MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsproplem9 Structured version   Visualization version   GIF version

Theorem mulsproplem9 27560
Description: Lemma for surreal multiplication. Show that the cut involved in surreal multiplication makes sense. (Contributed by Scott Fenton, 5-Mar-2025.)
Hypotheses
Ref Expression
mulsproplem.1 (𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
mulsproplem9.1 (𝜑𝐴 No )
mulsproplem9.2 (𝜑𝐵 No )
Assertion
Ref Expression
mulsproplem9 (𝜑 → ({𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ { ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵) = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s ({𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐵,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐷,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐸,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐹,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐴,𝑔,,𝑖,𝑗,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑣,𝑤,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐵,𝑔,,𝑖,𝑗,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑣,𝑤   𝜑,𝑔,,𝑖,𝑗,𝑝,𝑞,𝑟,𝑠,𝑡,𝑢,𝑣,𝑤
Allowed substitution hints:   𝜑(𝑒,𝑓,𝑎,𝑏,𝑐,𝑑)   𝐶(𝑤,𝑣,𝑢,𝑡,𝑔,,𝑖,𝑗,𝑠,𝑟,𝑞,𝑝)   𝐷(𝑤,𝑣,𝑢,𝑡,𝑔,,𝑖,𝑗,𝑠,𝑟,𝑞,𝑝)   𝐸(𝑤,𝑣,𝑢,𝑡,𝑔,,𝑖,𝑗,𝑠,𝑟,𝑞,𝑝)   𝐹(𝑤,𝑣,𝑢,𝑡,𝑔,,𝑖,𝑗,𝑠,𝑟,𝑞,𝑝)

Proof of Theorem mulsproplem9
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . . 6 (𝑝 ∈ ( L ‘𝐴), 𝑞 ∈ ( L ‘𝐵) ↦ (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) = (𝑝 ∈ ( L ‘𝐴), 𝑞 ∈ ( L ‘𝐵) ↦ (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)))
21rnmpo 7537 . . . . 5 ran (𝑝 ∈ ( L ‘𝐴), 𝑞 ∈ ( L ‘𝐵) ↦ (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) = {𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))}
3 fvex 6901 . . . . . . 7 ( L ‘𝐴) ∈ V
4 fvex 6901 . . . . . . 7 ( L ‘𝐵) ∈ V
53, 4mpoex 8061 . . . . . 6 (𝑝 ∈ ( L ‘𝐴), 𝑞 ∈ ( L ‘𝐵) ↦ (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) ∈ V
65rnex 7898 . . . . 5 ran (𝑝 ∈ ( L ‘𝐴), 𝑞 ∈ ( L ‘𝐵) ↦ (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) ∈ V
72, 6eqeltrri 2831 . . . 4 {𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∈ V
8 eqid 2733 . . . . . 6 (𝑟 ∈ ( R ‘𝐴), 𝑠 ∈ ( R ‘𝐵) ↦ (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) = (𝑟 ∈ ( R ‘𝐴), 𝑠 ∈ ( R ‘𝐵) ↦ (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))
98rnmpo 7537 . . . . 5 ran (𝑟 ∈ ( R ‘𝐴), 𝑠 ∈ ( R ‘𝐵) ↦ (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) = { ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵) = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}
10 fvex 6901 . . . . . . 7 ( R ‘𝐴) ∈ V
11 fvex 6901 . . . . . . 7 ( R ‘𝐵) ∈ V
1210, 11mpoex 8061 . . . . . 6 (𝑟 ∈ ( R ‘𝐴), 𝑠 ∈ ( R ‘𝐵) ↦ (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) ∈ V
1312rnex 7898 . . . . 5 ran (𝑟 ∈ ( R ‘𝐴), 𝑠 ∈ ( R ‘𝐵) ↦ (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) ∈ V
149, 13eqeltrri 2831 . . . 4 { ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵) = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} ∈ V
157, 14unex 7728 . . 3 ({𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ { ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵) = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) ∈ V
1615a1i 11 . 2 (𝜑 → ({𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ { ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵) = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) ∈ V)
17 eqid 2733 . . . . . 6 (𝑡 ∈ ( L ‘𝐴), 𝑢 ∈ ( R ‘𝐵) ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) = (𝑡 ∈ ( L ‘𝐴), 𝑢 ∈ ( R ‘𝐵) ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))
1817rnmpo 7537 . . . . 5 ran (𝑡 ∈ ( L ‘𝐴), 𝑢 ∈ ( R ‘𝐵) ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) = {𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))}
193, 11mpoex 8061 . . . . . 6 (𝑡 ∈ ( L ‘𝐴), 𝑢 ∈ ( R ‘𝐵) ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∈ V
2019rnex 7898 . . . . 5 ran (𝑡 ∈ ( L ‘𝐴), 𝑢 ∈ ( R ‘𝐵) ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∈ V
2118, 20eqeltrri 2831 . . . 4 {𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∈ V
22 eqid 2733 . . . . . 6 (𝑣 ∈ ( R ‘𝐴), 𝑤 ∈ ( L ‘𝐵) ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) = (𝑣 ∈ ( R ‘𝐴), 𝑤 ∈ ( L ‘𝐵) ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))
2322rnmpo 7537 . . . . 5 ran (𝑣 ∈ ( R ‘𝐴), 𝑤 ∈ ( L ‘𝐵) ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) = {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}
2410, 4mpoex 8061 . . . . . 6 (𝑣 ∈ ( R ‘𝐴), 𝑤 ∈ ( L ‘𝐵) ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) ∈ V
2524rnex 7898 . . . . 5 ran (𝑣 ∈ ( R ‘𝐴), 𝑤 ∈ ( L ‘𝐵) ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) ∈ V
2623, 25eqeltrri 2831 . . . 4 {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} ∈ V
2721, 26unex 7728 . . 3 ({𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ∈ V
2827a1i 11 . 2 (𝜑 → ({𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ∈ V)
29 mulsproplem.1 . . . . . . . . . 10 (𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
3029adantr 482 . . . . . . . . 9 ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
31 leftssold 27353 . . . . . . . . . 10 ( L ‘𝐴) ⊆ ( O ‘( bday 𝐴))
32 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → 𝑝 ∈ ( L ‘𝐴))
3331, 32sselid 3979 . . . . . . . . 9 ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → 𝑝 ∈ ( O ‘( bday 𝐴)))
34 mulsproplem9.2 . . . . . . . . . 10 (𝜑𝐵 No )
3534adantr 482 . . . . . . . . 9 ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → 𝐵 No )
3630, 33, 35mulsproplem2 27553 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (𝑝 ·s 𝐵) ∈ No )
37 mulsproplem9.1 . . . . . . . . . 10 (𝜑𝐴 No )
3837adantr 482 . . . . . . . . 9 ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → 𝐴 No )
39 leftssold 27353 . . . . . . . . . 10 ( L ‘𝐵) ⊆ ( O ‘( bday 𝐵))
40 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → 𝑞 ∈ ( L ‘𝐵))
4139, 40sselid 3979 . . . . . . . . 9 ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → 𝑞 ∈ ( O ‘( bday 𝐵)))
4230, 38, 41mulsproplem3 27554 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (𝐴 ·s 𝑞) ∈ No )
4336, 42addscld 27444 . . . . . . 7 ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → ((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) ∈ No )
4430, 33, 41mulsproplem4 27555 . . . . . . 7 ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (𝑝 ·s 𝑞) ∈ No )
4543, 44subscld 27515 . . . . . 6 ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∈ No )
46 eleq1 2822 . . . . . 6 (𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) → (𝑔 No ↔ (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∈ No ))
4745, 46syl5ibrcom 246 . . . . 5 ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) → 𝑔 No ))
4847rexlimdvva 3212 . . . 4 (𝜑 → (∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) → 𝑔 No ))
4948abssdv 4064 . . 3 (𝜑 → {𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ⊆ No )
5029adantr 482 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
51 rightssold 27354 . . . . . . . . . 10 ( R ‘𝐴) ⊆ ( O ‘( bday 𝐴))
52 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → 𝑟 ∈ ( R ‘𝐴))
5351, 52sselid 3979 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → 𝑟 ∈ ( O ‘( bday 𝐴)))
5434adantr 482 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → 𝐵 No )
5550, 53, 54mulsproplem2 27553 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → (𝑟 ·s 𝐵) ∈ No )
5637adantr 482 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → 𝐴 No )
57 rightssold 27354 . . . . . . . . . 10 ( R ‘𝐵) ⊆ ( O ‘( bday 𝐵))
58 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → 𝑠 ∈ ( R ‘𝐵))
5957, 58sselid 3979 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → 𝑠 ∈ ( O ‘( bday 𝐵)))
6050, 56, 59mulsproplem3 27554 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → (𝐴 ·s 𝑠) ∈ No )
6155, 60addscld 27444 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → ((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) ∈ No )
6250, 53, 59mulsproplem4 27555 . . . . . . 7 ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → (𝑟 ·s 𝑠) ∈ No )
6361, 62subscld 27515 . . . . . 6 ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∈ No )
64 eleq1 2822 . . . . . 6 ( = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) → ( No ↔ (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∈ No ))
6563, 64syl5ibrcom 246 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → ( = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) → No ))
6665rexlimdvva 3212 . . . 4 (𝜑 → (∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵) = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) → No ))
6766abssdv 4064 . . 3 (𝜑 → { ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵) = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} ⊆ No )
6849, 67unssd 4185 . 2 (𝜑 → ({𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ { ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵) = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) ⊆ No )
6929adantr 482 . . . . . . . . 9 ((𝜑 ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
70 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → 𝑡 ∈ ( L ‘𝐴))
7131, 70sselid 3979 . . . . . . . . 9 ((𝜑 ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → 𝑡 ∈ ( O ‘( bday 𝐴)))
7234adantr 482 . . . . . . . . 9 ((𝜑 ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → 𝐵 No )
7369, 71, 72mulsproplem2 27553 . . . . . . . 8 ((𝜑 ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → (𝑡 ·s 𝐵) ∈ No )
7437adantr 482 . . . . . . . . 9 ((𝜑 ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → 𝐴 No )
75 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → 𝑢 ∈ ( R ‘𝐵))
7657, 75sselid 3979 . . . . . . . . 9 ((𝜑 ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → 𝑢 ∈ ( O ‘( bday 𝐵)))
7769, 74, 76mulsproplem3 27554 . . . . . . . 8 ((𝜑 ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → (𝐴 ·s 𝑢) ∈ No )
7873, 77addscld 27444 . . . . . . 7 ((𝜑 ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → ((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) ∈ No )
7969, 71, 76mulsproplem4 27555 . . . . . . 7 ((𝜑 ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → (𝑡 ·s 𝑢) ∈ No )
8078, 79subscld 27515 . . . . . 6 ((𝜑 ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∈ No )
81 eleq1 2822 . . . . . 6 (𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (𝑖 No ↔ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∈ No ))
8280, 81syl5ibrcom 246 . . . . 5 ((𝜑 ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → (𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → 𝑖 No ))
8382rexlimdvva 3212 . . . 4 (𝜑 → (∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → 𝑖 No ))
8483abssdv 4064 . . 3 (𝜑 → {𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ⊆ No )
8529adantr 482 . . . . . . . . 9 ((𝜑 ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
86 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → 𝑣 ∈ ( R ‘𝐴))
8751, 86sselid 3979 . . . . . . . . 9 ((𝜑 ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → 𝑣 ∈ ( O ‘( bday 𝐴)))
8834adantr 482 . . . . . . . . 9 ((𝜑 ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → 𝐵 No )
8985, 87, 88mulsproplem2 27553 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → (𝑣 ·s 𝐵) ∈ No )
9037adantr 482 . . . . . . . . 9 ((𝜑 ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → 𝐴 No )
91 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → 𝑤 ∈ ( L ‘𝐵))
9239, 91sselid 3979 . . . . . . . . 9 ((𝜑 ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → 𝑤 ∈ ( O ‘( bday 𝐵)))
9385, 90, 92mulsproplem3 27554 . . . . . . . 8 ((𝜑 ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → (𝐴 ·s 𝑤) ∈ No )
9489, 93addscld 27444 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → ((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) ∈ No )
9585, 87, 92mulsproplem4 27555 . . . . . . 7 ((𝜑 ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → (𝑣 ·s 𝑤) ∈ No )
9694, 95subscld 27515 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ∈ No )
97 eleq1 2822 . . . . . 6 (𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (𝑗 No ↔ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ∈ No ))
9896, 97syl5ibrcom 246 . . . . 5 ((𝜑 ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → (𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → 𝑗 No ))
9998rexlimdvva 3212 . . . 4 (𝜑 → (∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → 𝑗 No ))
10099abssdv 4064 . . 3 (𝜑 → {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} ⊆ No )
10184, 100unssd 4185 . 2 (𝜑 → ({𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ⊆ No )
102 elun 4147 . . . . . . 7 (𝑥 ∈ ({𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ { ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵) = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) ↔ (𝑥 ∈ {𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∨ 𝑥 ∈ { ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵) = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}))
103 vex 3479 . . . . . . . . 9 𝑥 ∈ V
104 eqeq1 2737 . . . . . . . . . 10 (𝑔 = 𝑥 → (𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ↔ 𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))))
1051042rexbidv 3220 . . . . . . . . 9 (𝑔 = 𝑥 → (∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ↔ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))))
106103, 105elab 3667 . . . . . . . 8 (𝑥 ∈ {𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ↔ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)))
107 eqeq1 2737 . . . . . . . . . 10 ( = 𝑥 → ( = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ↔ 𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))))
1081072rexbidv 3220 . . . . . . . . 9 ( = 𝑥 → (∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵) = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ↔ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))))
109103, 108elab 3667 . . . . . . . 8 (𝑥 ∈ { ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵) = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} ↔ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))
110106, 109orbi12i 914 . . . . . . 7 ((𝑥 ∈ {𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∨ 𝑥 ∈ { ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵) = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) ↔ (∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∨ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))))
111102, 110bitri 275 . . . . . 6 (𝑥 ∈ ({𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ { ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵) = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) ↔ (∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∨ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))))
112 elun 4147 . . . . . . 7 (𝑦 ∈ ({𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ↔ (𝑦 ∈ {𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∨ 𝑦 ∈ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))
113 vex 3479 . . . . . . . . 9 𝑦 ∈ V
114 eqeq1 2737 . . . . . . . . . 10 (𝑖 = 𝑦 → (𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ↔ 𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))))
1151142rexbidv 3220 . . . . . . . . 9 (𝑖 = 𝑦 → (∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ↔ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))))
116113, 115elab 3667 . . . . . . . 8 (𝑦 ∈ {𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ↔ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))
117 eqeq1 2737 . . . . . . . . . 10 (𝑗 = 𝑦 → (𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ↔ 𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))))
1181172rexbidv 3220 . . . . . . . . 9 (𝑗 = 𝑦 → (∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ↔ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))))
119113, 118elab 3667 . . . . . . . 8 (𝑦 ∈ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} ↔ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))
120116, 119orbi12i 914 . . . . . . 7 ((𝑦 ∈ {𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∨ 𝑦 ∈ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ↔ (∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∨ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))))
121112, 120bitri 275 . . . . . 6 (𝑦 ∈ ({𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ↔ (∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∨ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))))
122111, 121anbi12i 628 . . . . 5 ((𝑥 ∈ ({𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ { ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵) = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) ∧ 𝑦 ∈ ({𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) ↔ ((∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∨ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) ∧ (∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∨ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))))
123 anddi 1010 . . . . 5 (((∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∨ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) ∧ (∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∨ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))) ↔ (((∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∨ (∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))) ∨ ((∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∨ (∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))))))
124122, 123bitri 275 . . . 4 ((𝑥 ∈ ({𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ { ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵) = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) ∧ 𝑦 ∈ ({𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) ↔ (((∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∨ (∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))) ∨ ((∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∨ (∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))))))
12529adantr 482 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
12637adantr 482 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → 𝐴 No )
12734adantr 482 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → 𝐵 No )
128 simprll 778 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → 𝑝 ∈ ( L ‘𝐴))
129 simprlr 779 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → 𝑞 ∈ ( L ‘𝐵))
130 simprrl 780 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → 𝑡 ∈ ( L ‘𝐴))
131 simprrr 781 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → 𝑢 ∈ ( R ‘𝐵))
132125, 126, 127, 128, 129, 130, 131mulsproplem5 27556 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))
133 breq2 5151 . . . . . . . . . . . 12 (𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → ((((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s 𝑦 ↔ (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))))
134132, 133syl5ibrcom 246 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → (𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s 𝑦))
135134anassrs 469 . . . . . . . . . 10 (((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → (𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s 𝑦))
136135rexlimdvva 3212 . . . . . . . . 9 ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s 𝑦))
137 breq1 5150 . . . . . . . . . 10 (𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) → (𝑥 <s 𝑦 ↔ (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s 𝑦))
138137imbi2d 341 . . . . . . . . 9 (𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) → ((∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → 𝑥 <s 𝑦) ↔ (∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s 𝑦)))
139136, 138syl5ibrcom 246 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) → (∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → 𝑥 <s 𝑦)))
140139rexlimdvva 3212 . . . . . . 7 (𝜑 → (∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) → (∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → 𝑥 <s 𝑦)))
141140impd 412 . . . . . 6 (𝜑 → ((∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) → 𝑥 <s 𝑦))
14229adantr 482 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
14337adantr 482 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → 𝐴 No )
14434adantr 482 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → 𝐵 No )
145 simprll 778 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → 𝑝 ∈ ( L ‘𝐴))
146 simprlr 779 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → 𝑞 ∈ ( L ‘𝐵))
147 simprrl 780 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → 𝑣 ∈ ( R ‘𝐴))
148 simprrr 781 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → 𝑤 ∈ ( L ‘𝐵))
149142, 143, 144, 145, 146, 147, 148mulsproplem6 27557 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))
150 breq2 5151 . . . . . . . . . . . 12 (𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → ((((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s 𝑦 ↔ (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))))
151149, 150syl5ibrcom 246 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → (𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s 𝑦))
152151anassrs 469 . . . . . . . . . 10 (((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → (𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s 𝑦))
153152rexlimdvva 3212 . . . . . . . . 9 ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s 𝑦))
154137imbi2d 341 . . . . . . . . 9 (𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) → ((∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → 𝑥 <s 𝑦) ↔ (∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s 𝑦)))
155153, 154syl5ibrcom 246 . . . . . . . 8 ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) → (∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → 𝑥 <s 𝑦)))
156155rexlimdvva 3212 . . . . . . 7 (𝜑 → (∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) → (∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → 𝑥 <s 𝑦)))
157156impd 412 . . . . . 6 (𝜑 → ((∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) → 𝑥 <s 𝑦))
158141, 157jaod 858 . . . . 5 (𝜑 → (((∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∨ (∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))) → 𝑥 <s 𝑦))
15929adantr 482 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
16037adantr 482 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → 𝐴 No )
16134adantr 482 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → 𝐵 No )
162 simprll 778 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → 𝑟 ∈ ( R ‘𝐴))
163 simprlr 779 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → 𝑠 ∈ ( R ‘𝐵))
164 simprrl 780 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → 𝑡 ∈ ( L ‘𝐴))
165 simprrr 781 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → 𝑢 ∈ ( R ‘𝐵))
166159, 160, 161, 162, 163, 164, 165mulsproplem7 27558 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))
167 breq2 5151 . . . . . . . . . . . 12 (𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → ((((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s 𝑦 ↔ (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))))
168166, 167syl5ibrcom 246 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → (𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s 𝑦))
169168anassrs 469 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → (𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s 𝑦))
170169rexlimdvva 3212 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → (∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s 𝑦))
171 breq1 5150 . . . . . . . . . 10 (𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) → (𝑥 <s 𝑦 ↔ (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s 𝑦))
172171imbi2d 341 . . . . . . . . 9 (𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) → ((∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → 𝑥 <s 𝑦) ↔ (∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s 𝑦)))
173170, 172syl5ibrcom 246 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → (𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) → (∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → 𝑥 <s 𝑦)))
174173rexlimdvva 3212 . . . . . . 7 (𝜑 → (∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) → (∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → 𝑥 <s 𝑦)))
175174impd 412 . . . . . 6 (𝜑 → ((∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) → 𝑥 <s 𝑦))
17629adantr 482 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
17737adantr 482 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → 𝐴 No )
17834adantr 482 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → 𝐵 No )
179 simprll 778 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → 𝑟 ∈ ( R ‘𝐴))
180 simprlr 779 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → 𝑠 ∈ ( R ‘𝐵))
181 simprrl 780 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → 𝑣 ∈ ( R ‘𝐴))
182 simprrr 781 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → 𝑤 ∈ ( L ‘𝐵))
183176, 177, 178, 179, 180, 181, 182mulsproplem8 27559 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))
184 breq2 5151 . . . . . . . . . . . 12 (𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → ((((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s 𝑦 ↔ (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))))
185183, 184syl5ibrcom 246 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → (𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s 𝑦))
186185anassrs 469 . . . . . . . . . 10 (((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → (𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s 𝑦))
187186rexlimdvva 3212 . . . . . . . . 9 ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → (∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s 𝑦))
188171imbi2d 341 . . . . . . . . 9 (𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) → ((∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → 𝑥 <s 𝑦) ↔ (∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s 𝑦)))
189187, 188syl5ibrcom 246 . . . . . . . 8 ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → (𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) → (∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → 𝑥 <s 𝑦)))
190189rexlimdvva 3212 . . . . . . 7 (𝜑 → (∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) → (∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → 𝑥 <s 𝑦)))
191190impd 412 . . . . . 6 (𝜑 → ((∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) → 𝑥 <s 𝑦))
192175, 191jaod 858 . . . . 5 (𝜑 → (((∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∨ (∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))) → 𝑥 <s 𝑦))
193158, 192jaod 858 . . . 4 (𝜑 → ((((∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∨ (∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))) ∨ ((∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∨ (∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))))) → 𝑥 <s 𝑦))
194124, 193biimtrid 241 . . 3 (𝜑 → ((𝑥 ∈ ({𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ { ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵) = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) ∧ 𝑦 ∈ ({𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) → 𝑥 <s 𝑦))
1951943impib 1117 . 2 ((𝜑𝑥 ∈ ({𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ { ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵) = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) ∧ 𝑦 ∈ ({𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) → 𝑥 <s 𝑦)
19616, 28, 68, 101, 195ssltd 27273 1 (𝜑 → ({𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ { ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵) = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s ({𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wo 846   = wceq 1542  wcel 2107  {cab 2710  wral 3062  wrex 3071  Vcvv 3475  cun 3945   class class class wbr 5147  ran crn 5676  cfv 6540  (class class class)co 7404  cmpo 7406   +no cnadd 8660   No csur 27123   <s cslt 27124   bday cbday 27125   <<s csslt 27262   O cold 27318   L cleft 27320   R cright 27321   +s cadds 27423   -s csubs 27475   ·s cmuls 27542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-ot 4636  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-1o 8461  df-2o 8462  df-nadd 8661  df-no 27126  df-slt 27127  df-bday 27128  df-sle 27228  df-sslt 27263  df-scut 27265  df-0s 27305  df-made 27322  df-old 27323  df-left 27325  df-right 27326  df-norec 27402  df-norec2 27413  df-adds 27424  df-negs 27476  df-subs 27477
This theorem is referenced by:  mulsproplem10  27561
  Copyright terms: Public domain W3C validator