an 1458 . . . . . . . . . . . 12 (( bday 𝑙) ∈ ( bday 𝑋) ↔ (( bday 𝑙) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
4542, 44sylib 217 . . . . . . . . . . 11 (𝑙 ∈ ( L ‘𝑋) → (( bday 𝑙) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
4645adantl 480 . . . . . . . . . 10 ((𝜑𝑙 ∈ ( L ‘𝑋)) → (( bday 𝑙) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
47 elun1 4175 . . . . . . . . . 10 ((( bday 𝑙) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)) → (( bday 𝑙) +no ( bday 𝑌)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
4846, 47syl 17 . . . . . . . . 9 ((𝜑𝑙 ∈ ( L ‘𝑋)) → (( bday 𝑙) +no ( bday 𝑌)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
4936, 48eqeltrid 2830 . . . . . . . 8 ((𝜑𝑙 ∈ ( L ‘𝑋)) → ((( bday 𝑙) +no ( bday 𝑌)) ∪ (( bday 𝑙) +no ( bday ‘ 0s ))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
5016, 19, 21, 23, 49addsproplem1 27978 . . . . . . 7 ((𝜑𝑙 ∈ ( L ‘𝑋)) → ((𝑙 +s 𝑌) ∈ No ∧ (𝑌 <s 0s → (𝑌 +s 𝑙) <s ( 0s +s 𝑙))))
5150simpld 493 . . . . . 6 ((𝜑𝑙 ∈ ( L ‘𝑋)) → (𝑙 +s 𝑌) ∈ No )
52 eleq1a 2821 . . . . . 6 ((𝑙 +s 𝑌) ∈ No → (𝑝 = (𝑙 +s 𝑌) → 𝑝 No ))
5351, 52syl 17 . . . . 5 ((𝜑𝑙 ∈ ( L ‘𝑋)) → (𝑝 = (𝑙 +s 𝑌) → 𝑝 No ))
5453rexlimdva 3145 . . . 4 (𝜑 → (∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌) → 𝑝 No ))
5554abssdv 4062 . . 3 (𝜑 → {𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ⊆ No )
5615adantr 479 . . . . . . . 8 ((𝜑𝑚 ∈ ( L ‘𝑌)) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
57 addsproplem2.2 . . . . . . . . 9 (𝜑𝑋 No )
5857adantr 479 . . . . . . . 8 ((𝜑𝑚 ∈ ( L ‘𝑌)) → 𝑋 No )
59 leftssno 27899 . . . . . . . . . 10 ( L ‘𝑌) ⊆ No
6059sseli 3975 . . . . . . . . 9 (𝑚 ∈ ( L ‘𝑌) → 𝑚 No )
6160adantl 480 . . . . . . . 8 ((𝜑𝑚 ∈ ( L ‘𝑌)) → 𝑚 No )
6222a1i 11 . . . . . . . 8 ((𝜑𝑚 ∈ ( L ‘𝑌)) → 0s No )
6324oveq2i 7425 . . . . . . . . . . . 12 (( bday 𝑋) +no ( bday ‘ 0s )) = (( bday 𝑋) +no ∅)
64 naddrid 8703 . . . . . . . . . . . . 13 (( bday 𝑋) ∈ On → (( bday 𝑋) +no ∅) = ( bday 𝑋))
6539, 64ax-mp 5 . . . . . . . . . . . 12 (( bday 𝑋) +no ∅) = ( bday 𝑋)
6663, 65eqtri 2754 . . . . . . . . . . 11 (( bday 𝑋) +no ( bday ‘ 0s )) = ( bday 𝑋)
6766uneq2i 4158 . . . . . . . . . 10 ((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday ‘ 0s ))) = ((( bday 𝑋) +no ( bday 𝑚)) ∪ ( bday 𝑋))
68 bdayelon 27801 . . . . . . . . . . . 12 ( bday 𝑚) ∈ On
69 naddword1 8711 . . . . . . . . . . . 12 ((( bday 𝑋) ∈ On ∧ ( bday 𝑚) ∈ On) → ( bday 𝑋) ⊆ (( bday 𝑋) +no ( bday 𝑚)))
7039, 68, 69mp2an 690 . . . . . . . . . . 11 ( bday 𝑋) ⊆ (( bday 𝑋) +no ( bday 𝑚))
71 ssequn2 4182 . . . . . . . . . . 11 (( bday 𝑋) ⊆ (( bday 𝑋) +no ( bday 𝑚)) ↔ ((( bday 𝑋) +no ( bday 𝑚)) ∪ ( bday 𝑋)) = (( bday 𝑋) +no ( bday 𝑚)))
7270, 71mpbi 229 . . . . . . . . . 10 ((( bday 𝑋) +no ( bday 𝑚)) ∪ ( bday 𝑋)) = (( bday 𝑋) +no ( bday 𝑚))
7367, 72eqtri 2754 . . . . . . . . 9 ((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday ‘ 0s ))) = (( bday 𝑋) +no ( bday 𝑚))
74 leftssold 27897 . . . . . . . . . . . . . 14 ( L ‘𝑌) ⊆ ( O ‘( bday 𝑌))
7574sseli 3975 . . . . . . . . . . . . 13 (𝑚 ∈ ( L ‘𝑌) → 𝑚 ∈ ( O ‘( bday 𝑌)))
76 oldbday 27919 . . . . . . . . . . . . . 14 ((( bday 𝑌) ∈ On ∧ 𝑚 No ) → (𝑚 ∈ ( O ‘( bday 𝑌)) ↔ ( bday 𝑚) ∈ ( bday 𝑌)))
7731, 60, 76sylancr 585 . . . . . . . . . . . . 13 (𝑚 ∈ ( L ‘𝑌) → (𝑚 ∈ ( O ‘( bday 𝑌)) ↔ ( bday 𝑚) ∈ ( bday 𝑌)))
7875, 77mpbid 231 . . . . . . . . . . . 12 (𝑚 ∈ ( L ‘𝑌) → ( bday 𝑚) ∈ ( bday 𝑌))
79 naddel2 8708 . . . . . . . . . . . . 13 ((( bday 𝑚) ∈ On ∧ ( bday 𝑌) ∈ On ∧ ( bday 𝑋) ∈ On) → (( bday 𝑚) ∈ ( bday 𝑌) ↔ (( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
8068, 31, 39, 79mp3an 1458 . . . . . . . . . . . 12 (( bday 𝑚) ∈ ( bday 𝑌) ↔ (( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
8178, 80sylib 217 . . . . . . . . . . 11 (𝑚 ∈ ( L ‘𝑌) → (( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
8281adantl 480 . . . . . . . . . 10 ((𝜑𝑚 ∈ ( L ‘𝑌)) → (( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
83 elun1 4175 . . . . . . . . . 10 ((( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)) → (( bday 𝑋) +no ( bday 𝑚)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
8482, 83syl 17 . . . . . . . . 9 ((𝜑𝑚 ∈ ( L ‘𝑌)) → (( bday 𝑋) +no ( bday 𝑚)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
8573, 84eqeltrid 2830 . . . . . . . 8 ((𝜑𝑚 ∈ ( L ‘𝑌)) → ((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday ‘ 0s ))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
8656, 58, 61, 62, 85addsproplem1 27978 . . . . . . 7 ((𝜑𝑚 ∈ ( L ‘𝑌)) → ((𝑋 +s 𝑚) ∈ No ∧ (𝑚 <s 0s → (𝑚 +s 𝑋) <s ( 0s +s 𝑋))))
8786simpld 493 . . . . . 6 ((𝜑𝑚 ∈ ( L ‘𝑌)) → (𝑋 +s 𝑚) ∈ No )
88 eleq1a 2821 . . . . . 6 ((𝑋 +s 𝑚) ∈ No → (𝑞 = (𝑋 +s 𝑚) → 𝑞 No ))
8987, 88syl 17 . . . . 5 ((𝜑𝑚 ∈ ( L ‘𝑌)) → (𝑞 = (𝑋 +s 𝑚) → 𝑞 No ))
9089rexlimdva 3145 . . . 4 (𝜑 → (∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚) → 𝑞 No ))
9190abssdv 4062 . . 3 (𝜑 → {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)} ⊆ No )
9255, 91unssd 4185 . 2 (𝜑 → ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) ⊆ No )
9315adantr 479 . . . . . . . 8 ((𝜑𝑟 ∈ ( R ‘𝑋)) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
94 rightssno 27900 . . . . . . . . . 10 ( R ‘𝑋) ⊆ No
9594sseli 3975 . . . . . . . . 9 (𝑟 ∈ ( R ‘𝑋) → 𝑟 No )
9695adantl 480 . . . . . . . 8 ((𝜑𝑟 ∈ ( R ‘𝑋)) → 𝑟 No )
9720adantr 479 . . . . . . . 8 ((𝜑𝑟 ∈ ( R ‘𝑋)) → 𝑌 No )
9822a1i 11 . . . . . . . 8 ((𝜑𝑟 ∈ ( R ‘𝑋)) → 0s No )
9924oveq2i 7425 . . . . . . . . . . . 12 (( bday 𝑟) +no ( bday ‘ 0s )) = (( bday 𝑟) +no ∅)
100 bdayelon 27801 . . . . . . . . . . . . 13 ( bday 𝑟) ∈ On
101 naddrid 8703 . . . . . . . . . . . . 13 (( bday 𝑟) ∈ On → (( bday 𝑟) +no ∅) = ( bday 𝑟))
102100, 101ax-mp 5 . . . . . . . . . . . 12 (( bday 𝑟) +no ∅) = ( bday 𝑟)
10399, 102eqtri 2754 . . . . . . . . . . 11 (( bday 𝑟) +no ( bday ‘ 0s )) = ( bday 𝑟)
104103uneq2i 4158 . . . . . . . . . 10 ((( bday 𝑟) +no ( bday 𝑌)) ∪ (( bday 𝑟) +no ( bday ‘ 0s ))) = ((( bday 𝑟) +no ( bday 𝑌)) ∪ ( bday 𝑟))
105 naddword1 8711 . . . . . . . . . . . 12 ((( bday 𝑟) ∈ On ∧ ( bday 𝑌) ∈ On) → ( bday 𝑟) ⊆ (( bday 𝑟) +no ( bday 𝑌)))
106100, 31, 105mp2an 690 . . . . . . . . . . 11 ( bday 𝑟) ⊆ (( bday 𝑟) +no ( bday 𝑌))
107 ssequn2 4182 . . . . . . . . . . 11 (( bday 𝑟) ⊆ (( bday 𝑟) +no ( bday 𝑌)) ↔ ((( bday 𝑟) +no ( bday 𝑌)) ∪ ( bday 𝑟)) = (( bday 𝑟) +no ( bday 𝑌)))
108106, 107mpbi 229 . . . . . . . . . 10 ((( bday 𝑟) +no ( bday 𝑌)) ∪ ( bday 𝑟)) = (( bday 𝑟) +no ( bday 𝑌))
109104, 108eqtri 2754 . . . . . . . . 9 ((( bday 𝑟) +no ( bday 𝑌)) ∪ (( bday 𝑟) +no ( bday ‘ 0s ))) = (( bday 𝑟) +no ( bday 𝑌))
110 rightssold 27898 . . . . . . . . . . . . . 14 ( R ‘𝑋) ⊆ ( O ‘( bday 𝑋))
111110sseli 3975 . . . . . . . . . . . . 13 (𝑟 ∈ ( R ‘𝑋) → 𝑟 ∈ ( O ‘( bday 𝑋)))
112 oldbday 27919 . . . . . . . . . . . . . 14 ((( bday 𝑋) ∈ On ∧ 𝑟 No ) → (𝑟 ∈ ( O ‘( bday 𝑋)) ↔ ( bday 𝑟) ∈ ( bday 𝑋)))
11339, 95, 112sylancr 585 . . . . . . . . . . . . 13 (𝑟 ∈ ( R ‘𝑋) → (𝑟 ∈ ( O ‘( bday 𝑋)) ↔ ( bday 𝑟) ∈ ( bday 𝑋)))
114111, 113mpbid 231 . . . . . . . . . . . 12 (𝑟 ∈ ( R ‘𝑋) → ( bday 𝑟) ∈ ( bday 𝑋))
115 naddel1 8707 . . . . . . . . . . . . 13 ((( bday 𝑟) ∈ On ∧ ( bday 𝑋) ∈ On ∧ ( bday 𝑌) ∈ On) → (( bday 𝑟) ∈ ( bday 𝑋) ↔ (( bday 𝑟) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
116100, 39, 31, 115mp3an 1458 . . . . . . . . . . . 12 (( bday 𝑟) ∈ ( bday 𝑋) ↔ (( bday 𝑟) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
117114, 116sylib 217 . . . . . . . . . . 11 (𝑟 ∈ ( R ‘𝑋) → (( bday 𝑟) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
118117adantl 480 . . . . . . . . . 10 ((𝜑𝑟 ∈ ( R ‘𝑋)) → (( bday 𝑟) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
119 elun1 4175 . . . . . . . . . 10 ((( bday 𝑟) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)) → (( bday 𝑟) +no ( bday 𝑌)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
120118, 119syl 17 . . . . . . . . 9 ((𝜑𝑟 ∈ ( R ‘𝑋)) → (( bday 𝑟) +no ( bday 𝑌)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
121109, 120eqeltrid 2830 . . . . . . . 8 ((𝜑𝑟 ∈ ( R ‘𝑋)) → ((( bday 𝑟) +no ( bday 𝑌)) ∪ (( bday 𝑟) +no ( bday ‘ 0s ))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
12293, 96, 97, 98, 121addsproplem1 27978 . . . . . . 7 ((𝜑𝑟 ∈ ( R ‘𝑋)) → ((𝑟 +s 𝑌) ∈ No ∧ (𝑌 <s 0s → (𝑌 +s 𝑟) <s ( 0s +s 𝑟))))
123122simpld 493 . . . . . 6 ((𝜑𝑟 ∈ ( R ‘𝑋)) → (𝑟 +s 𝑌) ∈ No )
124 eleq1a 2821 . . . . . 6 ((𝑟 +s 𝑌) ∈ No → (𝑤 = (𝑟 +s 𝑌) → 𝑤 No ))
125123, 124syl 17 . . . . 5 ((𝜑𝑟 ∈ ( R ‘𝑋)) → (𝑤 = (𝑟 +s 𝑌) → 𝑤 No ))
126125rexlimdva 3145 . . . 4 (𝜑 → (∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌) → 𝑤 No ))
127126abssdv 4062 . . 3 (𝜑 → {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ⊆ No )
12815adantr 479 . . . . . . . 8 ((𝜑𝑠 ∈ ( R ‘𝑌)) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
12957adantr 479 . . . . . . . 8 ((𝜑𝑠 ∈ ( R ‘𝑌)) → 𝑋 No )
130 rightssno 27900 . . . . . . . . . 10 ( R ‘𝑌) ⊆ No
131130sseli 3975 . . . . . . . . 9 (𝑠 ∈ ( R ‘𝑌) → 𝑠 No )
132131adantl 480 . . . . . . . 8 ((𝜑𝑠 ∈ ( R ‘𝑌)) → 𝑠 No )
13322a1i 11 . . . . . . . 8 ((𝜑𝑠 ∈ ( R ‘𝑌)) → 0s No )
13466uneq2i 4158 . . . . . . . . . 10 ((( bday 𝑋) +no ( bday 𝑠)) ∪ (( bday 𝑋) +no ( bday ‘ 0s ))) = ((( bday 𝑋) +no ( bday 𝑠)) ∪ ( bday 𝑋))
135 bdayelon 27801 . . . . . . . . . . . 12 ( bday 𝑠) ∈ On
136 naddword1 8711 . . . . . . . . . . . 12 ((( bday 𝑋) ∈ On ∧ ( bday 𝑠) ∈ On) → ( bday 𝑋) ⊆ (( bday 𝑋) +no ( bday 𝑠)))
13739, 135, 136mp2an 690 . . . . . . . . . . 11 ( bday 𝑋) ⊆ (( bday 𝑋) +no ( bday 𝑠))
138 ssequn2 4182 . . . . . . . . . . 11 (( bday 𝑋) ⊆ (( bday 𝑋) +no ( bday 𝑠)) ↔ ((( bday 𝑋) +no ( bday 𝑠)) ∪ ( bday 𝑋)) = (( bday 𝑋) +no ( bday 𝑠)))
139137, 138mpbi 229 . . . . . . . . . 10 ((( bday 𝑋) +no ( bday 𝑠)) ∪ ( bday 𝑋)) = (( bday 𝑋) +no ( bday 𝑠))
140134, 139eqtri 2754 . . . . . . . . 9 ((( bday 𝑋) +no ( bday 𝑠)) ∪ (( bday 𝑋) +no ( bday ‘ 0s ))) = (( bday 𝑋) +no ( bday 𝑠))
141 rightssold 27898 . . . . . . . . . . . . . 14 ( R ‘𝑌) ⊆ ( O ‘( bday 𝑌))
142141sseli 3975 . . . . . . . . . . . . 13 (𝑠 ∈ ( R ‘𝑌) → 𝑠 ∈ ( O ‘( bday 𝑌)))
143 oldbday 27919 . . . . . . . . . . . . . 14 ((( bday 𝑌) ∈ On ∧ 𝑠 No ) → (𝑠 ∈ ( O ‘( bday 𝑌)) ↔ ( bday 𝑠) ∈ ( bday 𝑌)))
14431, 131, 143sylancr 585 . . . . . . . . . . . . 13 (𝑠 ∈ ( R ‘𝑌) → (𝑠 ∈ ( O ‘( bday 𝑌)) ↔ ( bday 𝑠) ∈ ( bday 𝑌)))
145142, 144mpbid 231 . . . . . . . . . . . 12 (𝑠 ∈ ( R ‘𝑌) → ( bday 𝑠) ∈ ( bday 𝑌))
146 naddel2 8708 . . . . . . . . . . . . 13 ((( bday 𝑠) ∈ On ∧ ( bday 𝑌) ∈ On ∧ ( bday 𝑋) ∈ On) → (( bday 𝑠) ∈ ( bday 𝑌) ↔ (( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
147135, 31, 39, 146mp3an 1458 . . . . . . . . . . . 12 (( bday 𝑠) ∈ ( bday 𝑌) ↔ (( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
148145, 147sylib 217 . . . . . . . . . . 11 (𝑠 ∈ ( R ‘𝑌) → (( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
149148adantl 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ ( R ‘𝑌)) → (( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
150 elun1 4175 . . . . . . . . . 10 ((( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)) → (( bday 𝑋) +no ( bday 𝑠)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
151149, 150syl 17 . . . . . . . . 9 ((𝜑𝑠 ∈ ( R ‘𝑌)) → (( bday 𝑋) +no ( bday 𝑠)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
152140, 151eqeltrid 2830 . . . . . . . 8 ((𝜑𝑠 ∈ ( R ‘𝑌)) → ((( bday 𝑋) +no ( bday 𝑠)) ∪ (( bday 𝑋) +no ( bday ‘ 0s ))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
153128, 129, 132, 133, 152addsproplem1 27978 . . . . . . 7 ((𝜑𝑠 ∈ ( R ‘𝑌)) → ((𝑋 +s 𝑠) ∈ No ∧ (𝑠 <s 0s → (𝑠 +s 𝑋) <s ( 0s +s 𝑋))))
154153simpld 493 . . . . . 6 ((𝜑𝑠 ∈ ( R ‘𝑌)) → (𝑋 +s 𝑠) ∈ No )
155 eleq1a 2821 . . . . . 6 ((𝑋 +s 𝑠) ∈ No → (𝑡 = (𝑋 +s 𝑠) → 𝑡 No ))
156154, 155syl 17 . . . . 5 ((𝜑𝑠 ∈ ( R ‘𝑌)) → (𝑡 = (𝑋 +s 𝑠) → 𝑡 No ))
157156rexlimdva 3145 . . . 4 (𝜑 → (∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠) → 𝑡 No ))
158157abssdv 4062 . . 3 (𝜑 → {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)} ⊆ No )
159127, 158unssd 4185 . 2 (𝜑 → ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}) ⊆ No )
160 elun 4146 . . . . . . 7 (𝑎 ∈ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) ↔ (𝑎 ∈ {𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∨ 𝑎 ∈ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}))
161 vex 3467 . . . . . . . . 9 𝑎 ∈ V
162 eqeq1 2730 . . . . . . . . . 10 (𝑝 = 𝑎 → (𝑝 = (𝑙 +s 𝑌) ↔ 𝑎 = (𝑙 +s 𝑌)))
163162rexbidv 3169 . . . . . . . . 9 (𝑝 = 𝑎 → (∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌) ↔ ∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌)))
164161, 163elab 3666 . . . . . . . 8 (𝑎 ∈ {𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ↔ ∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌))
165 eqeq1 2730 . . . . . . . . . 10 (𝑞 = 𝑎 → (𝑞 = (𝑋 +s 𝑚) ↔ 𝑎 = (𝑋 +s 𝑚)))
166165rexbidv 3169 . . . . . . . . 9 (𝑞 = 𝑎 → (∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚) ↔ ∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚)))
167161, 166elab 3666 . . . . . . . 8 (𝑎 ∈ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)} ↔ ∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚))
168164, 167orbi12i 912 . . . . . . 7 ((𝑎 ∈ {𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∨ 𝑎 ∈ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) ↔ (∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∨ ∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚)))
169160, 168bitri 274 . . . . . 6 (𝑎 ∈ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) ↔ (∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∨ ∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚)))
170 elun 4146 . . . . . . 7 (𝑏 ∈ ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}) ↔ (𝑏 ∈ {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∨ 𝑏 ∈ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}))
171 vex 3467 . . . . . . . . 9 𝑏 ∈ V
172 eqeq1 2730 . . . . . . . . . 10 (𝑤 = 𝑏 → (𝑤 = (𝑟 +s 𝑌) ↔ 𝑏 = (𝑟 +s 𝑌)))
173172rexbidv 3169 . . . . . . . . 9 (𝑤 = 𝑏 → (∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌) ↔ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)))
174171, 173elab 3666 . . . . . . . 8 (𝑏 ∈ {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ↔ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌))
175 eqeq1 2730 . . . . . . . . . 10 (𝑡 = 𝑏 → (𝑡 = (𝑋 +s 𝑠) ↔ 𝑏 = (𝑋 +s 𝑠)))
176175rexbidv 3169 . . . . . . . . 9 (𝑡 = 𝑏 → (∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠) ↔ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠)))
177171, 176elab 3666 . . . . . . . 8 (𝑏 ∈ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)} ↔ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠))
178174, 177orbi12i 912 . . . . . . 7 ((𝑏 ∈ {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∨ 𝑏 ∈ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}) ↔ (∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌) ∨ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠)))
179170, 178bitri 274 . . . . . 6 (𝑏 ∈ ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}) ↔ (∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌) ∨ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠)))
180169, 179anbi12i 626 . . . . 5 ((𝑎 ∈ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) ∧ 𝑏 ∈ ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)})) ↔ ((∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∨ ∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚)) ∧ (∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌) ∨ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠))))
181 anddi 1008 . . . . 5 (((∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∨ ∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚)) ∧ (∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌) ∨ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠))) ↔ (((∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)) ∨ (∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠))) ∨ ((∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)) ∨ (∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠)))))
182180, 181bitri 274 . . . 4 ((𝑎 ∈ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) ∧ 𝑏 ∈ ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)})) ↔ (((∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)) ∨ (∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠))) ∨ ((∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)) ∨ (∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠)))))
183 reeanv 3217 . . . . . . 7 (∃𝑙 ∈ ( L ‘𝑋)∃𝑟 ∈ ( R ‘𝑋)(𝑎 = (𝑙 +s 𝑌) ∧ 𝑏 = (𝑟 +s 𝑌)) ↔ (∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)))
184 lltropt 27891 . . . . . . . . . . . 12 ( L ‘𝑋) <<s ( R ‘𝑋)
185184a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → ( L ‘𝑋) <<s ( R ‘𝑋))
186 simprl 769 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑙 ∈ ( L ‘𝑋))
187 simprr 771 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑟 ∈ ( R ‘𝑋))
188185, 186, 187ssltsepcd 27819 . . . . . . . . . 10 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑙 <s 𝑟)
18915adantr 479 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
19020adantr 479 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑌 No )
19118ad2antrl 726 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑙 No )
19295ad2antll 727 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑟 No )
193 naddcom 8702 . . . . . . . . . . . . . . . 16 ((( bday 𝑌) ∈ On ∧ ( bday 𝑙) ∈ On) → (( bday 𝑌) +no ( bday 𝑙)) = (( bday 𝑙) +no ( bday 𝑌)))
19431, 26, 193mp2an 690 . . . . . . . . . . . . . . 15 (( bday 𝑌) +no ( bday 𝑙)) = (( bday 𝑙) +no ( bday 𝑌))
19545ad2antrl 726 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑙) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
196194, 195eqeltrid 2830 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑌) +no ( bday 𝑙)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
197 naddcom 8702 . . . . . . . . . . . . . . . 16 ((( bday 𝑌) ∈ On ∧ ( bday 𝑟) ∈ On) → (( bday 𝑌) +no ( bday 𝑟)) = (( bday 𝑟) +no ( bday 𝑌)))
19831, 100, 197mp2an 690 . . . . . . . . . . . . . . 15 (( bday 𝑌) +no ( bday 𝑟)) = (( bday 𝑟) +no ( bday 𝑌))
199117ad2antll 727 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑟) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
200198, 199eqeltrid 2830 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑌) +no ( bday 𝑟)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
201 naddcl 8697 . . . . . . . . . . . . . . . 16 ((( bday 𝑌) ∈ On ∧ ( bday 𝑙) ∈ On) → (( bday 𝑌) +no ( bday 𝑙)) ∈ On)
20231, 26, 201mp2an 690 . . . . . . . . . . . . . . 15 (( bday 𝑌) +no ( bday 𝑙)) ∈ On
203 naddcl 8697 . . . . . . . . . . . . . . . 16 ((( bday 𝑌) ∈ On ∧ ( bday 𝑟) ∈ On) → (( bday 𝑌) +no ( bday 𝑟)) ∈ On)
20431, 100, 203mp2an 690 . . . . . . . . . . . . . . 15 (( bday 𝑌) +no ( bday 𝑟)) ∈ On
205 naddcl 8697 . . . . . . . . . . . . . . . 16 ((( bday 𝑋) ∈ On ∧ ( bday 𝑌) ∈ On) → (( bday 𝑋) +no ( bday 𝑌)) ∈ On)
20639, 31, 205mp2an 690 . . . . . . . . . . . . . . 15 (( bday 𝑋) +no ( bday 𝑌)) ∈ On
207 onunel 6471 . . . . . . . . . . . . . . 15 (((( bday 𝑌) +no ( bday 𝑙)) ∈ On ∧ (( bday 𝑌) +no ( bday 𝑟)) ∈ On ∧ (( bday 𝑋) +no ( bday 𝑌)) ∈ On) → (((( bday 𝑌) +no ( bday 𝑙)) ∪ (( bday 𝑌) +no ( bday 𝑟))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑌) +no ( bday 𝑙)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑌) +no ( bday 𝑟)) ∈ (( bday 𝑋) +no ( bday 𝑌)))))
208202, 204, 206, 207mp3an 1458 . . . . . . . . . . . . . 14 (((( bday 𝑌) +no ( bday 𝑙)) ∪ (( bday 𝑌) +no ( bday 𝑟))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑌) +no ( bday 𝑙)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑌) +no ( bday 𝑟)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
209196, 200, 208sylanbrc 581 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((( bday 𝑌) +no ( bday 𝑙)) ∪ (( bday 𝑌) +no ( bday 𝑟))) ∈ (( bday 𝑋) +no ( bday 𝑌)))
210 elun1 4175 . . . . . . . . . . . . 13 (((( bday 𝑌) +no ( bday 𝑙)) ∪ (( bday 𝑌) +no ( bday 𝑟))) ∈ (( bday 𝑋) +no ( bday 𝑌)) → ((( bday 𝑌) +no ( bday 𝑙)) ∪ (( bday 𝑌) +no ( bday 𝑟))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
211209, 210syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((( bday 𝑌) +no ( bday 𝑙)) ∪ (( bday 𝑌) +no ( bday 𝑟))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
212189, 190, 191, 192, 211addsproplem1 27978 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((𝑌 +s 𝑙) ∈ No ∧ (𝑙 <s 𝑟 → (𝑙 +s 𝑌) <s (𝑟 +s 𝑌))))
213212simprd 494 . . . . . . . . . 10 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑙 <s 𝑟 → (𝑙 +s 𝑌) <s (𝑟 +s 𝑌)))
214188, 213mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑙 +s 𝑌) <s (𝑟 +s 𝑌))
215 breq12 5149 . . . . . . . . 9 ((𝑎 = (𝑙 +s 𝑌) ∧ 𝑏 = (𝑟 +s 𝑌)) → (𝑎 <s 𝑏 ↔ (𝑙 +s 𝑌) <s (𝑟 +s 𝑌)))
216214, 215syl5ibrcom 246 . . . . . . . 8 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((𝑎 = (𝑙 +s 𝑌) ∧ 𝑏 = (𝑟 +s 𝑌)) → 𝑎 <s 𝑏))
217216rexlimdvva 3202 . . . . . . 7 (𝜑 → (∃𝑙 ∈ ( L ‘𝑋)∃𝑟 ∈ ( R ‘𝑋)(𝑎 = (𝑙 +s 𝑌) ∧ 𝑏 = (𝑟 +s 𝑌)) → 𝑎 <s 𝑏))
218183, 217biimtrrid 242 . . . . . 6 (𝜑 → ((∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)) → 𝑎 <s 𝑏))
219 reeanv 3217 . . . . . . 7 (∃𝑙 ∈ ( L ‘𝑋)∃𝑠 ∈ ( R ‘𝑌)(𝑎 = (𝑙 +s 𝑌) ∧ 𝑏 = (𝑋 +s 𝑠)) ↔ (∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠)))
22051adantrr 715 . . . . . . . . . 10 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑙 +s 𝑌) ∈ No )
22115adantr 479 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
22218ad2antrl 726 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑙 No )
223131ad2antll 727 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑠 No )
22422a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → 0s No )
22529uneq2i 4158 . . . . . . . . . . . . . 14 ((( bday 𝑙) +no ( bday 𝑠)) ∪ (( bday 𝑙) +no ( bday ‘ 0s ))) = ((( bday 𝑙) +no ( bday 𝑠)) ∪ ( bday 𝑙))
226 naddword1 8711 . . . . . . . . . . . . . . . 16 ((( bday 𝑙) ∈ On ∧ ( bday 𝑠) ∈ On) → ( bday 𝑙) ⊆ (( bday 𝑙) +no ( bday 𝑠)))
22726, 135, 226mp2an 690 . . . . . . . . . . . . . . 15 ( bday 𝑙) ⊆ (( bday 𝑙) +no ( bday 𝑠))
228 ssequn2 4182 . . . . . . . . . . . . . . 15 (( bday 𝑙) ⊆ (( bday 𝑙) +no ( bday 𝑠)) ↔ ((( bday 𝑙) +no ( bday 𝑠)) ∪ ( bday 𝑙)) = (( bday 𝑙) +no ( bday 𝑠)))
229227, 228mpbi 229 . . . . . . . . . . . . . 14 ((( bday 𝑙) +no ( bday 𝑠)) ∪ ( bday 𝑙)) = (( bday 𝑙) +no ( bday 𝑠))
230225, 229eqtri 2754 . . . . . . . . . . . . 13 ((( bday 𝑙) +no ( bday 𝑠)) ∪ (( bday 𝑙) +no ( bday ‘ 0s ))) = (( bday 𝑙) +no ( bday 𝑠))
231 naddel1 8707 . . . . . . . . . . . . . . . . . 18 ((( bday 𝑙) ∈ On ∧ ( bday 𝑋) ∈ On ∧ ( bday 𝑠) ∈ On) → (( bday 𝑙) ∈ ( bday 𝑋) ↔ (( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑠))))
23226, 39, 135, 231mp3an 1458 . . . . . . . . . . . . . . . . 17 (( bday 𝑙) ∈ ( bday 𝑋) ↔ (( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑠)))
23342, 232sylib 217 . . . . . . . . . . . . . . . 16 (𝑙 ∈ ( L ‘𝑋) → (( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑠)))
234233ad2antrl 726 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑠)))
235148ad2antll 727 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
236 ontr1 6412 . . . . . . . . . . . . . . . 16 ((( bday 𝑋) +no ( bday 𝑌)) ∈ On → (((( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑠)) ∧ (( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌))) → (( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
237206, 236ax-mp 5 . . . . . . . . . . . . . . 15 (((( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑠)) ∧ (( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌))) → (( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
238234, 235, 237syl2anc 582 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
239 elun1 4175 . . . . . . . . . . . . . 14 ((( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)) → (( bday 𝑙) +no ( bday 𝑠)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
240238, 239syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (( bday 𝑙) +no ( bday 𝑠)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
241230, 240eqeltrid 2830 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((( bday 𝑙) +no ( bday 𝑠)) ∪ (( bday 𝑙) +no ( bday ‘ 0s ))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
242221, 222, 223, 224, 241addsproplem1 27978 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((𝑙 +s 𝑠) ∈ No ∧ (𝑠 <s 0s → (𝑠 +s 𝑙) <s ( 0s +s 𝑙))))
243242simpld 493 . . . . . . . . . 10 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑙 +s 𝑠) ∈ No )
244154adantrl 714 . . . . . . . . . 10 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑋 +s 𝑠) ∈ No )
245 rightval 27883 . . . . . . . . . . . . . . 15 ( R ‘𝑌) = {𝑠 ∈ ( O ‘( bday 𝑌)) ∣ 𝑌 <s 𝑠}
246245reqabi 3443 . . . . . . . . . . . . . 14 (𝑠 ∈ ( R ‘𝑌) ↔ (𝑠 ∈ ( O ‘( bday 𝑌)) ∧ 𝑌 <s 𝑠))
247246simprbi 495 . . . . . . . . . . . . 13 (𝑠 ∈ ( R ‘𝑌) → 𝑌 <s 𝑠)
248247ad2antll 727 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑌 <s 𝑠)
24920adantr 479 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑌 No )
25045ad2antrl 726 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (( bday 𝑙) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
251 naddcl 8697 . . . . . . . . . . . . . . . . . 18 ((( bday 𝑙) ∈ On ∧ ( bday 𝑌) ∈ On) → (( bday 𝑙) +no ( bday 𝑌)) ∈ On)
25226, 31, 251mp2an 690 . . . . . . . . . . . . . . . . 17 (( bday 𝑙) +no ( bday 𝑌)) ∈ On
253 naddcl 8697 . . . . . . . . . . . . . . . . . 18 ((( bday 𝑙) ∈ On ∧ ( bday 𝑠) ∈ On) → (( bday 𝑙) +no ( bday 𝑠)) ∈ On)
25426, 135, 253mp2an 690 . . . . . . . . . . . . . . . . 17 (( bday 𝑙) +no ( bday 𝑠)) ∈ On
255 onunel 6471 . . . . . . . . . . . . . . . . 17 (((( bday 𝑙) +no ( bday 𝑌)) ∈ On ∧ (( bday 𝑙) +no ( bday 𝑠)) ∈ On ∧ (( bday 𝑋) +no ( bday 𝑌)) ∈ On) → (((( bday 𝑙) +no ( bday 𝑌)) ∪ (( bday 𝑙) +no ( bday 𝑠))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑙) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)))))
256252, 254, 206, 255mp3an 1458 . . . . . . . . . . . . . . . 16 (((( bday 𝑙) +no ( bday 𝑌)) ∪ (( bday 𝑙) +no ( bday 𝑠))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑙) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
257250, 238, 256sylanbrc 581 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((( bday 𝑙) +no ( bday 𝑌)) ∪ (( bday 𝑙) +no ( bday 𝑠))) ∈ (( bday 𝑋) +no ( bday 𝑌)))
258 elun1 4175 . . . . . . . . . . . . . . 15 (((( bday 𝑙) +no ( bday 𝑌)) ∪ (( bday 𝑙) +no ( bday 𝑠))) ∈ (( bday 𝑋) +no ( bday 𝑌)) → ((( bday 𝑙) +no ( bday 𝑌)) ∪ (( bday 𝑙) +no ( bday 𝑠))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
259257, 258syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((( bday 𝑙) +no ( bday 𝑌)) ∪ (( bday 𝑙) +no ( bday 𝑠))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
260221, 222, 249, 223, 259addsproplem1 27978 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((𝑙 +s 𝑌) ∈ No ∧ (𝑌 <s 𝑠 → (𝑌 +s 𝑙) <s (𝑠 +s 𝑙))))
261260simprd 494 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑌 <s 𝑠 → (𝑌 +s 𝑙) <s (𝑠 +s 𝑙)))
262248, 261mpd 15 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑌 +s 𝑙) <s (𝑠 +s 𝑙))
263222, 249addscomd 27976 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑙 +s 𝑌) = (𝑌 +s 𝑙))
264222, 223addscomd 27976 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑙 +s 𝑠) = (𝑠 +s 𝑙))
265262, 263, 2643brtr4d 5176 . . . . . . . . . 10 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑙 +s 𝑌) <s (𝑙 +s 𝑠))
266 leftval 27882 . . . . . . . . . . . . . 14 ( L ‘𝑋) = {𝑙 ∈ ( O ‘( bday 𝑋)) ∣ 𝑙 <s 𝑋}
267266reqabi 3443 . . . . . . . . . . . . 13 (𝑙 ∈ ( L ‘𝑋) ↔ (𝑙 ∈ ( O ‘( bday 𝑋)) ∧ 𝑙 <s 𝑋))
268267simprbi 495 . . . . . . . . . . . 12 (𝑙 ∈ ( L ‘𝑋) → 𝑙 <s 𝑋)
269268ad2antrl 726 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑙 <s 𝑋)
27057adantr 479 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑋 No )
271 naddcom 8702 . . . . . . . . . . . . . . . . 17 ((( bday 𝑠) ∈ On ∧ ( bday 𝑙) ∈ On) → (( bday 𝑠) +no ( bday 𝑙)) = (( bday 𝑙) +no ( bday 𝑠)))
272135, 26, 271mp2an 690 . . . . . . . . . . . . . . . 16 (( bday 𝑠) +no ( bday 𝑙)) = (( bday 𝑙) +no ( bday 𝑠))
273272, 238eqeltrid 2830 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (( bday 𝑠) +no ( bday 𝑙)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
274 naddcom 8702 . . . . . . . . . . . . . . . . 17 ((( bday 𝑠) ∈ On ∧ ( bday 𝑋) ∈ On) → (( bday 𝑠) +no ( bday 𝑋)) = (( bday 𝑋) +no ( bday 𝑠)))
275135, 39, 274mp2an 690 . . . . . . . . . . . . . . . 16 (( bday 𝑠) +no ( bday 𝑋)) = (( bday 𝑋) +no ( bday 𝑠))
276275, 235eqeltrid 2830 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (( bday 𝑠) +no ( bday 𝑋)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
277 naddcl 8697 . . . . . . . . . . . . . . . . 17 ((( bday 𝑠) ∈ On ∧ ( bday 𝑙) ∈ On) → (( bday 𝑠) +no ( bday 𝑙)) ∈ On)
278135, 26, 277mp2an 690 . . . . . . . . . . . . . . . 16 (( bday 𝑠) +no ( bday 𝑙)) ∈ On
279 naddcl 8697 . . . . . . . . . . . . . . . . 17 ((( bday 𝑠) ∈ On ∧ ( bday 𝑋) ∈ On) → (( bday 𝑠) +no ( bday 𝑋)) ∈ On)
280135, 39, 279mp2an 690 . . . . . . . . . . . . . . . 16 (( bday 𝑠) +no ( bday 𝑋)) ∈ On
281 onunel 6471 . . . . . . . . . . . . . . . 16 (((( bday 𝑠) +no ( bday 𝑙)) ∈ On ∧ (( bday 𝑠) +no ( bday 𝑋)) ∈ On ∧ (( bday 𝑋) +no ( bday 𝑌)) ∈ On) → (((( bday 𝑠) +no ( bday 𝑙)) ∪ (( bday 𝑠) +no ( bday 𝑋))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑠) +no ( bday 𝑙)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑠) +no ( bday 𝑋)) ∈ (( bday 𝑋) +no ( bday 𝑌)))))
282278, 280, 206, 281mp3an 1458 . . . . . . . . . . . . . . 15 (((( bday 𝑠) +no ( bday 𝑙)) ∪ (( bday 𝑠) +no ( bday 𝑋))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑠) +no ( bday 𝑙)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑠) +no ( bday 𝑋)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
283273, 276, 282sylanbrc 581 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((( bday 𝑠) +no ( bday 𝑙)) ∪ (( bday 𝑠) +no ( bday 𝑋))) ∈ (( bday 𝑋) +no ( bday 𝑌)))
284 elun1 4175 . . . . . . . . . . . . . 14 (((( bday 𝑠) +no ( bday 𝑙)) ∪ (( bday 𝑠) +no ( bday 𝑋))) ∈ (( bday 𝑋) +no ( bday 𝑌)) → ((( bday 𝑠) +no ( bday 𝑙)) ∪ (( bday 𝑠) +no ( bday 𝑋))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
285283, 284syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((( bday 𝑠) +no ( bday 𝑙)) ∪ (( bday 𝑠) +no ( bday 𝑋))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
286221, 223, 222, 270, 285addsproplem1 27978 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((𝑠 +s 𝑙) ∈ No ∧ (𝑙 <s 𝑋 → (𝑙 +s 𝑠) <s (𝑋 +s 𝑠))))
287286simprd 494 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑙 <s 𝑋 → (𝑙 +s 𝑠) <s (𝑋 +s 𝑠)))
288269, 287mpd 15 . . . . . . . . . 10 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑙 +s 𝑠) <s (𝑋 +s 𝑠))
289220, 243, 244, 265, 288slttrd 27784 . . . . . . . . 9 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑙 +s 𝑌) <s (𝑋 +s 𝑠))
290 breq12 5149 . . . . . . . . 9 ((𝑎 = (𝑙 +s 𝑌) ∧ 𝑏 = (𝑋 +s 𝑠)) → (𝑎 <s 𝑏 ↔ (𝑙 +s 𝑌) <s (𝑋 +s 𝑠)))
291289, 290syl5ibrcom 246 . . . . . . . 8 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((𝑎 = (𝑙 +s 𝑌) ∧ 𝑏 = (𝑋 +s 𝑠)) → 𝑎 <s 𝑏))
292291rexlimdvva 3202 . . . . . . 7 (𝜑 → (∃𝑙 ∈ ( L ‘𝑋)∃𝑠 ∈ ( R ‘𝑌)(𝑎 = (𝑙 +s 𝑌) ∧ 𝑏 = (𝑋 +s 𝑠)) → 𝑎 <s 𝑏))
293219, 292biimtrrid 242 . . . . . 6 (𝜑 → ((∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠)) → 𝑎 <s 𝑏))
294218, 293jaod 857 . . . . 5 (𝜑 → (((∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)) ∨ (∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠))) → 𝑎 <s 𝑏))
295 reeanv 3217 . . . . . . 7 (∃𝑚 ∈ ( L ‘𝑌)∃𝑟 ∈ ( R ‘𝑋)(𝑎 = (𝑋 +s 𝑚) ∧ 𝑏 = (𝑟 +s 𝑌)) ↔ (∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)))
29615adantr 479 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
29757adantr 479 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑋 No )
29860ad2antrl 726 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑚 No )
29922a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → 0s No )
30081ad2antrl 726 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
301300, 83syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑋) +no ( bday 𝑚)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
30273, 301eqeltrid 2830 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday ‘ 0s ))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
303296, 297, 298, 299, 302addsproplem1 27978 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((𝑋 +s 𝑚) ∈ No ∧ (𝑚 <s 0s → (𝑚 +s 𝑋) <s ( 0s +s 𝑋))))
304303simpld 493 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑋 +s 𝑚) ∈ No )
30595ad2antll 727 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑟 No )
306103uneq2i 4158 . . . . . . . . . . . . . 14 ((( bday 𝑟) +no ( bday 𝑚)) ∪ (( bday 𝑟) +no ( bday ‘ 0s ))) = ((( bday 𝑟) +no ( bday 𝑚)) ∪ ( bday 𝑟))
307 naddword1 8711 . . . . . . . . . . . . . . . 16 ((( bday 𝑟) ∈ On ∧ ( bday 𝑚) ∈ On) → ( bday 𝑟) ⊆ (( bday 𝑟) +no ( bday 𝑚)))
308100, 68, 307mp2an 690 . . . . . . . . . . . . . . 15 ( bday 𝑟) ⊆ (( bday 𝑟) +no ( bday 𝑚))
309 ssequn2 4182 . . . . . . . . . . . . . . 15 (( bday 𝑟) ⊆ (( bday 𝑟) +no ( bday 𝑚)) ↔ ((( bday 𝑟) +no ( bday 𝑚)) ∪ ( bday 𝑟)) = (( bday 𝑟) +no ( bday 𝑚)))
310308, 309mpbi 229 . . . . . . . . . . . . . 14 ((( bday 𝑟) +no ( bday 𝑚)) ∪ ( bday 𝑟)) = (( bday 𝑟) +no ( bday 𝑚))
311306, 310eqtri 2754 . . . . . . . . . . . . 13 ((( bday 𝑟) +no ( bday 𝑚)) ∪ (( bday 𝑟) +no ( bday ‘ 0s ))) = (( bday 𝑟) +no ( bday 𝑚))
312 naddel1 8707 . . . . . . . . . . . . . . . . . 18 ((( bday 𝑟) ∈ On ∧ ( bday 𝑋) ∈ On ∧ ( bday 𝑚) ∈ On) → (( bday 𝑟) ∈ ( bday 𝑋) ↔ (( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑚))))
313100, 39, 68, 312mp3an 1458 . . . . . . . . . . . . . . . . 17 (( bday 𝑟) ∈ ( bday 𝑋) ↔ (( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑚)))
314114, 313sylib 217 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ( R ‘𝑋) → (( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑚)))
315314ad2antll 727 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑚)))
316 ontr1 6412 . . . . . . . . . . . . . . . 16 ((( bday 𝑋) +no ( bday 𝑌)) ∈ On → (((( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑚)) ∧ (( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌))) → (( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
317206, 316ax-mp 5 . . . . . . . . . . . . . . 15 (((( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑚)) ∧ (( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌))) → (( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
318315, 300, 317syl2anc 582 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
319 elun1 4175 . . . . . . . . . . . . . 14 ((( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)) → (( bday 𝑟) +no ( bday 𝑚)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
320318, 319syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑟) +no ( bday 𝑚)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
321311, 320eqeltrid 2830 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((( bday 𝑟) +no ( bday 𝑚)) ∪ (( bday 𝑟) +no ( bday ‘ 0s ))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
322296, 305, 298, 299, 321addsproplem1 27978 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((𝑟 +s 𝑚) ∈ No ∧ (𝑚 <s 0s → (𝑚 +s 𝑟) <s ( 0s +s 𝑟))))
323322simpld 493 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑟 +s 𝑚) ∈ No )
32420adantr 479 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑌 No )
325117ad2antll 727 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑟) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
326325, 119syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑟) +no ( bday 𝑌)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
327109, 326eqeltrid 2830 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((( bday 𝑟) +no ( bday 𝑌)) ∪ (( bday 𝑟) +no ( bday ‘ 0s ))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
328296, 305, 324, 299, 327addsproplem1 27978 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((𝑟 +s 𝑌) ∈ No ∧ (𝑌 <s 0s → (𝑌 +s 𝑟) <s ( 0s +s 𝑟))))
329328simpld 493 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑟 +s 𝑌) ∈ No )
330 rightval 27883 . . . . . . . . . . . . . . . 16 ( R ‘𝑋) = {𝑟 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑟}
331330eleq2i 2818 . . . . . . . . . . . . . . 15 (𝑟 ∈ ( R ‘𝑋) ↔ 𝑟 ∈ {𝑟 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑟})
332331biimpi 215 . . . . . . . . . . . . . 14 (𝑟 ∈ ( R ‘𝑋) → 𝑟 ∈ {𝑟 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑟})
333332ad2antll 727 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑟 ∈ {𝑟 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑟})
334 rabid 3441 . . . . . . . . . . . . 13 (𝑟 ∈ {𝑟 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑟} ↔ (𝑟 ∈ ( O ‘( bday 𝑋)) ∧ 𝑋 <s 𝑟))
335333, 334sylib 217 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑟 ∈ ( O ‘( bday 𝑋)) ∧ 𝑋 <s 𝑟))
336335simprd 494 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑋 <s 𝑟)
337 naddcom 8702 . . . . . . . . . . . . . . . . 17 ((( bday 𝑚) ∈ On ∧ ( bday 𝑋) ∈ On) → (( bday 𝑚) +no ( bday 𝑋)) = (( bday 𝑋) +no ( bday 𝑚)))
33868, 39, 337mp2an 690 . . . . . . . . . . . . . . . 16 (( bday 𝑚) +no ( bday 𝑋)) = (( bday 𝑋) +no ( bday 𝑚))
339338, 300eqeltrid 2830 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑚) +no ( bday 𝑋)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
340 naddcom 8702 . . . . . . . . . . . . . . . . 17 ((( bday 𝑚) ∈ On ∧ ( bday 𝑟) ∈ On) → (( bday 𝑚) +no ( bday 𝑟)) = (( bday 𝑟) +no ( bday 𝑚)))
34168, 100, 340mp2an 690 . . . . . . . . . . . . . . . 16 (( bday 𝑚) +no ( bday 𝑟)) = (( bday 𝑟) +no ( bday 𝑚))
342341, 318eqeltrid 2830 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑚) +no ( bday 𝑟)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
343 naddcl 8697 . . . . . . . . . . . . . . . . 17 ((( bday 𝑚) ∈ On ∧ ( bday 𝑋) ∈ On) → (( bday 𝑚) +no ( bday 𝑋)) ∈ On)
34468, 39, 343mp2an 690 . . . . . . . . . . . . . . . 16 (( bday 𝑚) +no ( bday 𝑋)) ∈ On
345 naddcl 8697 . . . . . . . . . . . . . . . . 17 ((( bday 𝑚) ∈ On ∧ ( bday 𝑟) ∈ On) → (( bday 𝑚) +no ( bday 𝑟)) ∈ On)
34668, 100, 345mp2an 690 . . . . . . . . . . . . . . . 16 (( bday 𝑚) +no ( bday 𝑟)) ∈ On
347 onunel 6471 . . . . . . . . . . . . . . . 16 (((( bday 𝑚) +no ( bday 𝑋)) ∈ On ∧ (( bday 𝑚) +no ( bday 𝑟)) ∈ On ∧ (( bday 𝑋) +no ( bday 𝑌)) ∈ On) → (((( bday 𝑚) +no ( bday 𝑋)) ∪ (( bday 𝑚) +no ( bday 𝑟))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑚) +no ( bday 𝑋)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑚) +no ( bday 𝑟)) ∈ (( bday 𝑋) +no ( bday 𝑌)))))
348344, 346, 206, 347mp3an 1458 . . . . . . . . . . . . . . 15 (((( bday 𝑚) +no ( bday 𝑋)) ∪ (( bday 𝑚) +no ( bday 𝑟))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑚) +no ( bday 𝑋)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑚) +no ( bday 𝑟)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
349339, 342, 348sylanbrc 581 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((( bday 𝑚) +no ( bday 𝑋)) ∪ (( bday 𝑚) +no ( bday 𝑟))) ∈ (( bday 𝑋) +no ( bday 𝑌)))
350 elun1 4175 . . . . . . . . . . . . . 14 (((( bday 𝑚) +no ( bday 𝑋)) ∪ (( bday 𝑚) +no ( bday 𝑟))) ∈ (( bday 𝑋) +no ( bday 𝑌)) → ((( bday 𝑚) +no ( bday 𝑋)) ∪ (( bday 𝑚) +no ( bday 𝑟))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
351349, 350syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((( bday 𝑚) +no ( bday 𝑋)) ∪ (( bday 𝑚) +no ( bday 𝑟))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
352296, 298, 297, 305, 351addsproplem1 27978 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((𝑚 +s 𝑋) ∈ No ∧ (𝑋 <s 𝑟 → (𝑋 +s 𝑚) <s (𝑟 +s 𝑚))))
353352simprd 494 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑋 <s 𝑟 → (𝑋 +s 𝑚) <s (𝑟 +s 𝑚)))
354336, 353mpd 15 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑋 +s 𝑚) <s (𝑟 +s 𝑚))
355 leftval 27882 . . . . . . . . . . . . . . . . 17 ( L ‘𝑌) = {𝑚 ∈ ( O ‘( bday 𝑌)) ∣ 𝑚 <s 𝑌}
356355eleq2i 2818 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ( L ‘𝑌) ↔ 𝑚 ∈ {𝑚 ∈ ( O ‘( bday 𝑌)) ∣ 𝑚 <s 𝑌})
357356biimpi 215 . . . . . . . . . . . . . . 15 (𝑚 ∈ ( L ‘𝑌) → 𝑚 ∈ {𝑚 ∈ ( O ‘( bday 𝑌)) ∣ 𝑚 <s 𝑌})
358357ad2antrl 726 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑚 ∈ {𝑚 ∈ ( O ‘( bday 𝑌)) ∣ 𝑚 <s 𝑌})
359 rabid 3441 . . . . . . . . . . . . . 14 (𝑚 ∈ {𝑚 ∈ ( O ‘( bday 𝑌)) ∣ 𝑚 <s 𝑌} ↔ (𝑚 ∈ ( O ‘( bday 𝑌)) ∧ 𝑚 <s 𝑌))
360358, 359sylib 217 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑚 ∈ ( O ‘( bday 𝑌)) ∧ 𝑚 <s 𝑌))
361360simprd 494 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑚 <s 𝑌)
362 naddcl 8697 . . . . . . . . . . . . . . . . . 18 ((( bday 𝑟) ∈ On ∧ ( bday 𝑚) ∈ On) → (( bday 𝑟) +no ( bday 𝑚)) ∈ On)
363100, 68, 362mp2an 690 . . . . . . . . . . . . . . . . 17 (( bday 𝑟) +no ( bday 𝑚)) ∈ On
364 naddcl 8697 . . . . . . . . . . . . . . . . . 18 ((( bday 𝑟) ∈ On ∧ ( bday 𝑌) ∈ On) → (( bday 𝑟) +no ( bday 𝑌)) ∈ On)
365100, 31, 364mp2an 690 . . . . . . . . . . . . . . . . 17 (( bday 𝑟) +no ( bday 𝑌)) ∈ On
366 onunel 6471 . . . . . . . . . . . . . . . . 17 (((( bday 𝑟) +no ( bday 𝑚)) ∈ On ∧ (( bday 𝑟) +no ( bday 𝑌)) ∈ On ∧ (( bday 𝑋) +no ( bday 𝑌)) ∈ On) → (((( bday 𝑟) +no ( bday 𝑚)) ∪ (( bday 𝑟) +no ( bday 𝑌))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑟) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))))
367363, 365, 206, 366mp3an 1458 . . . . . . . . . . . . . . . 16 (((( bday 𝑟) +no ( bday 𝑚)) ∪ (( bday 𝑟) +no ( bday 𝑌))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑟) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
368318, 325, 367sylanbrc 581 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((( bday 𝑟) +no ( bday 𝑚)) ∪ (( bday 𝑟) +no ( bday 𝑌))) ∈ (( bday 𝑋) +no ( bday 𝑌)))
369 elun1 4175 . . . . . . . . . . . . . . 15 (((( bday 𝑟) +no ( bday 𝑚)) ∪ (( bday 𝑟) +no ( bday 𝑌))) ∈ (( bday 𝑋) +no ( bday 𝑌)) → ((( bday 𝑟) +no ( bday 𝑚)) ∪ (( bday 𝑟) +no ( bday 𝑌))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
370368, 369syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((( bday 𝑟) +no ( bday 𝑚)) ∪ (( bday 𝑟) +no ( bday 𝑌))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
371296, 305, 298, 324, 370addsproplem1 27978 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((𝑟 +s 𝑚) ∈ No ∧ (𝑚 <s 𝑌 → (𝑚 +s 𝑟) <s (𝑌 +s 𝑟))))
372371simprd 494 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑚 <s 𝑌 → (𝑚 +s 𝑟) <s (𝑌 +s 𝑟)))
373361, 372mpd 15 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑚 +s 𝑟) <s (𝑌 +s 𝑟))
374305, 298addscomd 27976 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑟 +s 𝑚) = (𝑚 +s 𝑟))
375305, 324addscomd 27976 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑟 +s 𝑌) = (𝑌 +s 𝑟))
376373, 374, 3753brtr4d 5176 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑟 +s 𝑚) <s (𝑟 +s 𝑌))
377304, 323, 329, 354, 376slttrd 27784 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑋 +s 𝑚) <s (𝑟 +s 𝑌))
378 breq12 5149 . . . . . . . . 9 ((𝑎 = (𝑋 +s 𝑚) ∧ 𝑏 = (𝑟 +s 𝑌)) → (𝑎 <s 𝑏 ↔ (𝑋 +s 𝑚) <s (𝑟 +s 𝑌)))
379377, 378syl5ibrcom 246 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((𝑎 = (𝑋 +s 𝑚) ∧ 𝑏 = (𝑟 +s 𝑌)) → 𝑎 <s 𝑏))
380379rexlimdvva 3202 . . . . . . 7 (𝜑 → (∃𝑚 ∈ ( L ‘𝑌)∃𝑟 ∈ ( R ‘𝑋)(𝑎 = (𝑋 +s 𝑚) ∧ 𝑏 = (𝑟 +s 𝑌)) → 𝑎 <s 𝑏))
381295, 380biimtrrid 242 . . . . . 6 (𝜑 → ((∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)) → 𝑎 <s 𝑏))
382 reeanv 3217 . . . . . . 7 (∃𝑚 ∈ ( L ‘𝑌)∃𝑠 ∈ ( R ‘𝑌)(𝑎 = (𝑋 +s 𝑚) ∧ 𝑏 = (𝑋 +s 𝑠)) ↔ (∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠)))
383 lltropt 27891 . . . . . . . . . . . . 13 ( L ‘𝑌) <<s ( R ‘𝑌)
384383a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → ( L ‘𝑌) <<s ( R ‘𝑌))
385 simprl 769 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑚 ∈ ( L ‘𝑌))
386 simprr 771 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑠 ∈ ( R ‘𝑌))
387384, 385, 386ssltsepcd 27819 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑚 <s 𝑠)
38815adantr 479 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
38957adantr 479 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑋 No )
39060ad2antrl 726 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑚 No )
391131ad2antll 727 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑠 No )
39281ad2antrl 726 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → (( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
393148ad2antll 727 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → (( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
394 naddcl 8697 . . . . . . . . . . . . . . . . 17 ((( bday 𝑋) ∈ On ∧ ( bday 𝑚) ∈ On) → (( bday 𝑋) +no ( bday 𝑚)) ∈ On)
39539, 68, 394mp2an 690 . . . . . . . . . . . . . . . 16 (( bday 𝑋) +no ( bday 𝑚)) ∈ On
396 naddcl 8697 . . . . . . . . . . . . . . . . 17 ((( bday 𝑋) ∈ On ∧ ( bday 𝑠) ∈ On) → (( bday 𝑋) +no ( bday 𝑠)) ∈ On)
39739, 135, 396mp2an 690 . . . . . . . . . . . . . . . 16 (( bday 𝑋) +no ( bday 𝑠)) ∈ On
398 onunel 6471 . . . . . . . . . . . . . . . 16 (((( bday 𝑋) +no ( bday 𝑚)) ∈ On ∧ (( bday 𝑋) +no ( bday 𝑠)) ∈ On ∧ (( bday 𝑋) +no ( bday 𝑌)) ∈ On) → (((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday 𝑠))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)))))
399395, 397, 206, 398mp3an 1458 . . . . . . . . . . . . . . 15 (((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday 𝑠))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
400392, 393, 399sylanbrc 581 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday 𝑠))) ∈ (( bday 𝑋) +no ( bday 𝑌)))
401 elun1 4175 . . . . . . . . . . . . . 14 (((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday 𝑠))) ∈ (( bday 𝑋) +no ( bday 𝑌)) → ((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday 𝑠))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
402400, 401syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday 𝑠))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
403388, 389, 390, 391, 402addsproplem1 27978 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((𝑋 +s 𝑚) ∈ No ∧ (𝑚 <s 𝑠 → (𝑚 +s 𝑋) <s (𝑠 +s 𝑋))))
404403simprd 494 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑚 <s 𝑠 → (𝑚 +s 𝑋) <s (𝑠 +s 𝑋)))
405387, 404mpd 15 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑚 +s 𝑋) <s (𝑠 +s 𝑋))
406389, 390addscomd 27976 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑋 +s 𝑚) = (𝑚 +s 𝑋))
407389, 391addscomd 27976 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑋 +s 𝑠) = (𝑠 +s 𝑋))
408405, 406, 4073brtr4d 5176 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑋 +s 𝑚) <s (𝑋 +s 𝑠))
409 breq12 5149 . . . . . . . . 9 ((𝑎 = (𝑋 +s 𝑚) ∧ 𝑏 = (𝑋 +s 𝑠)) → (𝑎 <s 𝑏 ↔ (𝑋 +s 𝑚) <s (𝑋 +s 𝑠)))
410408, 409syl5ibrcom 246 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((𝑎 = (𝑋 +s 𝑚) ∧ 𝑏 = (𝑋 +s 𝑠)) → 𝑎 <s 𝑏))
411410rexlimdvva 3202 . . . . . . 7 (𝜑 → (∃𝑚 ∈ ( L ‘𝑌)∃𝑠 ∈ ( R ‘𝑌)(𝑎 = (𝑋 +s 𝑚) ∧ 𝑏 = (𝑋 +s 𝑠)) → 𝑎 <s 𝑏))
412382, 411biimtrrid 242 . . . . . 6 (𝜑 → ((∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠)) → 𝑎 <s 𝑏))
413381, 412jaod 857 . . . . 5 (𝜑 → (((∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)) ∨ (∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠))) → 𝑎 <s 𝑏))
414294, 413jaod 857 . . . 4 (𝜑 → ((((∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)) ∨ (∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠))) ∨ ((∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)) ∨ (∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠)))) → 𝑎 <s 𝑏))
415182, 414biimtrid 241 . . 3 (𝜑 → ((𝑎 ∈ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) ∧ 𝑏 ∈ ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)})) → 𝑎 <s 𝑏))
4164153impib 1113 . 2 ((𝜑𝑎 ∈ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) ∧ 𝑏 ∈ ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)})) → 𝑎 <s 𝑏)
4177, 14, 92, 159, 416ssltd 27816 1 (𝜑 → ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845   = wceq 1534  wcel 2099  {cab 2703  wral 3051  wrex 3060  {crab 3420  Vcvv 3463  cun 3945  wss 3947  c0 4323   class class class wbr 5144  Oncon0 6366  cfv 6544  (class class class)co 7414   +no cnadd 8685   No csur 27664   <s cslt 27665   bday cbday 27666   <<s csslt 27805   0s c0s 27847   O cold 27862   L cleft 27864   R cright 27865   +s cadds 27968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3365  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4907  df-int 4948  df-iun 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6303  df-ord 6369  df-on 6370  df-suc 6372  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-1o 8486  df-2o 8487  df-nadd 8686  df-no 27667  df-slt 27668  df-bday 27669  df-sslt 27806  df-scut 27808  df-0s 27849  df-made 27866  df-old 27867  df-left 27869  df-right 27870  df-norec2 27958  df-adds 27969
This theorem is referenced by:  addsproplem3  27980
  Copyright terms: Public domain W3C validator