MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsproplem2 Structured version   Visualization version   GIF version

Theorem addsproplem2 27884
Description: Lemma for surreal addition properties. When proving closure for operations defined using norec and norec2, it is a strictly stronger statement to say that the cut defined is actually a cut than it is to say that the operation is closed. We will often prove this stronger statement. Here, we do so for the cut involved in surreal addition. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
addsproplem2.2 (𝜑𝑋 No )
addsproplem2.3 (𝜑𝑌 No )
Assertion
Ref Expression
addsproplem2 (𝜑 → ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}))
Distinct variable groups:   𝑋,𝑞,𝑡   𝑋,𝑝,𝑤   𝑌,𝑝,𝑤   𝑌,𝑞,𝑡   𝑥,𝑍,𝑦,𝑧   𝜑,𝑝,𝑟,𝑤   𝑋,𝑙,𝑚,𝑟,𝑠,𝑥,𝑦,𝑧   𝑌,𝑙,𝑚,𝑟,𝑠,𝑥,𝑦,𝑧   𝜑,𝑙,𝑞,𝑚,𝑠   𝜑,𝑡,𝑟,𝑠   𝑝,𝑙,𝑞,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝑍(𝑤,𝑡,𝑚,𝑠,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem addsproplem2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6874 . . . . 5 ( L ‘𝑋) ∈ V
21abrexex 7944 . . . 4 {𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∈ V
32a1i 11 . . 3 (𝜑 → {𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∈ V)
4 fvex 6874 . . . . 5 ( L ‘𝑌) ∈ V
54abrexex 7944 . . . 4 {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)} ∈ V
65a1i 11 . . 3 (𝜑 → {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)} ∈ V)
73, 6unexd 7733 . 2 (𝜑 → ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) ∈ V)
8 fvex 6874 . . . . 5 ( R ‘𝑋) ∈ V
98abrexex 7944 . . . 4 {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∈ V
109a1i 11 . . 3 (𝜑 → {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∈ V)
11 fvex 6874 . . . . 5 ( R ‘𝑌) ∈ V
1211abrexex 7944 . . . 4 {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)} ∈ V
1312a1i 11 . . 3 (𝜑 → {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)} ∈ V)
1410, 13unexd 7733 . 2 (𝜑 → ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}) ∈ V)
15 addsproplem.1 . . . . . . . . 9 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
1615adantr 480 . . . . . . . 8 ((𝜑𝑙 ∈ ( L ‘𝑋)) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
17 leftssno 27799 . . . . . . . . . 10 ( L ‘𝑋) ⊆ No
1817sseli 3945 . . . . . . . . 9 (𝑙 ∈ ( L ‘𝑋) → 𝑙 No )
1918adantl 481 . . . . . . . 8 ((𝜑𝑙 ∈ ( L ‘𝑋)) → 𝑙 No )
20 addsproplem2.3 . . . . . . . . 9 (𝜑𝑌 No )
2120adantr 480 . . . . . . . 8 ((𝜑𝑙 ∈ ( L ‘𝑋)) → 𝑌 No )
22 0sno 27745 . . . . . . . . 9 0s No
2322a1i 11 . . . . . . . 8 ((𝜑𝑙 ∈ ( L ‘𝑋)) → 0s No )
24 bday0s 27747 . . . . . . . . . . . . 13 ( bday ‘ 0s ) = ∅
2524oveq2i 7401 . . . . . . . . . . . 12 (( bday 𝑙) +no ( bday ‘ 0s )) = (( bday 𝑙) +no ∅)
26 bdayelon 27695 . . . . . . . . . . . . 13 ( bday 𝑙) ∈ On
27 naddrid 8650 . . . . . . . . . . . . 13 (( bday 𝑙) ∈ On → (( bday 𝑙) +no ∅) = ( bday 𝑙))
2826, 27ax-mp 5 . . . . . . . . . . . 12 (( bday 𝑙) +no ∅) = ( bday 𝑙)
2925, 28eqtri 2753 . . . . . . . . . . 11 (( bday 𝑙) +no ( bday ‘ 0s )) = ( bday 𝑙)
3029uneq2i 4131 . . . . . . . . . 10 ((( bday 𝑙) +no ( bday 𝑌)) ∪ (( bday 𝑙) +no ( bday ‘ 0s ))) = ((( bday 𝑙) +no ( bday 𝑌)) ∪ ( bday 𝑙))
31 bdayelon 27695 . . . . . . . . . . . 12 ( bday 𝑌) ∈ On
32 naddword1 8658 . . . . . . . . . . . 12 ((( bday 𝑙) ∈ On ∧ ( bday 𝑌) ∈ On) → ( bday 𝑙) ⊆ (( bday 𝑙) +no ( bday 𝑌)))
3326, 31, 32mp2an 692 . . . . . . . . . . 11 ( bday 𝑙) ⊆ (( bday 𝑙) +no ( bday 𝑌))
34 ssequn2 4155 . . . . . . . . . . 11 (( bday 𝑙) ⊆ (( bday 𝑙) +no ( bday 𝑌)) ↔ ((( bday 𝑙) +no ( bday 𝑌)) ∪ ( bday 𝑙)) = (( bday 𝑙) +no ( bday 𝑌)))
3533, 34mpbi 230 . . . . . . . . . 10 ((( bday 𝑙) +no ( bday 𝑌)) ∪ ( bday 𝑙)) = (( bday 𝑙) +no ( bday 𝑌))
3630, 35eqtri 2753 . . . . . . . . 9 ((( bday 𝑙) +no ( bday 𝑌)) ∪ (( bday 𝑙) +no ( bday ‘ 0s ))) = (( bday 𝑙) +no ( bday 𝑌))
37 leftssold 27797 . . . . . . . . . . . . . 14 ( L ‘𝑋) ⊆ ( O ‘( bday 𝑋))
3837sseli 3945 . . . . . . . . . . . . 13 (𝑙 ∈ ( L ‘𝑋) → 𝑙 ∈ ( O ‘( bday 𝑋)))
39 bdayelon 27695 . . . . . . . . . . . . . 14 ( bday 𝑋) ∈ On
40 oldbday 27819 . . . . . . . . . . . . . 14 ((( bday 𝑋) ∈ On ∧ 𝑙 No ) → (𝑙 ∈ ( O ‘( bday 𝑋)) ↔ ( bday 𝑙) ∈ ( bday 𝑋)))
4139, 18, 40sylancr 587 . . . . . . . . . . . . 13 (𝑙 ∈ ( L ‘𝑋) → (𝑙 ∈ ( O ‘( bday 𝑋)) ↔ ( bday 𝑙) ∈ ( bday 𝑋)))
4238, 41mpbid 232 . . . . . . . . . . . 12 (𝑙 ∈ ( L ‘𝑋) → ( bday 𝑙) ∈ ( bday 𝑋))
43 naddel1 8654 . . . . . . . . . . . . 13 ((( bday 𝑙) ∈ On ∧ ( bday 𝑋) ∈ On ∧ ( bday 𝑌) ∈ On) → (( bday 𝑙) ∈ ( bday 𝑋) ↔ (( bday 𝑙) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
4426, 39, 31, 43mp3an 1463 . . . . . . . . . . . 12 (( bday 𝑙) ∈ ( bday 𝑋) ↔ (( bday 𝑙) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
4542, 44sylib 218 . . . . . . . . . . 11 (𝑙 ∈ ( L ‘𝑋) → (( bday 𝑙) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
4645adantl 481 . . . . . . . . . 10 ((𝜑𝑙 ∈ ( L ‘𝑋)) → (( bday 𝑙) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
47 elun1 4148 . . . . . . . . . 10 ((( bday 𝑙) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)) → (( bday 𝑙) +no ( bday 𝑌)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
4846, 47syl 17 . . . . . . . . 9 ((𝜑𝑙 ∈ ( L ‘𝑋)) → (( bday 𝑙) +no ( bday 𝑌)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
4936, 48eqeltrid 2833 . . . . . . . 8 ((𝜑𝑙 ∈ ( L ‘𝑋)) → ((( bday 𝑙) +no ( bday 𝑌)) ∪ (( bday 𝑙) +no ( bday ‘ 0s ))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
5016, 19, 21, 23, 49addsproplem1 27883 . . . . . . 7 ((𝜑𝑙 ∈ ( L ‘𝑋)) → ((𝑙 +s 𝑌) ∈ No ∧ (𝑌 <s 0s → (𝑌 +s 𝑙) <s ( 0s +s 𝑙))))
5150simpld 494 . . . . . 6 ((𝜑𝑙 ∈ ( L ‘𝑋)) → (𝑙 +s 𝑌) ∈ No )
52 eleq1a 2824 . . . . . 6 ((𝑙 +s 𝑌) ∈ No → (𝑝 = (𝑙 +s 𝑌) → 𝑝 No ))
5351, 52syl 17 . . . . 5 ((𝜑𝑙 ∈ ( L ‘𝑋)) → (𝑝 = (𝑙 +s 𝑌) → 𝑝 No ))
5453rexlimdva 3135 . . . 4 (𝜑 → (∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌) → 𝑝 No ))
5554abssdv 4034 . . 3 (𝜑 → {𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ⊆ No )
5615adantr 480 . . . . . . . 8 ((𝜑𝑚 ∈ ( L ‘𝑌)) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
57 addsproplem2.2 . . . . . . . . 9 (𝜑𝑋 No )
5857adantr 480 . . . . . . . 8 ((𝜑𝑚 ∈ ( L ‘𝑌)) → 𝑋 No )
59 leftssno 27799 . . . . . . . . . 10 ( L ‘𝑌) ⊆ No
6059sseli 3945 . . . . . . . . 9 (𝑚 ∈ ( L ‘𝑌) → 𝑚 No )
6160adantl 481 . . . . . . . 8 ((𝜑𝑚 ∈ ( L ‘𝑌)) → 𝑚 No )
6222a1i 11 . . . . . . . 8 ((𝜑𝑚 ∈ ( L ‘𝑌)) → 0s No )
6324oveq2i 7401 . . . . . . . . . . . 12 (( bday 𝑋) +no ( bday ‘ 0s )) = (( bday 𝑋) +no ∅)
64 naddrid 8650 . . . . . . . . . . . . 13 (( bday 𝑋) ∈ On → (( bday 𝑋) +no ∅) = ( bday 𝑋))
6539, 64ax-mp 5 . . . . . . . . . . . 12 (( bday 𝑋) +no ∅) = ( bday 𝑋)
6663, 65eqtri 2753 . . . . . . . . . . 11 (( bday 𝑋) +no ( bday ‘ 0s )) = ( bday 𝑋)
6766uneq2i 4131 . . . . . . . . . 10 ((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday ‘ 0s ))) = ((( bday 𝑋) +no ( bday 𝑚)) ∪ ( bday 𝑋))
68 bdayelon 27695 . . . . . . . . . . . 12 ( bday 𝑚) ∈ On
69 naddword1 8658 . . . . . . . . . . . 12 ((( bday 𝑋) ∈ On ∧ ( bday 𝑚) ∈ On) → ( bday 𝑋) ⊆ (( bday 𝑋) +no ( bday 𝑚)))
7039, 68, 69mp2an 692 . . . . . . . . . . 11 ( bday 𝑋) ⊆ (( bday 𝑋) +no ( bday 𝑚))
71 ssequn2 4155 . . . . . . . . . . 11 (( bday 𝑋) ⊆ (( bday 𝑋) +no ( bday 𝑚)) ↔ ((( bday 𝑋) +no ( bday 𝑚)) ∪ ( bday 𝑋)) = (( bday 𝑋) +no ( bday 𝑚)))
7270, 71mpbi 230 . . . . . . . . . 10 ((( bday 𝑋) +no ( bday 𝑚)) ∪ ( bday 𝑋)) = (( bday 𝑋) +no ( bday 𝑚))
7367, 72eqtri 2753 . . . . . . . . 9 ((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday ‘ 0s ))) = (( bday 𝑋) +no ( bday 𝑚))
74 leftssold 27797 . . . . . . . . . . . . . 14 ( L ‘𝑌) ⊆ ( O ‘( bday 𝑌))
7574sseli 3945 . . . . . . . . . . . . 13 (𝑚 ∈ ( L ‘𝑌) → 𝑚 ∈ ( O ‘( bday 𝑌)))
76 oldbday 27819 . . . . . . . . . . . . . 14 ((( bday 𝑌) ∈ On ∧ 𝑚 No ) → (𝑚 ∈ ( O ‘( bday 𝑌)) ↔ ( bday 𝑚) ∈ ( bday 𝑌)))
7731, 60, 76sylancr 587 . . . . . . . . . . . . 13 (𝑚 ∈ ( L ‘𝑌) → (𝑚 ∈ ( O ‘( bday 𝑌)) ↔ ( bday 𝑚) ∈ ( bday 𝑌)))
7875, 77mpbid 232 . . . . . . . . . . . 12 (𝑚 ∈ ( L ‘𝑌) → ( bday 𝑚) ∈ ( bday 𝑌))
79 naddel2 8655 . . . . . . . . . . . . 13 ((( bday 𝑚) ∈ On ∧ ( bday 𝑌) ∈ On ∧ ( bday 𝑋) ∈ On) → (( bday 𝑚) ∈ ( bday 𝑌) ↔ (( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
8068, 31, 39, 79mp3an 1463 . . . . . . . . . . . 12 (( bday 𝑚) ∈ ( bday 𝑌) ↔ (( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
8178, 80sylib 218 . . . . . . . . . . 11 (𝑚 ∈ ( L ‘𝑌) → (( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
8281adantl 481 . . . . . . . . . 10 ((𝜑𝑚 ∈ ( L ‘𝑌)) → (( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
83 elun1 4148 . . . . . . . . . 10 ((( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)) → (( bday 𝑋) +no ( bday 𝑚)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
8482, 83syl 17 . . . . . . . . 9 ((𝜑𝑚 ∈ ( L ‘𝑌)) → (( bday 𝑋) +no ( bday 𝑚)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
8573, 84eqeltrid 2833 . . . . . . . 8 ((𝜑𝑚 ∈ ( L ‘𝑌)) → ((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday ‘ 0s ))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
8656, 58, 61, 62, 85addsproplem1 27883 . . . . . . 7 ((𝜑𝑚 ∈ ( L ‘𝑌)) → ((𝑋 +s 𝑚) ∈ No ∧ (𝑚 <s 0s → (𝑚 +s 𝑋) <s ( 0s +s 𝑋))))
8786simpld 494 . . . . . 6 ((𝜑𝑚 ∈ ( L ‘𝑌)) → (𝑋 +s 𝑚) ∈ No )
88 eleq1a 2824 . . . . . 6 ((𝑋 +s 𝑚) ∈ No → (𝑞 = (𝑋 +s 𝑚) → 𝑞 No ))
8987, 88syl 17 . . . . 5 ((𝜑𝑚 ∈ ( L ‘𝑌)) → (𝑞 = (𝑋 +s 𝑚) → 𝑞 No ))
9089rexlimdva 3135 . . . 4 (𝜑 → (∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚) → 𝑞 No ))
9190abssdv 4034 . . 3 (𝜑 → {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)} ⊆ No )
9255, 91unssd 4158 . 2 (𝜑 → ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) ⊆ No )
9315adantr 480 . . . . . . . 8 ((𝜑𝑟 ∈ ( R ‘𝑋)) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
94 rightssno 27800 . . . . . . . . . 10 ( R ‘𝑋) ⊆ No
9594sseli 3945 . . . . . . . . 9 (𝑟 ∈ ( R ‘𝑋) → 𝑟 No )
9695adantl 481 . . . . . . . 8 ((𝜑𝑟 ∈ ( R ‘𝑋)) → 𝑟 No )
9720adantr 480 . . . . . . . 8 ((𝜑𝑟 ∈ ( R ‘𝑋)) → 𝑌 No )
9822a1i 11 . . . . . . . 8 ((𝜑𝑟 ∈ ( R ‘𝑋)) → 0s No )
9924oveq2i 7401 . . . . . . . . . . . 12 (( bday 𝑟) +no ( bday ‘ 0s )) = (( bday 𝑟) +no ∅)
100 bdayelon 27695 . . . . . . . . . . . . 13 ( bday 𝑟) ∈ On
101 naddrid 8650 . . . . . . . . . . . . 13 (( bday 𝑟) ∈ On → (( bday 𝑟) +no ∅) = ( bday 𝑟))
102100, 101ax-mp 5 . . . . . . . . . . . 12 (( bday 𝑟) +no ∅) = ( bday 𝑟)
10399, 102eqtri 2753 . . . . . . . . . . 11 (( bday 𝑟) +no ( bday ‘ 0s )) = ( bday 𝑟)
104103uneq2i 4131 . . . . . . . . . 10 ((( bday 𝑟) +no ( bday 𝑌)) ∪ (( bday 𝑟) +no ( bday ‘ 0s ))) = ((( bday 𝑟) +no ( bday 𝑌)) ∪ ( bday 𝑟))
105 naddword1 8658 . . . . . . . . . . . 12 ((( bday 𝑟) ∈ On ∧ ( bday 𝑌) ∈ On) → ( bday 𝑟) ⊆ (( bday 𝑟) +no ( bday 𝑌)))
106100, 31, 105mp2an 692 . . . . . . . . . . 11 ( bday 𝑟) ⊆ (( bday 𝑟) +no ( bday 𝑌))
107 ssequn2 4155 . . . . . . . . . . 11 (( bday 𝑟) ⊆ (( bday 𝑟) +no ( bday 𝑌)) ↔ ((( bday 𝑟) +no ( bday 𝑌)) ∪ ( bday 𝑟)) = (( bday 𝑟) +no ( bday 𝑌)))
108106, 107mpbi 230 . . . . . . . . . 10 ((( bday 𝑟) +no ( bday 𝑌)) ∪ ( bday 𝑟)) = (( bday 𝑟) +no ( bday 𝑌))
109104, 108eqtri 2753 . . . . . . . . 9 ((( bday 𝑟) +no ( bday 𝑌)) ∪ (( bday 𝑟) +no ( bday ‘ 0s ))) = (( bday 𝑟) +no ( bday 𝑌))
110 rightssold 27798 . . . . . . . . . . . . . 14 ( R ‘𝑋) ⊆ ( O ‘( bday 𝑋))
111110sseli 3945 . . . . . . . . . . . . 13 (𝑟 ∈ ( R ‘𝑋) → 𝑟 ∈ ( O ‘( bday 𝑋)))
112 oldbday 27819 . . . . . . . . . . . . . 14 ((( bday 𝑋) ∈ On ∧ 𝑟 No ) → (𝑟 ∈ ( O ‘( bday 𝑋)) ↔ ( bday 𝑟) ∈ ( bday 𝑋)))
11339, 95, 112sylancr 587 . . . . . . . . . . . . 13 (𝑟 ∈ ( R ‘𝑋) → (𝑟 ∈ ( O ‘( bday 𝑋)) ↔ ( bday 𝑟) ∈ ( bday 𝑋)))
114111, 113mpbid 232 . . . . . . . . . . . 12 (𝑟 ∈ ( R ‘𝑋) → ( bday 𝑟) ∈ ( bday 𝑋))
115 naddel1 8654 . . . . . . . . . . . . 13 ((( bday 𝑟) ∈ On ∧ ( bday 𝑋) ∈ On ∧ ( bday 𝑌) ∈ On) → (( bday 𝑟) ∈ ( bday 𝑋) ↔ (( bday 𝑟) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
116100, 39, 31, 115mp3an 1463 . . . . . . . . . . . 12 (( bday 𝑟) ∈ ( bday 𝑋) ↔ (( bday 𝑟) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
117114, 116sylib 218 . . . . . . . . . . 11 (𝑟 ∈ ( R ‘𝑋) → (( bday 𝑟) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
118117adantl 481 . . . . . . . . . 10 ((𝜑𝑟 ∈ ( R ‘𝑋)) → (( bday 𝑟) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
119 elun1 4148 . . . . . . . . . 10 ((( bday 𝑟) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)) → (( bday 𝑟) +no ( bday 𝑌)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
120118, 119syl 17 . . . . . . . . 9 ((𝜑𝑟 ∈ ( R ‘𝑋)) → (( bday 𝑟) +no ( bday 𝑌)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
121109, 120eqeltrid 2833 . . . . . . . 8 ((𝜑𝑟 ∈ ( R ‘𝑋)) → ((( bday 𝑟) +no ( bday 𝑌)) ∪ (( bday 𝑟) +no ( bday ‘ 0s ))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
12293, 96, 97, 98, 121addsproplem1 27883 . . . . . . 7 ((𝜑𝑟 ∈ ( R ‘𝑋)) → ((𝑟 +s 𝑌) ∈ No ∧ (𝑌 <s 0s → (𝑌 +s 𝑟) <s ( 0s +s 𝑟))))
123122simpld 494 . . . . . 6 ((𝜑𝑟 ∈ ( R ‘𝑋)) → (𝑟 +s 𝑌) ∈ No )
124 eleq1a 2824 . . . . . 6 ((𝑟 +s 𝑌) ∈ No → (𝑤 = (𝑟 +s 𝑌) → 𝑤 No ))
125123, 124syl 17 . . . . 5 ((𝜑𝑟 ∈ ( R ‘𝑋)) → (𝑤 = (𝑟 +s 𝑌) → 𝑤 No ))
126125rexlimdva 3135 . . . 4 (𝜑 → (∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌) → 𝑤 No ))
127126abssdv 4034 . . 3 (𝜑 → {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ⊆ No )
12815adantr 480 . . . . . . . 8 ((𝜑𝑠 ∈ ( R ‘𝑌)) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
12957adantr 480 . . . . . . . 8 ((𝜑𝑠 ∈ ( R ‘𝑌)) → 𝑋 No )
130 rightssno 27800 . . . . . . . . . 10 ( R ‘𝑌) ⊆ No
131130sseli 3945 . . . . . . . . 9 (𝑠 ∈ ( R ‘𝑌) → 𝑠 No )
132131adantl 481 . . . . . . . 8 ((𝜑𝑠 ∈ ( R ‘𝑌)) → 𝑠 No )
13322a1i 11 . . . . . . . 8 ((𝜑𝑠 ∈ ( R ‘𝑌)) → 0s No )
13466uneq2i 4131 . . . . . . . . . 10 ((( bday 𝑋) +no ( bday 𝑠)) ∪ (( bday 𝑋) +no ( bday ‘ 0s ))) = ((( bday 𝑋) +no ( bday 𝑠)) ∪ ( bday 𝑋))
135 bdayelon 27695 . . . . . . . . . . . 12 ( bday 𝑠) ∈ On
136 naddword1 8658 . . . . . . . . . . . 12 ((( bday 𝑋) ∈ On ∧ ( bday 𝑠) ∈ On) → ( bday 𝑋) ⊆ (( bday 𝑋) +no ( bday 𝑠)))
13739, 135, 136mp2an 692 . . . . . . . . . . 11 ( bday 𝑋) ⊆ (( bday 𝑋) +no ( bday 𝑠))
138 ssequn2 4155 . . . . . . . . . . 11 (( bday 𝑋) ⊆ (( bday 𝑋) +no ( bday 𝑠)) ↔ ((( bday 𝑋) +no ( bday 𝑠)) ∪ ( bday 𝑋)) = (( bday 𝑋) +no ( bday 𝑠)))
139137, 138mpbi 230 . . . . . . . . . 10 ((( bday 𝑋) +no ( bday 𝑠)) ∪ ( bday 𝑋)) = (( bday 𝑋) +no ( bday 𝑠))
140134, 139eqtri 2753 . . . . . . . . 9 ((( bday 𝑋) +no ( bday 𝑠)) ∪ (( bday 𝑋) +no ( bday ‘ 0s ))) = (( bday 𝑋) +no ( bday 𝑠))
141 rightssold 27798 . . . . . . . . . . . . . 14 ( R ‘𝑌) ⊆ ( O ‘( bday 𝑌))
142141sseli 3945 . . . . . . . . . . . . 13 (𝑠 ∈ ( R ‘𝑌) → 𝑠 ∈ ( O ‘( bday 𝑌)))
143 oldbday 27819 . . . . . . . . . . . . . 14 ((( bday 𝑌) ∈ On ∧ 𝑠 No ) → (𝑠 ∈ ( O ‘( bday 𝑌)) ↔ ( bday 𝑠) ∈ ( bday 𝑌)))
14431, 131, 143sylancr 587 . . . . . . . . . . . . 13 (𝑠 ∈ ( R ‘𝑌) → (𝑠 ∈ ( O ‘( bday 𝑌)) ↔ ( bday 𝑠) ∈ ( bday 𝑌)))
145142, 144mpbid 232 . . . . . . . . . . . 12 (𝑠 ∈ ( R ‘𝑌) → ( bday 𝑠) ∈ ( bday 𝑌))
146 naddel2 8655 . . . . . . . . . . . . 13 ((( bday 𝑠) ∈ On ∧ ( bday 𝑌) ∈ On ∧ ( bday 𝑋) ∈ On) → (( bday 𝑠) ∈ ( bday 𝑌) ↔ (( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
147135, 31, 39, 146mp3an 1463 . . . . . . . . . . . 12 (( bday 𝑠) ∈ ( bday 𝑌) ↔ (( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
148145, 147sylib 218 . . . . . . . . . . 11 (𝑠 ∈ ( R ‘𝑌) → (( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
149148adantl 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ ( R ‘𝑌)) → (( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
150 elun1 4148 . . . . . . . . . 10 ((( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)) → (( bday 𝑋) +no ( bday 𝑠)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
151149, 150syl 17 . . . . . . . . 9 ((𝜑𝑠 ∈ ( R ‘𝑌)) → (( bday 𝑋) +no ( bday 𝑠)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
152140, 151eqeltrid 2833 . . . . . . . 8 ((𝜑𝑠 ∈ ( R ‘𝑌)) → ((( bday 𝑋) +no ( bday 𝑠)) ∪ (( bday 𝑋) +no ( bday ‘ 0s ))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
153128, 129, 132, 133, 152addsproplem1 27883 . . . . . . 7 ((𝜑𝑠 ∈ ( R ‘𝑌)) → ((𝑋 +s 𝑠) ∈ No ∧ (𝑠 <s 0s → (𝑠 +s 𝑋) <s ( 0s +s 𝑋))))
154153simpld 494 . . . . . 6 ((𝜑𝑠 ∈ ( R ‘𝑌)) → (𝑋 +s 𝑠) ∈ No )
155 eleq1a 2824 . . . . . 6 ((𝑋 +s 𝑠) ∈ No → (𝑡 = (𝑋 +s 𝑠) → 𝑡 No ))
156154, 155syl 17 . . . . 5 ((𝜑𝑠 ∈ ( R ‘𝑌)) → (𝑡 = (𝑋 +s 𝑠) → 𝑡 No ))
157156rexlimdva 3135 . . . 4 (𝜑 → (∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠) → 𝑡 No ))
158157abssdv 4034 . . 3 (𝜑 → {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)} ⊆ No )
159127, 158unssd 4158 . 2 (𝜑 → ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}) ⊆ No )
160 elun 4119 . . . . . . 7 (𝑎 ∈ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) ↔ (𝑎 ∈ {𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∨ 𝑎 ∈ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}))
161 vex 3454 . . . . . . . . 9 𝑎 ∈ V
162 eqeq1 2734 . . . . . . . . . 10 (𝑝 = 𝑎 → (𝑝 = (𝑙 +s 𝑌) ↔ 𝑎 = (𝑙 +s 𝑌)))
163162rexbidv 3158 . . . . . . . . 9 (𝑝 = 𝑎 → (∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌) ↔ ∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌)))
164161, 163elab 3649 . . . . . . . 8 (𝑎 ∈ {𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ↔ ∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌))
165 eqeq1 2734 . . . . . . . . . 10 (𝑞 = 𝑎 → (𝑞 = (𝑋 +s 𝑚) ↔ 𝑎 = (𝑋 +s 𝑚)))
166165rexbidv 3158 . . . . . . . . 9 (𝑞 = 𝑎 → (∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚) ↔ ∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚)))
167161, 166elab 3649 . . . . . . . 8 (𝑎 ∈ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)} ↔ ∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚))
168164, 167orbi12i 914 . . . . . . 7 ((𝑎 ∈ {𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∨ 𝑎 ∈ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) ↔ (∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∨ ∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚)))
169160, 168bitri 275 . . . . . 6 (𝑎 ∈ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) ↔ (∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∨ ∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚)))
170 elun 4119 . . . . . . 7 (𝑏 ∈ ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}) ↔ (𝑏 ∈ {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∨ 𝑏 ∈ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}))
171 vex 3454 . . . . . . . . 9 𝑏 ∈ V
172 eqeq1 2734 . . . . . . . . . 10 (𝑤 = 𝑏 → (𝑤 = (𝑟 +s 𝑌) ↔ 𝑏 = (𝑟 +s 𝑌)))
173172rexbidv 3158 . . . . . . . . 9 (𝑤 = 𝑏 → (∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌) ↔ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)))
174171, 173elab 3649 . . . . . . . 8 (𝑏 ∈ {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ↔ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌))
175 eqeq1 2734 . . . . . . . . . 10 (𝑡 = 𝑏 → (𝑡 = (𝑋 +s 𝑠) ↔ 𝑏 = (𝑋 +s 𝑠)))
176175rexbidv 3158 . . . . . . . . 9 (𝑡 = 𝑏 → (∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠) ↔ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠)))
177171, 176elab 3649 . . . . . . . 8 (𝑏 ∈ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)} ↔ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠))
178174, 177orbi12i 914 . . . . . . 7 ((𝑏 ∈ {𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∨ 𝑏 ∈ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}) ↔ (∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌) ∨ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠)))
179170, 178bitri 275 . . . . . 6 (𝑏 ∈ ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}) ↔ (∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌) ∨ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠)))
180169, 179anbi12i 628 . . . . 5 ((𝑎 ∈ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) ∧ 𝑏 ∈ ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)})) ↔ ((∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∨ ∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚)) ∧ (∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌) ∨ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠))))
181 anddi 1012 . . . . 5 (((∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∨ ∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚)) ∧ (∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌) ∨ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠))) ↔ (((∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)) ∨ (∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠))) ∨ ((∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)) ∨ (∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠)))))
182180, 181bitri 275 . . . 4 ((𝑎 ∈ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) ∧ 𝑏 ∈ ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)})) ↔ (((∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)) ∨ (∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠))) ∨ ((∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)) ∨ (∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠)))))
183 reeanv 3210 . . . . . . 7 (∃𝑙 ∈ ( L ‘𝑋)∃𝑟 ∈ ( R ‘𝑋)(𝑎 = (𝑙 +s 𝑌) ∧ 𝑏 = (𝑟 +s 𝑌)) ↔ (∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)))
184 lltropt 27791 . . . . . . . . . . . 12 ( L ‘𝑋) <<s ( R ‘𝑋)
185184a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → ( L ‘𝑋) <<s ( R ‘𝑋))
186 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑙 ∈ ( L ‘𝑋))
187 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑟 ∈ ( R ‘𝑋))
188185, 186, 187ssltsepcd 27713 . . . . . . . . . 10 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑙 <s 𝑟)
18915adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
19020adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑌 No )
19118ad2antrl 728 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑙 No )
19295ad2antll 729 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑟 No )
193 naddcom 8649 . . . . . . . . . . . . . . . 16 ((( bday 𝑌) ∈ On ∧ ( bday 𝑙) ∈ On) → (( bday 𝑌) +no ( bday 𝑙)) = (( bday 𝑙) +no ( bday 𝑌)))
19431, 26, 193mp2an 692 . . . . . . . . . . . . . . 15 (( bday 𝑌) +no ( bday 𝑙)) = (( bday 𝑙) +no ( bday 𝑌))
19545ad2antrl 728 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑙) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
196194, 195eqeltrid 2833 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑌) +no ( bday 𝑙)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
197 naddcom 8649 . . . . . . . . . . . . . . . 16 ((( bday 𝑌) ∈ On ∧ ( bday 𝑟) ∈ On) → (( bday 𝑌) +no ( bday 𝑟)) = (( bday 𝑟) +no ( bday 𝑌)))
19831, 100, 197mp2an 692 . . . . . . . . . . . . . . 15 (( bday 𝑌) +no ( bday 𝑟)) = (( bday 𝑟) +no ( bday 𝑌))
199117ad2antll 729 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑟) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
200198, 199eqeltrid 2833 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑌) +no ( bday 𝑟)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
201 naddcl 8644 . . . . . . . . . . . . . . . 16 ((( bday 𝑌) ∈ On ∧ ( bday 𝑙) ∈ On) → (( bday 𝑌) +no ( bday 𝑙)) ∈ On)
20231, 26, 201mp2an 692 . . . . . . . . . . . . . . 15 (( bday 𝑌) +no ( bday 𝑙)) ∈ On
203 naddcl 8644 . . . . . . . . . . . . . . . 16 ((( bday 𝑌) ∈ On ∧ ( bday 𝑟) ∈ On) → (( bday 𝑌) +no ( bday 𝑟)) ∈ On)
20431, 100, 203mp2an 692 . . . . . . . . . . . . . . 15 (( bday 𝑌) +no ( bday 𝑟)) ∈ On
205 naddcl 8644 . . . . . . . . . . . . . . . 16 ((( bday 𝑋) ∈ On ∧ ( bday 𝑌) ∈ On) → (( bday 𝑋) +no ( bday 𝑌)) ∈ On)
20639, 31, 205mp2an 692 . . . . . . . . . . . . . . 15 (( bday 𝑋) +no ( bday 𝑌)) ∈ On
207 onunel 6442 . . . . . . . . . . . . . . 15 (((( bday 𝑌) +no ( bday 𝑙)) ∈ On ∧ (( bday 𝑌) +no ( bday 𝑟)) ∈ On ∧ (( bday 𝑋) +no ( bday 𝑌)) ∈ On) → (((( bday 𝑌) +no ( bday 𝑙)) ∪ (( bday 𝑌) +no ( bday 𝑟))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑌) +no ( bday 𝑙)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑌) +no ( bday 𝑟)) ∈ (( bday 𝑋) +no ( bday 𝑌)))))
208202, 204, 206, 207mp3an 1463 . . . . . . . . . . . . . 14 (((( bday 𝑌) +no ( bday 𝑙)) ∪ (( bday 𝑌) +no ( bday 𝑟))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑌) +no ( bday 𝑙)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑌) +no ( bday 𝑟)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
209196, 200, 208sylanbrc 583 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((( bday 𝑌) +no ( bday 𝑙)) ∪ (( bday 𝑌) +no ( bday 𝑟))) ∈ (( bday 𝑋) +no ( bday 𝑌)))
210 elun1 4148 . . . . . . . . . . . . 13 (((( bday 𝑌) +no ( bday 𝑙)) ∪ (( bday 𝑌) +no ( bday 𝑟))) ∈ (( bday 𝑋) +no ( bday 𝑌)) → ((( bday 𝑌) +no ( bday 𝑙)) ∪ (( bday 𝑌) +no ( bday 𝑟))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
211209, 210syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((( bday 𝑌) +no ( bday 𝑙)) ∪ (( bday 𝑌) +no ( bday 𝑟))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
212189, 190, 191, 192, 211addsproplem1 27883 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((𝑌 +s 𝑙) ∈ No ∧ (𝑙 <s 𝑟 → (𝑙 +s 𝑌) <s (𝑟 +s 𝑌))))
213212simprd 495 . . . . . . . . . 10 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑙 <s 𝑟 → (𝑙 +s 𝑌) <s (𝑟 +s 𝑌)))
214188, 213mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑙 +s 𝑌) <s (𝑟 +s 𝑌))
215 breq12 5115 . . . . . . . . 9 ((𝑎 = (𝑙 +s 𝑌) ∧ 𝑏 = (𝑟 +s 𝑌)) → (𝑎 <s 𝑏 ↔ (𝑙 +s 𝑌) <s (𝑟 +s 𝑌)))
216214, 215syl5ibrcom 247 . . . . . . . 8 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((𝑎 = (𝑙 +s 𝑌) ∧ 𝑏 = (𝑟 +s 𝑌)) → 𝑎 <s 𝑏))
217216rexlimdvva 3195 . . . . . . 7 (𝜑 → (∃𝑙 ∈ ( L ‘𝑋)∃𝑟 ∈ ( R ‘𝑋)(𝑎 = (𝑙 +s 𝑌) ∧ 𝑏 = (𝑟 +s 𝑌)) → 𝑎 <s 𝑏))
218183, 217biimtrrid 243 . . . . . 6 (𝜑 → ((∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)) → 𝑎 <s 𝑏))
219 reeanv 3210 . . . . . . 7 (∃𝑙 ∈ ( L ‘𝑋)∃𝑠 ∈ ( R ‘𝑌)(𝑎 = (𝑙 +s 𝑌) ∧ 𝑏 = (𝑋 +s 𝑠)) ↔ (∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠)))
22051adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑙 +s 𝑌) ∈ No )
22115adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
22218ad2antrl 728 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑙 No )
223131ad2antll 729 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑠 No )
22422a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → 0s No )
22529uneq2i 4131 . . . . . . . . . . . . . 14 ((( bday 𝑙) +no ( bday 𝑠)) ∪ (( bday 𝑙) +no ( bday ‘ 0s ))) = ((( bday 𝑙) +no ( bday 𝑠)) ∪ ( bday 𝑙))
226 naddword1 8658 . . . . . . . . . . . . . . . 16 ((( bday 𝑙) ∈ On ∧ ( bday 𝑠) ∈ On) → ( bday 𝑙) ⊆ (( bday 𝑙) +no ( bday 𝑠)))
22726, 135, 226mp2an 692 . . . . . . . . . . . . . . 15 ( bday 𝑙) ⊆ (( bday 𝑙) +no ( bday 𝑠))
228 ssequn2 4155 . . . . . . . . . . . . . . 15 (( bday 𝑙) ⊆ (( bday 𝑙) +no ( bday 𝑠)) ↔ ((( bday 𝑙) +no ( bday 𝑠)) ∪ ( bday 𝑙)) = (( bday 𝑙) +no ( bday 𝑠)))
229227, 228mpbi 230 . . . . . . . . . . . . . 14 ((( bday 𝑙) +no ( bday 𝑠)) ∪ ( bday 𝑙)) = (( bday 𝑙) +no ( bday 𝑠))
230225, 229eqtri 2753 . . . . . . . . . . . . 13 ((( bday 𝑙) +no ( bday 𝑠)) ∪ (( bday 𝑙) +no ( bday ‘ 0s ))) = (( bday 𝑙) +no ( bday 𝑠))
231 naddel1 8654 . . . . . . . . . . . . . . . . . 18 ((( bday 𝑙) ∈ On ∧ ( bday 𝑋) ∈ On ∧ ( bday 𝑠) ∈ On) → (( bday 𝑙) ∈ ( bday 𝑋) ↔ (( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑠))))
23226, 39, 135, 231mp3an 1463 . . . . . . . . . . . . . . . . 17 (( bday 𝑙) ∈ ( bday 𝑋) ↔ (( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑠)))
23342, 232sylib 218 . . . . . . . . . . . . . . . 16 (𝑙 ∈ ( L ‘𝑋) → (( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑠)))
234233ad2antrl 728 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑠)))
235148ad2antll 729 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
236 ontr1 6382 . . . . . . . . . . . . . . . 16 ((( bday 𝑋) +no ( bday 𝑌)) ∈ On → (((( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑠)) ∧ (( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌))) → (( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
237206, 236ax-mp 5 . . . . . . . . . . . . . . 15 (((( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑠)) ∧ (( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌))) → (( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
238234, 235, 237syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
239 elun1 4148 . . . . . . . . . . . . . 14 ((( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)) → (( bday 𝑙) +no ( bday 𝑠)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
240238, 239syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (( bday 𝑙) +no ( bday 𝑠)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
241230, 240eqeltrid 2833 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((( bday 𝑙) +no ( bday 𝑠)) ∪ (( bday 𝑙) +no ( bday ‘ 0s ))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
242221, 222, 223, 224, 241addsproplem1 27883 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((𝑙 +s 𝑠) ∈ No ∧ (𝑠 <s 0s → (𝑠 +s 𝑙) <s ( 0s +s 𝑙))))
243242simpld 494 . . . . . . . . . 10 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑙 +s 𝑠) ∈ No )
244154adantrl 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑋 +s 𝑠) ∈ No )
245 rightgt 27783 . . . . . . . . . . . . 13 (𝑠 ∈ ( R ‘𝑌) → 𝑌 <s 𝑠)
246245ad2antll 729 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑌 <s 𝑠)
24720adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑌 No )
24845ad2antrl 728 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (( bday 𝑙) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
249 naddcl 8644 . . . . . . . . . . . . . . . . . 18 ((( bday 𝑙) ∈ On ∧ ( bday 𝑌) ∈ On) → (( bday 𝑙) +no ( bday 𝑌)) ∈ On)
25026, 31, 249mp2an 692 . . . . . . . . . . . . . . . . 17 (( bday 𝑙) +no ( bday 𝑌)) ∈ On
251 naddcl 8644 . . . . . . . . . . . . . . . . . 18 ((( bday 𝑙) ∈ On ∧ ( bday 𝑠) ∈ On) → (( bday 𝑙) +no ( bday 𝑠)) ∈ On)
25226, 135, 251mp2an 692 . . . . . . . . . . . . . . . . 17 (( bday 𝑙) +no ( bday 𝑠)) ∈ On
253 onunel 6442 . . . . . . . . . . . . . . . . 17 (((( bday 𝑙) +no ( bday 𝑌)) ∈ On ∧ (( bday 𝑙) +no ( bday 𝑠)) ∈ On ∧ (( bday 𝑋) +no ( bday 𝑌)) ∈ On) → (((( bday 𝑙) +no ( bday 𝑌)) ∪ (( bday 𝑙) +no ( bday 𝑠))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑙) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)))))
254250, 252, 206, 253mp3an 1463 . . . . . . . . . . . . . . . 16 (((( bday 𝑙) +no ( bday 𝑌)) ∪ (( bday 𝑙) +no ( bday 𝑠))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑙) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑙) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
255248, 238, 254sylanbrc 583 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((( bday 𝑙) +no ( bday 𝑌)) ∪ (( bday 𝑙) +no ( bday 𝑠))) ∈ (( bday 𝑋) +no ( bday 𝑌)))
256 elun1 4148 . . . . . . . . . . . . . . 15 (((( bday 𝑙) +no ( bday 𝑌)) ∪ (( bday 𝑙) +no ( bday 𝑠))) ∈ (( bday 𝑋) +no ( bday 𝑌)) → ((( bday 𝑙) +no ( bday 𝑌)) ∪ (( bday 𝑙) +no ( bday 𝑠))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
257255, 256syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((( bday 𝑙) +no ( bday 𝑌)) ∪ (( bday 𝑙) +no ( bday 𝑠))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
258221, 222, 247, 223, 257addsproplem1 27883 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((𝑙 +s 𝑌) ∈ No ∧ (𝑌 <s 𝑠 → (𝑌 +s 𝑙) <s (𝑠 +s 𝑙))))
259258simprd 495 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑌 <s 𝑠 → (𝑌 +s 𝑙) <s (𝑠 +s 𝑙)))
260246, 259mpd 15 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑌 +s 𝑙) <s (𝑠 +s 𝑙))
261222, 247addscomd 27881 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑙 +s 𝑌) = (𝑌 +s 𝑙))
262222, 223addscomd 27881 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑙 +s 𝑠) = (𝑠 +s 𝑙))
263260, 261, 2623brtr4d 5142 . . . . . . . . . 10 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑙 +s 𝑌) <s (𝑙 +s 𝑠))
264 leftlt 27782 . . . . . . . . . . . 12 (𝑙 ∈ ( L ‘𝑋) → 𝑙 <s 𝑋)
265264ad2antrl 728 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑙 <s 𝑋)
26657adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑋 No )
267 naddcom 8649 . . . . . . . . . . . . . . . . 17 ((( bday 𝑠) ∈ On ∧ ( bday 𝑙) ∈ On) → (( bday 𝑠) +no ( bday 𝑙)) = (( bday 𝑙) +no ( bday 𝑠)))
268135, 26, 267mp2an 692 . . . . . . . . . . . . . . . 16 (( bday 𝑠) +no ( bday 𝑙)) = (( bday 𝑙) +no ( bday 𝑠))
269268, 238eqeltrid 2833 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (( bday 𝑠) +no ( bday 𝑙)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
270 naddcom 8649 . . . . . . . . . . . . . . . . 17 ((( bday 𝑠) ∈ On ∧ ( bday 𝑋) ∈ On) → (( bday 𝑠) +no ( bday 𝑋)) = (( bday 𝑋) +no ( bday 𝑠)))
271135, 39, 270mp2an 692 . . . . . . . . . . . . . . . 16 (( bday 𝑠) +no ( bday 𝑋)) = (( bday 𝑋) +no ( bday 𝑠))
272271, 235eqeltrid 2833 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (( bday 𝑠) +no ( bday 𝑋)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
273 naddcl 8644 . . . . . . . . . . . . . . . . 17 ((( bday 𝑠) ∈ On ∧ ( bday 𝑙) ∈ On) → (( bday 𝑠) +no ( bday 𝑙)) ∈ On)
274135, 26, 273mp2an 692 . . . . . . . . . . . . . . . 16 (( bday 𝑠) +no ( bday 𝑙)) ∈ On
275 naddcl 8644 . . . . . . . . . . . . . . . . 17 ((( bday 𝑠) ∈ On ∧ ( bday 𝑋) ∈ On) → (( bday 𝑠) +no ( bday 𝑋)) ∈ On)
276135, 39, 275mp2an 692 . . . . . . . . . . . . . . . 16 (( bday 𝑠) +no ( bday 𝑋)) ∈ On
277 onunel 6442 . . . . . . . . . . . . . . . 16 (((( bday 𝑠) +no ( bday 𝑙)) ∈ On ∧ (( bday 𝑠) +no ( bday 𝑋)) ∈ On ∧ (( bday 𝑋) +no ( bday 𝑌)) ∈ On) → (((( bday 𝑠) +no ( bday 𝑙)) ∪ (( bday 𝑠) +no ( bday 𝑋))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑠) +no ( bday 𝑙)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑠) +no ( bday 𝑋)) ∈ (( bday 𝑋) +no ( bday 𝑌)))))
278274, 276, 206, 277mp3an 1463 . . . . . . . . . . . . . . 15 (((( bday 𝑠) +no ( bday 𝑙)) ∪ (( bday 𝑠) +no ( bday 𝑋))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑠) +no ( bday 𝑙)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑠) +no ( bday 𝑋)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
279269, 272, 278sylanbrc 583 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((( bday 𝑠) +no ( bday 𝑙)) ∪ (( bday 𝑠) +no ( bday 𝑋))) ∈ (( bday 𝑋) +no ( bday 𝑌)))
280 elun1 4148 . . . . . . . . . . . . . 14 (((( bday 𝑠) +no ( bday 𝑙)) ∪ (( bday 𝑠) +no ( bday 𝑋))) ∈ (( bday 𝑋) +no ( bday 𝑌)) → ((( bday 𝑠) +no ( bday 𝑙)) ∪ (( bday 𝑠) +no ( bday 𝑋))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
281279, 280syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((( bday 𝑠) +no ( bday 𝑙)) ∪ (( bday 𝑠) +no ( bday 𝑋))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
282221, 223, 222, 266, 281addsproplem1 27883 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((𝑠 +s 𝑙) ∈ No ∧ (𝑙 <s 𝑋 → (𝑙 +s 𝑠) <s (𝑋 +s 𝑠))))
283282simprd 495 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑙 <s 𝑋 → (𝑙 +s 𝑠) <s (𝑋 +s 𝑠)))
284265, 283mpd 15 . . . . . . . . . 10 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑙 +s 𝑠) <s (𝑋 +s 𝑠))
285220, 243, 244, 263, 284slttrd 27678 . . . . . . . . 9 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑙 +s 𝑌) <s (𝑋 +s 𝑠))
286 breq12 5115 . . . . . . . . 9 ((𝑎 = (𝑙 +s 𝑌) ∧ 𝑏 = (𝑋 +s 𝑠)) → (𝑎 <s 𝑏 ↔ (𝑙 +s 𝑌) <s (𝑋 +s 𝑠)))
287285, 286syl5ibrcom 247 . . . . . . . 8 ((𝜑 ∧ (𝑙 ∈ ( L ‘𝑋) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((𝑎 = (𝑙 +s 𝑌) ∧ 𝑏 = (𝑋 +s 𝑠)) → 𝑎 <s 𝑏))
288287rexlimdvva 3195 . . . . . . 7 (𝜑 → (∃𝑙 ∈ ( L ‘𝑋)∃𝑠 ∈ ( R ‘𝑌)(𝑎 = (𝑙 +s 𝑌) ∧ 𝑏 = (𝑋 +s 𝑠)) → 𝑎 <s 𝑏))
289219, 288biimtrrid 243 . . . . . 6 (𝜑 → ((∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠)) → 𝑎 <s 𝑏))
290218, 289jaod 859 . . . . 5 (𝜑 → (((∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)) ∨ (∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠))) → 𝑎 <s 𝑏))
291 reeanv 3210 . . . . . . 7 (∃𝑚 ∈ ( L ‘𝑌)∃𝑟 ∈ ( R ‘𝑋)(𝑎 = (𝑋 +s 𝑚) ∧ 𝑏 = (𝑟 +s 𝑌)) ↔ (∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)))
29215adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
29357adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑋 No )
29460ad2antrl 728 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑚 No )
29522a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → 0s No )
29681ad2antrl 728 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
297296, 83syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑋) +no ( bday 𝑚)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
29873, 297eqeltrid 2833 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday ‘ 0s ))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
299292, 293, 294, 295, 298addsproplem1 27883 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((𝑋 +s 𝑚) ∈ No ∧ (𝑚 <s 0s → (𝑚 +s 𝑋) <s ( 0s +s 𝑋))))
300299simpld 494 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑋 +s 𝑚) ∈ No )
30195ad2antll 729 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑟 No )
302103uneq2i 4131 . . . . . . . . . . . . . 14 ((( bday 𝑟) +no ( bday 𝑚)) ∪ (( bday 𝑟) +no ( bday ‘ 0s ))) = ((( bday 𝑟) +no ( bday 𝑚)) ∪ ( bday 𝑟))
303 naddword1 8658 . . . . . . . . . . . . . . . 16 ((( bday 𝑟) ∈ On ∧ ( bday 𝑚) ∈ On) → ( bday 𝑟) ⊆ (( bday 𝑟) +no ( bday 𝑚)))
304100, 68, 303mp2an 692 . . . . . . . . . . . . . . 15 ( bday 𝑟) ⊆ (( bday 𝑟) +no ( bday 𝑚))
305 ssequn2 4155 . . . . . . . . . . . . . . 15 (( bday 𝑟) ⊆ (( bday 𝑟) +no ( bday 𝑚)) ↔ ((( bday 𝑟) +no ( bday 𝑚)) ∪ ( bday 𝑟)) = (( bday 𝑟) +no ( bday 𝑚)))
306304, 305mpbi 230 . . . . . . . . . . . . . 14 ((( bday 𝑟) +no ( bday 𝑚)) ∪ ( bday 𝑟)) = (( bday 𝑟) +no ( bday 𝑚))
307302, 306eqtri 2753 . . . . . . . . . . . . 13 ((( bday 𝑟) +no ( bday 𝑚)) ∪ (( bday 𝑟) +no ( bday ‘ 0s ))) = (( bday 𝑟) +no ( bday 𝑚))
308 naddel1 8654 . . . . . . . . . . . . . . . . . 18 ((( bday 𝑟) ∈ On ∧ ( bday 𝑋) ∈ On ∧ ( bday 𝑚) ∈ On) → (( bday 𝑟) ∈ ( bday 𝑋) ↔ (( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑚))))
309100, 39, 68, 308mp3an 1463 . . . . . . . . . . . . . . . . 17 (( bday 𝑟) ∈ ( bday 𝑋) ↔ (( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑚)))
310114, 309sylib 218 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ( R ‘𝑋) → (( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑚)))
311310ad2antll 729 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑚)))
312 ontr1 6382 . . . . . . . . . . . . . . . 16 ((( bday 𝑋) +no ( bday 𝑌)) ∈ On → (((( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑚)) ∧ (( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌))) → (( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
313206, 312ax-mp 5 . . . . . . . . . . . . . . 15 (((( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑚)) ∧ (( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌))) → (( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
314311, 296, 313syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
315 elun1 4148 . . . . . . . . . . . . . 14 ((( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)) → (( bday 𝑟) +no ( bday 𝑚)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
316314, 315syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑟) +no ( bday 𝑚)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
317307, 316eqeltrid 2833 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((( bday 𝑟) +no ( bday 𝑚)) ∪ (( bday 𝑟) +no ( bday ‘ 0s ))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
318292, 301, 294, 295, 317addsproplem1 27883 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((𝑟 +s 𝑚) ∈ No ∧ (𝑚 <s 0s → (𝑚 +s 𝑟) <s ( 0s +s 𝑟))))
319318simpld 494 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑟 +s 𝑚) ∈ No )
32020adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑌 No )
321117ad2antll 729 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑟) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
322321, 119syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑟) +no ( bday 𝑌)) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
323109, 322eqeltrid 2833 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((( bday 𝑟) +no ( bday 𝑌)) ∪ (( bday 𝑟) +no ( bday ‘ 0s ))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
324292, 301, 320, 295, 323addsproplem1 27883 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((𝑟 +s 𝑌) ∈ No ∧ (𝑌 <s 0s → (𝑌 +s 𝑟) <s ( 0s +s 𝑟))))
325324simpld 494 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑟 +s 𝑌) ∈ No )
326 rightval 27779 . . . . . . . . . . . . . . . 16 ( R ‘𝑋) = {𝑟 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑟}
327326eleq2i 2821 . . . . . . . . . . . . . . 15 (𝑟 ∈ ( R ‘𝑋) ↔ 𝑟 ∈ {𝑟 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑟})
328327biimpi 216 . . . . . . . . . . . . . 14 (𝑟 ∈ ( R ‘𝑋) → 𝑟 ∈ {𝑟 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑟})
329328ad2antll 729 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑟 ∈ {𝑟 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑟})
330 rabid 3430 . . . . . . . . . . . . 13 (𝑟 ∈ {𝑟 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑟} ↔ (𝑟 ∈ ( O ‘( bday 𝑋)) ∧ 𝑋 <s 𝑟))
331329, 330sylib 218 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑟 ∈ ( O ‘( bday 𝑋)) ∧ 𝑋 <s 𝑟))
332331simprd 495 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑋 <s 𝑟)
333 naddcom 8649 . . . . . . . . . . . . . . . . 17 ((( bday 𝑚) ∈ On ∧ ( bday 𝑋) ∈ On) → (( bday 𝑚) +no ( bday 𝑋)) = (( bday 𝑋) +no ( bday 𝑚)))
33468, 39, 333mp2an 692 . . . . . . . . . . . . . . . 16 (( bday 𝑚) +no ( bday 𝑋)) = (( bday 𝑋) +no ( bday 𝑚))
335334, 296eqeltrid 2833 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑚) +no ( bday 𝑋)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
336 naddcom 8649 . . . . . . . . . . . . . . . . 17 ((( bday 𝑚) ∈ On ∧ ( bday 𝑟) ∈ On) → (( bday 𝑚) +no ( bday 𝑟)) = (( bday 𝑟) +no ( bday 𝑚)))
33768, 100, 336mp2an 692 . . . . . . . . . . . . . . . 16 (( bday 𝑚) +no ( bday 𝑟)) = (( bday 𝑟) +no ( bday 𝑚))
338337, 314eqeltrid 2833 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (( bday 𝑚) +no ( bday 𝑟)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
339 naddcl 8644 . . . . . . . . . . . . . . . . 17 ((( bday 𝑚) ∈ On ∧ ( bday 𝑋) ∈ On) → (( bday 𝑚) +no ( bday 𝑋)) ∈ On)
34068, 39, 339mp2an 692 . . . . . . . . . . . . . . . 16 (( bday 𝑚) +no ( bday 𝑋)) ∈ On
341 naddcl 8644 . . . . . . . . . . . . . . . . 17 ((( bday 𝑚) ∈ On ∧ ( bday 𝑟) ∈ On) → (( bday 𝑚) +no ( bday 𝑟)) ∈ On)
34268, 100, 341mp2an 692 . . . . . . . . . . . . . . . 16 (( bday 𝑚) +no ( bday 𝑟)) ∈ On
343 onunel 6442 . . . . . . . . . . . . . . . 16 (((( bday 𝑚) +no ( bday 𝑋)) ∈ On ∧ (( bday 𝑚) +no ( bday 𝑟)) ∈ On ∧ (( bday 𝑋) +no ( bday 𝑌)) ∈ On) → (((( bday 𝑚) +no ( bday 𝑋)) ∪ (( bday 𝑚) +no ( bday 𝑟))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑚) +no ( bday 𝑋)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑚) +no ( bday 𝑟)) ∈ (( bday 𝑋) +no ( bday 𝑌)))))
344340, 342, 206, 343mp3an 1463 . . . . . . . . . . . . . . 15 (((( bday 𝑚) +no ( bday 𝑋)) ∪ (( bday 𝑚) +no ( bday 𝑟))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑚) +no ( bday 𝑋)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑚) +no ( bday 𝑟)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
345335, 338, 344sylanbrc 583 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((( bday 𝑚) +no ( bday 𝑋)) ∪ (( bday 𝑚) +no ( bday 𝑟))) ∈ (( bday 𝑋) +no ( bday 𝑌)))
346 elun1 4148 . . . . . . . . . . . . . 14 (((( bday 𝑚) +no ( bday 𝑋)) ∪ (( bday 𝑚) +no ( bday 𝑟))) ∈ (( bday 𝑋) +no ( bday 𝑌)) → ((( bday 𝑚) +no ( bday 𝑋)) ∪ (( bday 𝑚) +no ( bday 𝑟))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
347345, 346syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((( bday 𝑚) +no ( bday 𝑋)) ∪ (( bday 𝑚) +no ( bday 𝑟))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
348292, 294, 293, 301, 347addsproplem1 27883 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((𝑚 +s 𝑋) ∈ No ∧ (𝑋 <s 𝑟 → (𝑋 +s 𝑚) <s (𝑟 +s 𝑚))))
349348simprd 495 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑋 <s 𝑟 → (𝑋 +s 𝑚) <s (𝑟 +s 𝑚)))
350332, 349mpd 15 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑋 +s 𝑚) <s (𝑟 +s 𝑚))
351 leftval 27778 . . . . . . . . . . . . . . . . 17 ( L ‘𝑌) = {𝑚 ∈ ( O ‘( bday 𝑌)) ∣ 𝑚 <s 𝑌}
352351eleq2i 2821 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ( L ‘𝑌) ↔ 𝑚 ∈ {𝑚 ∈ ( O ‘( bday 𝑌)) ∣ 𝑚 <s 𝑌})
353352biimpi 216 . . . . . . . . . . . . . . 15 (𝑚 ∈ ( L ‘𝑌) → 𝑚 ∈ {𝑚 ∈ ( O ‘( bday 𝑌)) ∣ 𝑚 <s 𝑌})
354353ad2antrl 728 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑚 ∈ {𝑚 ∈ ( O ‘( bday 𝑌)) ∣ 𝑚 <s 𝑌})
355 rabid 3430 . . . . . . . . . . . . . 14 (𝑚 ∈ {𝑚 ∈ ( O ‘( bday 𝑌)) ∣ 𝑚 <s 𝑌} ↔ (𝑚 ∈ ( O ‘( bday 𝑌)) ∧ 𝑚 <s 𝑌))
356354, 355sylib 218 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑚 ∈ ( O ‘( bday 𝑌)) ∧ 𝑚 <s 𝑌))
357356simprd 495 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → 𝑚 <s 𝑌)
358 naddcl 8644 . . . . . . . . . . . . . . . . . 18 ((( bday 𝑟) ∈ On ∧ ( bday 𝑚) ∈ On) → (( bday 𝑟) +no ( bday 𝑚)) ∈ On)
359100, 68, 358mp2an 692 . . . . . . . . . . . . . . . . 17 (( bday 𝑟) +no ( bday 𝑚)) ∈ On
360 naddcl 8644 . . . . . . . . . . . . . . . . . 18 ((( bday 𝑟) ∈ On ∧ ( bday 𝑌) ∈ On) → (( bday 𝑟) +no ( bday 𝑌)) ∈ On)
361100, 31, 360mp2an 692 . . . . . . . . . . . . . . . . 17 (( bday 𝑟) +no ( bday 𝑌)) ∈ On
362 onunel 6442 . . . . . . . . . . . . . . . . 17 (((( bday 𝑟) +no ( bday 𝑚)) ∈ On ∧ (( bday 𝑟) +no ( bday 𝑌)) ∈ On ∧ (( bday 𝑋) +no ( bday 𝑌)) ∈ On) → (((( bday 𝑟) +no ( bday 𝑚)) ∪ (( bday 𝑟) +no ( bday 𝑌))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑟) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌)))))
363359, 361, 206, 362mp3an 1463 . . . . . . . . . . . . . . . 16 (((( bday 𝑟) +no ( bday 𝑚)) ∪ (( bday 𝑟) +no ( bday 𝑌))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑟) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑟) +no ( bday 𝑌)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
364314, 321, 363sylanbrc 583 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((( bday 𝑟) +no ( bday 𝑚)) ∪ (( bday 𝑟) +no ( bday 𝑌))) ∈ (( bday 𝑋) +no ( bday 𝑌)))
365 elun1 4148 . . . . . . . . . . . . . . 15 (((( bday 𝑟) +no ( bday 𝑚)) ∪ (( bday 𝑟) +no ( bday 𝑌))) ∈ (( bday 𝑋) +no ( bday 𝑌)) → ((( bday 𝑟) +no ( bday 𝑚)) ∪ (( bday 𝑟) +no ( bday 𝑌))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
366364, 365syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((( bday 𝑟) +no ( bday 𝑚)) ∪ (( bday 𝑟) +no ( bday 𝑌))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
367292, 301, 294, 320, 366addsproplem1 27883 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((𝑟 +s 𝑚) ∈ No ∧ (𝑚 <s 𝑌 → (𝑚 +s 𝑟) <s (𝑌 +s 𝑟))))
368367simprd 495 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑚 <s 𝑌 → (𝑚 +s 𝑟) <s (𝑌 +s 𝑟)))
369357, 368mpd 15 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑚 +s 𝑟) <s (𝑌 +s 𝑟))
370301, 294addscomd 27881 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑟 +s 𝑚) = (𝑚 +s 𝑟))
371301, 320addscomd 27881 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑟 +s 𝑌) = (𝑌 +s 𝑟))
372369, 370, 3713brtr4d 5142 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑟 +s 𝑚) <s (𝑟 +s 𝑌))
373300, 319, 325, 350, 372slttrd 27678 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → (𝑋 +s 𝑚) <s (𝑟 +s 𝑌))
374 breq12 5115 . . . . . . . . 9 ((𝑎 = (𝑋 +s 𝑚) ∧ 𝑏 = (𝑟 +s 𝑌)) → (𝑎 <s 𝑏 ↔ (𝑋 +s 𝑚) <s (𝑟 +s 𝑌)))
375373, 374syl5ibrcom 247 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑟 ∈ ( R ‘𝑋))) → ((𝑎 = (𝑋 +s 𝑚) ∧ 𝑏 = (𝑟 +s 𝑌)) → 𝑎 <s 𝑏))
376375rexlimdvva 3195 . . . . . . 7 (𝜑 → (∃𝑚 ∈ ( L ‘𝑌)∃𝑟 ∈ ( R ‘𝑋)(𝑎 = (𝑋 +s 𝑚) ∧ 𝑏 = (𝑟 +s 𝑌)) → 𝑎 <s 𝑏))
377291, 376biimtrrid 243 . . . . . 6 (𝜑 → ((∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)) → 𝑎 <s 𝑏))
378 reeanv 3210 . . . . . . 7 (∃𝑚 ∈ ( L ‘𝑌)∃𝑠 ∈ ( R ‘𝑌)(𝑎 = (𝑋 +s 𝑚) ∧ 𝑏 = (𝑋 +s 𝑠)) ↔ (∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠)))
379 lltropt 27791 . . . . . . . . . . . . 13 ( L ‘𝑌) <<s ( R ‘𝑌)
380379a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → ( L ‘𝑌) <<s ( R ‘𝑌))
381 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑚 ∈ ( L ‘𝑌))
382 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑠 ∈ ( R ‘𝑌))
383380, 381, 382ssltsepcd 27713 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑚 <s 𝑠)
38415adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
38557adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑋 No )
38660ad2antrl 728 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑚 No )
387131ad2antll 729 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → 𝑠 No )
38881ad2antrl 728 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → (( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
389148ad2antll 729 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → (( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)))
390 naddcl 8644 . . . . . . . . . . . . . . . . 17 ((( bday 𝑋) ∈ On ∧ ( bday 𝑚) ∈ On) → (( bday 𝑋) +no ( bday 𝑚)) ∈ On)
39139, 68, 390mp2an 692 . . . . . . . . . . . . . . . 16 (( bday 𝑋) +no ( bday 𝑚)) ∈ On
392 naddcl 8644 . . . . . . . . . . . . . . . . 17 ((( bday 𝑋) ∈ On ∧ ( bday 𝑠) ∈ On) → (( bday 𝑋) +no ( bday 𝑠)) ∈ On)
39339, 135, 392mp2an 692 . . . . . . . . . . . . . . . 16 (( bday 𝑋) +no ( bday 𝑠)) ∈ On
394 onunel 6442 . . . . . . . . . . . . . . . 16 (((( bday 𝑋) +no ( bday 𝑚)) ∈ On ∧ (( bday 𝑋) +no ( bday 𝑠)) ∈ On ∧ (( bday 𝑋) +no ( bday 𝑌)) ∈ On) → (((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday 𝑠))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌)))))
395391, 393, 206, 394mp3an 1463 . . . . . . . . . . . . . . 15 (((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday 𝑠))) ∈ (( bday 𝑋) +no ( bday 𝑌)) ↔ ((( bday 𝑋) +no ( bday 𝑚)) ∈ (( bday 𝑋) +no ( bday 𝑌)) ∧ (( bday 𝑋) +no ( bday 𝑠)) ∈ (( bday 𝑋) +no ( bday 𝑌))))
396388, 389, 395sylanbrc 583 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday 𝑠))) ∈ (( bday 𝑋) +no ( bday 𝑌)))
397 elun1 4148 . . . . . . . . . . . . . 14 (((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday 𝑠))) ∈ (( bday 𝑋) +no ( bday 𝑌)) → ((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday 𝑠))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
398396, 397syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((( bday 𝑋) +no ( bday 𝑚)) ∪ (( bday 𝑋) +no ( bday 𝑠))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))))
399384, 385, 386, 387, 398addsproplem1 27883 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((𝑋 +s 𝑚) ∈ No ∧ (𝑚 <s 𝑠 → (𝑚 +s 𝑋) <s (𝑠 +s 𝑋))))
400399simprd 495 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑚 <s 𝑠 → (𝑚 +s 𝑋) <s (𝑠 +s 𝑋)))
401383, 400mpd 15 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑚 +s 𝑋) <s (𝑠 +s 𝑋))
402385, 386addscomd 27881 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑋 +s 𝑚) = (𝑚 +s 𝑋))
403385, 387addscomd 27881 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑋 +s 𝑠) = (𝑠 +s 𝑋))
404401, 402, 4033brtr4d 5142 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → (𝑋 +s 𝑚) <s (𝑋 +s 𝑠))
405 breq12 5115 . . . . . . . . 9 ((𝑎 = (𝑋 +s 𝑚) ∧ 𝑏 = (𝑋 +s 𝑠)) → (𝑎 <s 𝑏 ↔ (𝑋 +s 𝑚) <s (𝑋 +s 𝑠)))
406404, 405syl5ibrcom 247 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ( L ‘𝑌) ∧ 𝑠 ∈ ( R ‘𝑌))) → ((𝑎 = (𝑋 +s 𝑚) ∧ 𝑏 = (𝑋 +s 𝑠)) → 𝑎 <s 𝑏))
407406rexlimdvva 3195 . . . . . . 7 (𝜑 → (∃𝑚 ∈ ( L ‘𝑌)∃𝑠 ∈ ( R ‘𝑌)(𝑎 = (𝑋 +s 𝑚) ∧ 𝑏 = (𝑋 +s 𝑠)) → 𝑎 <s 𝑏))
408378, 407biimtrrid 243 . . . . . 6 (𝜑 → ((∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠)) → 𝑎 <s 𝑏))
409377, 408jaod 859 . . . . 5 (𝜑 → (((∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)) ∨ (∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠))) → 𝑎 <s 𝑏))
410290, 409jaod 859 . . . 4 (𝜑 → ((((∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)) ∨ (∃𝑙 ∈ ( L ‘𝑋)𝑎 = (𝑙 +s 𝑌) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠))) ∨ ((∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑟 ∈ ( R ‘𝑋)𝑏 = (𝑟 +s 𝑌)) ∨ (∃𝑚 ∈ ( L ‘𝑌)𝑎 = (𝑋 +s 𝑚) ∧ ∃𝑠 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑠)))) → 𝑎 <s 𝑏))
411182, 410biimtrid 242 . . 3 (𝜑 → ((𝑎 ∈ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) ∧ 𝑏 ∈ ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)})) → 𝑎 <s 𝑏))
4124113impib 1116 . 2 ((𝜑𝑎 ∈ ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) ∧ 𝑏 ∈ ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)})) → 𝑎 <s 𝑏)
4137, 14, 92, 159, 412ssltd 27710 1 (𝜑 → ({𝑝 ∣ ∃𝑙 ∈ ( L ‘𝑋)𝑝 = (𝑙 +s 𝑌)} ∪ {𝑞 ∣ ∃𝑚 ∈ ( L ‘𝑌)𝑞 = (𝑋 +s 𝑚)}) <<s ({𝑤 ∣ ∃𝑟 ∈ ( R ‘𝑋)𝑤 = (𝑟 +s 𝑌)} ∪ {𝑡 ∣ ∃𝑠 ∈ ( R ‘𝑌)𝑡 = (𝑋 +s 𝑠)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  {cab 2708  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cun 3915  wss 3917  c0 4299   class class class wbr 5110  Oncon0 6335  cfv 6514  (class class class)co 7390   +no cnadd 8632   No csur 27558   <s cslt 27559   bday cbday 27560   <<s csslt 27699   0s c0s 27741   O cold 27758   L cleft 27760   R cright 27761   +s cadds 27873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-1o 8437  df-2o 8438  df-nadd 8633  df-no 27561  df-slt 27562  df-bday 27563  df-sslt 27700  df-scut 27702  df-0s 27743  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-norec2 27863  df-adds 27874
This theorem is referenced by:  addsproplem3  27885
  Copyright terms: Public domain W3C validator