| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2736 | . . . . . 6
⊢ (𝑝 ∈ ( L ‘𝐴), 𝑞 ∈ ( L ‘𝐵) ↦ (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) = (𝑝 ∈ ( L ‘𝐴), 𝑞 ∈ ( L ‘𝐵) ↦ (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) | 
| 2 | 1 | rnmpo 7567 | . . . . 5
⊢ ran
(𝑝 ∈ ( L ‘𝐴), 𝑞 ∈ ( L ‘𝐵) ↦ (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) = {𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} | 
| 3 |  | fvex 6918 | . . . . . . 7
⊢ ( L
‘𝐴) ∈
V | 
| 4 |  | fvex 6918 | . . . . . . 7
⊢ ( L
‘𝐵) ∈
V | 
| 5 | 3, 4 | mpoex 8105 | . . . . . 6
⊢ (𝑝 ∈ ( L ‘𝐴), 𝑞 ∈ ( L ‘𝐵) ↦ (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) ∈ V | 
| 6 | 5 | rnex 7933 | . . . . 5
⊢ ran
(𝑝 ∈ ( L ‘𝐴), 𝑞 ∈ ( L ‘𝐵) ↦ (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) ∈ V | 
| 7 | 2, 6 | eqeltrri 2837 | . . . 4
⊢ {𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∈ V | 
| 8 |  | eqid 2736 | . . . . . 6
⊢ (𝑟 ∈ ( R ‘𝐴), 𝑠 ∈ ( R ‘𝐵) ↦ (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) = (𝑟 ∈ ( R ‘𝐴), 𝑠 ∈ ( R ‘𝐵) ↦ (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) | 
| 9 | 8 | rnmpo 7567 | . . . . 5
⊢ ran
(𝑟 ∈ ( R ‘𝐴), 𝑠 ∈ ( R ‘𝐵) ↦ (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) = {ℎ ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)ℎ = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} | 
| 10 |  | fvex 6918 | . . . . . . 7
⊢ ( R
‘𝐴) ∈
V | 
| 11 |  | fvex 6918 | . . . . . . 7
⊢ ( R
‘𝐵) ∈
V | 
| 12 | 10, 11 | mpoex 8105 | . . . . . 6
⊢ (𝑟 ∈ ( R ‘𝐴), 𝑠 ∈ ( R ‘𝐵) ↦ (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) ∈ V | 
| 13 | 12 | rnex 7933 | . . . . 5
⊢ ran
(𝑟 ∈ ( R ‘𝐴), 𝑠 ∈ ( R ‘𝐵) ↦ (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) ∈ V | 
| 14 | 9, 13 | eqeltrri 2837 | . . . 4
⊢ {ℎ ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)ℎ = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} ∈ V | 
| 15 | 7, 14 | unex 7765 | . . 3
⊢ ({𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {ℎ ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)ℎ = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) ∈ V | 
| 16 | 15 | a1i 11 | . 2
⊢ (𝜑 → ({𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {ℎ ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)ℎ = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) ∈ V) | 
| 17 |  | eqid 2736 | . . . . . 6
⊢ (𝑡 ∈ ( L ‘𝐴), 𝑢 ∈ ( R ‘𝐵) ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) = (𝑡 ∈ ( L ‘𝐴), 𝑢 ∈ ( R ‘𝐵) ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) | 
| 18 | 17 | rnmpo 7567 | . . . . 5
⊢ ran
(𝑡 ∈ ( L ‘𝐴), 𝑢 ∈ ( R ‘𝐵) ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) = {𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} | 
| 19 | 3, 11 | mpoex 8105 | . . . . . 6
⊢ (𝑡 ∈ ( L ‘𝐴), 𝑢 ∈ ( R ‘𝐵) ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∈ V | 
| 20 | 19 | rnex 7933 | . . . . 5
⊢ ran
(𝑡 ∈ ( L ‘𝐴), 𝑢 ∈ ( R ‘𝐵) ↦ (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∈ V | 
| 21 | 18, 20 | eqeltrri 2837 | . . . 4
⊢ {𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∈ V | 
| 22 |  | eqid 2736 | . . . . . 6
⊢ (𝑣 ∈ ( R ‘𝐴), 𝑤 ∈ ( L ‘𝐵) ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) = (𝑣 ∈ ( R ‘𝐴), 𝑤 ∈ ( L ‘𝐵) ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) | 
| 23 | 22 | rnmpo 7567 | . . . . 5
⊢ ran
(𝑣 ∈ ( R ‘𝐴), 𝑤 ∈ ( L ‘𝐵) ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) = {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} | 
| 24 | 10, 4 | mpoex 8105 | . . . . . 6
⊢ (𝑣 ∈ ( R ‘𝐴), 𝑤 ∈ ( L ‘𝐵) ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) ∈ V | 
| 25 | 24 | rnex 7933 | . . . . 5
⊢ ran
(𝑣 ∈ ( R ‘𝐴), 𝑤 ∈ ( L ‘𝐵) ↦ (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) ∈ V | 
| 26 | 23, 25 | eqeltrri 2837 | . . . 4
⊢ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} ∈ V | 
| 27 | 21, 26 | unex 7765 | . . 3
⊢ ({𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ∈ V | 
| 28 | 27 | a1i 11 | . 2
⊢ (𝜑 → ({𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ∈ V) | 
| 29 |  | mulsproplem.1 | . . . . . . . . . 10
⊢ (𝜑 → ∀𝑎 ∈  No 
∀𝑏 ∈  No  ∀𝑐 ∈  No 
∀𝑑 ∈  No  ∀𝑒 ∈  No 
∀𝑓 ∈  No  (((( bday ‘𝑎) +no (
bday ‘𝑏))
∪ (((( bday ‘𝑐) +no ( bday
‘𝑒)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑓))) ∪
((( bday ‘𝑐) +no ( bday
‘𝑓)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑒))))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸))))) →
((𝑎 ·s
𝑏) ∈  No  ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) | 
| 30 | 29 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → ∀𝑎 ∈  No 
∀𝑏 ∈  No  ∀𝑐 ∈  No 
∀𝑑 ∈  No  ∀𝑒 ∈  No 
∀𝑓 ∈  No  (((( bday ‘𝑎) +no (
bday ‘𝑏))
∪ (((( bday ‘𝑐) +no ( bday
‘𝑒)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑓))) ∪
((( bday ‘𝑐) +no ( bday
‘𝑓)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑒))))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸))))) →
((𝑎 ·s
𝑏) ∈  No  ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) | 
| 31 |  | leftssold 27918 | . . . . . . . . . 10
⊢ ( L
‘𝐴) ⊆ ( O
‘( bday ‘𝐴)) | 
| 32 |  | simprl 770 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → 𝑝 ∈ ( L ‘𝐴)) | 
| 33 | 31, 32 | sselid 3980 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → 𝑝 ∈ ( O ‘(
bday ‘𝐴))) | 
| 34 |  | mulsproplem9.2 | . . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈  No
) | 
| 35 | 34 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → 𝐵 ∈  No
) | 
| 36 | 30, 33, 35 | mulsproplem2 28144 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (𝑝 ·s 𝐵) ∈  No
) | 
| 37 |  | mulsproplem9.1 | . . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈  No
) | 
| 38 | 37 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → 𝐴 ∈  No
) | 
| 39 |  | leftssold 27918 | . . . . . . . . . 10
⊢ ( L
‘𝐵) ⊆ ( O
‘( bday ‘𝐵)) | 
| 40 |  | simprr 772 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → 𝑞 ∈ ( L ‘𝐵)) | 
| 41 | 39, 40 | sselid 3980 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → 𝑞 ∈ ( O ‘(
bday ‘𝐵))) | 
| 42 | 30, 38, 41 | mulsproplem3 28145 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (𝐴 ·s 𝑞) ∈  No
) | 
| 43 | 36, 42 | addscld 28014 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → ((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) ∈  No
) | 
| 44 | 30, 33, 41 | mulsproplem4 28146 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (𝑝 ·s 𝑞) ∈  No
) | 
| 45 | 43, 44 | subscld 28094 | . . . . . 6
⊢ ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∈  No
) | 
| 46 |  | eleq1 2828 | . . . . . 6
⊢ (𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) → (𝑔 ∈  No 
↔ (((𝑝
·s 𝐵)
+s (𝐴
·s 𝑞))
-s (𝑝
·s 𝑞))
∈  No )) | 
| 47 | 45, 46 | syl5ibrcom 247 | . . . . 5
⊢ ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) → 𝑔 ∈  No
)) | 
| 48 | 47 | rexlimdvva 3212 | . . . 4
⊢ (𝜑 → (∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) → 𝑔 ∈  No
)) | 
| 49 | 48 | abssdv 4067 | . . 3
⊢ (𝜑 → {𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ⊆  No
) | 
| 50 | 29 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → ∀𝑎 ∈  No 
∀𝑏 ∈  No  ∀𝑐 ∈  No 
∀𝑑 ∈  No  ∀𝑒 ∈  No 
∀𝑓 ∈  No  (((( bday ‘𝑎) +no (
bday ‘𝑏))
∪ (((( bday ‘𝑐) +no ( bday
‘𝑒)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑓))) ∪
((( bday ‘𝑐) +no ( bday
‘𝑓)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑒))))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸))))) →
((𝑎 ·s
𝑏) ∈  No  ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) | 
| 51 |  | rightssold 27919 | . . . . . . . . . 10
⊢ ( R
‘𝐴) ⊆ ( O
‘( bday ‘𝐴)) | 
| 52 |  | simprl 770 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → 𝑟 ∈ ( R ‘𝐴)) | 
| 53 | 51, 52 | sselid 3980 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → 𝑟 ∈ ( O ‘(
bday ‘𝐴))) | 
| 54 | 34 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → 𝐵 ∈  No
) | 
| 55 | 50, 53, 54 | mulsproplem2 28144 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → (𝑟 ·s 𝐵) ∈  No
) | 
| 56 | 37 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → 𝐴 ∈  No
) | 
| 57 |  | rightssold 27919 | . . . . . . . . . 10
⊢ ( R
‘𝐵) ⊆ ( O
‘( bday ‘𝐵)) | 
| 58 |  | simprr 772 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → 𝑠 ∈ ( R ‘𝐵)) | 
| 59 | 57, 58 | sselid 3980 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → 𝑠 ∈ ( O ‘(
bday ‘𝐵))) | 
| 60 | 50, 56, 59 | mulsproplem3 28145 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → (𝐴 ·s 𝑠) ∈  No
) | 
| 61 | 55, 60 | addscld 28014 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → ((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) ∈  No
) | 
| 62 | 50, 53, 59 | mulsproplem4 28146 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → (𝑟 ·s 𝑠) ∈  No
) | 
| 63 | 61, 62 | subscld 28094 | . . . . . 6
⊢ ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∈  No
) | 
| 64 |  | eleq1 2828 | . . . . . 6
⊢ (ℎ = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) → (ℎ ∈  No 
↔ (((𝑟
·s 𝐵)
+s (𝐴
·s 𝑠))
-s (𝑟
·s 𝑠))
∈  No )) | 
| 65 | 63, 64 | syl5ibrcom 247 | . . . . 5
⊢ ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → (ℎ = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) → ℎ ∈  No
)) | 
| 66 | 65 | rexlimdvva 3212 | . . . 4
⊢ (𝜑 → (∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)ℎ = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) → ℎ ∈  No
)) | 
| 67 | 66 | abssdv 4067 | . . 3
⊢ (𝜑 → {ℎ ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)ℎ = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} ⊆  No
) | 
| 68 | 49, 67 | unssd 4191 | . 2
⊢ (𝜑 → ({𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {ℎ ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)ℎ = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) ⊆  No
) | 
| 69 | 29 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → ∀𝑎 ∈  No 
∀𝑏 ∈  No  ∀𝑐 ∈  No 
∀𝑑 ∈  No  ∀𝑒 ∈  No 
∀𝑓 ∈  No  (((( bday ‘𝑎) +no (
bday ‘𝑏))
∪ (((( bday ‘𝑐) +no ( bday
‘𝑒)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑓))) ∪
((( bday ‘𝑐) +no ( bday
‘𝑓)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑒))))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸))))) →
((𝑎 ·s
𝑏) ∈  No  ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) | 
| 70 |  | simprl 770 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → 𝑡 ∈ ( L ‘𝐴)) | 
| 71 | 31, 70 | sselid 3980 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → 𝑡 ∈ ( O ‘(
bday ‘𝐴))) | 
| 72 | 34 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → 𝐵 ∈  No
) | 
| 73 | 69, 71, 72 | mulsproplem2 28144 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → (𝑡 ·s 𝐵) ∈  No
) | 
| 74 | 37 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → 𝐴 ∈  No
) | 
| 75 |  | simprr 772 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → 𝑢 ∈ ( R ‘𝐵)) | 
| 76 | 57, 75 | sselid 3980 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → 𝑢 ∈ ( O ‘(
bday ‘𝐵))) | 
| 77 | 69, 74, 76 | mulsproplem3 28145 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → (𝐴 ·s 𝑢) ∈  No
) | 
| 78 | 73, 77 | addscld 28014 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → ((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) ∈  No
) | 
| 79 | 69, 71, 76 | mulsproplem4 28146 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → (𝑡 ·s 𝑢) ∈  No
) | 
| 80 | 78, 79 | subscld 28094 | . . . . . 6
⊢ ((𝜑 ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∈  No
) | 
| 81 |  | eleq1 2828 | . . . . . 6
⊢ (𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (𝑖 ∈  No 
↔ (((𝑡
·s 𝐵)
+s (𝐴
·s 𝑢))
-s (𝑡
·s 𝑢))
∈  No )) | 
| 82 | 80, 81 | syl5ibrcom 247 | . . . . 5
⊢ ((𝜑 ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → (𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → 𝑖 ∈  No
)) | 
| 83 | 82 | rexlimdvva 3212 | . . . 4
⊢ (𝜑 → (∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → 𝑖 ∈  No
)) | 
| 84 | 83 | abssdv 4067 | . . 3
⊢ (𝜑 → {𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ⊆  No
) | 
| 85 | 29 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → ∀𝑎 ∈  No 
∀𝑏 ∈  No  ∀𝑐 ∈  No 
∀𝑑 ∈  No  ∀𝑒 ∈  No 
∀𝑓 ∈  No  (((( bday ‘𝑎) +no (
bday ‘𝑏))
∪ (((( bday ‘𝑐) +no ( bday
‘𝑒)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑓))) ∪
((( bday ‘𝑐) +no ( bday
‘𝑓)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑒))))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸))))) →
((𝑎 ·s
𝑏) ∈  No  ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) | 
| 86 |  | simprl 770 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → 𝑣 ∈ ( R ‘𝐴)) | 
| 87 | 51, 86 | sselid 3980 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → 𝑣 ∈ ( O ‘(
bday ‘𝐴))) | 
| 88 | 34 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → 𝐵 ∈  No
) | 
| 89 | 85, 87, 88 | mulsproplem2 28144 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → (𝑣 ·s 𝐵) ∈  No
) | 
| 90 | 37 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → 𝐴 ∈  No
) | 
| 91 |  | simprr 772 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → 𝑤 ∈ ( L ‘𝐵)) | 
| 92 | 39, 91 | sselid 3980 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → 𝑤 ∈ ( O ‘(
bday ‘𝐵))) | 
| 93 | 85, 90, 92 | mulsproplem3 28145 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → (𝐴 ·s 𝑤) ∈  No
) | 
| 94 | 89, 93 | addscld 28014 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → ((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) ∈  No
) | 
| 95 | 85, 87, 92 | mulsproplem4 28146 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → (𝑣 ·s 𝑤) ∈  No
) | 
| 96 | 94, 95 | subscld 28094 | . . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ∈  No
) | 
| 97 |  | eleq1 2828 | . . . . . 6
⊢ (𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (𝑗 ∈  No 
↔ (((𝑣
·s 𝐵)
+s (𝐴
·s 𝑤))
-s (𝑣
·s 𝑤))
∈  No )) | 
| 98 | 96, 97 | syl5ibrcom 247 | . . . . 5
⊢ ((𝜑 ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → (𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → 𝑗 ∈  No
)) | 
| 99 | 98 | rexlimdvva 3212 | . . . 4
⊢ (𝜑 → (∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → 𝑗 ∈  No
)) | 
| 100 | 99 | abssdv 4067 | . . 3
⊢ (𝜑 → {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} ⊆  No
) | 
| 101 | 84, 100 | unssd 4191 | . 2
⊢ (𝜑 → ({𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ⊆  No
) | 
| 102 |  | elun 4152 | . . . . . . 7
⊢ (𝑥 ∈ ({𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {ℎ ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)ℎ = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) ↔ (𝑥 ∈ {𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∨ 𝑥 ∈ {ℎ ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)ℎ = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))})) | 
| 103 |  | vex 3483 | . . . . . . . . 9
⊢ 𝑥 ∈ V | 
| 104 |  | eqeq1 2740 | . . . . . . . . . 10
⊢ (𝑔 = 𝑥 → (𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ↔ 𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)))) | 
| 105 | 104 | 2rexbidv 3221 | . . . . . . . . 9
⊢ (𝑔 = 𝑥 → (∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ↔ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)))) | 
| 106 | 103, 105 | elab 3678 | . . . . . . . 8
⊢ (𝑥 ∈ {𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ↔ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))) | 
| 107 |  | eqeq1 2740 | . . . . . . . . . 10
⊢ (ℎ = 𝑥 → (ℎ = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ↔ 𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))) | 
| 108 | 107 | 2rexbidv 3221 | . . . . . . . . 9
⊢ (ℎ = 𝑥 → (∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)ℎ = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ↔ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))) | 
| 109 | 103, 108 | elab 3678 | . . . . . . . 8
⊢ (𝑥 ∈ {ℎ ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)ℎ = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} ↔ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) | 
| 110 | 106, 109 | orbi12i 914 | . . . . . . 7
⊢ ((𝑥 ∈ {𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∨ 𝑥 ∈ {ℎ ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)ℎ = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) ↔ (∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∨ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))) | 
| 111 | 102, 110 | bitri 275 | . . . . . 6
⊢ (𝑥 ∈ ({𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {ℎ ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)ℎ = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) ↔ (∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∨ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))) | 
| 112 |  | elun 4152 | . . . . . . 7
⊢ (𝑦 ∈ ({𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ↔ (𝑦 ∈ {𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∨ 𝑦 ∈ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) | 
| 113 |  | vex 3483 | . . . . . . . . 9
⊢ 𝑦 ∈ V | 
| 114 |  | eqeq1 2740 | . . . . . . . . . 10
⊢ (𝑖 = 𝑦 → (𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ↔ 𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))) | 
| 115 | 114 | 2rexbidv 3221 | . . . . . . . . 9
⊢ (𝑖 = 𝑦 → (∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ↔ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))) | 
| 116 | 113, 115 | elab 3678 | . . . . . . . 8
⊢ (𝑦 ∈ {𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ↔ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) | 
| 117 |  | eqeq1 2740 | . . . . . . . . . 10
⊢ (𝑗 = 𝑦 → (𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ↔ 𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))) | 
| 118 | 117 | 2rexbidv 3221 | . . . . . . . . 9
⊢ (𝑗 = 𝑦 → (∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) ↔ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))) | 
| 119 | 113, 118 | elab 3678 | . . . . . . . 8
⊢ (𝑦 ∈ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} ↔ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) | 
| 120 | 116, 119 | orbi12i 914 | . . . . . . 7
⊢ ((𝑦 ∈ {𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∨ 𝑦 ∈ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ↔ (∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∨ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))) | 
| 121 | 112, 120 | bitri 275 | . . . . . 6
⊢ (𝑦 ∈ ({𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ↔ (∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∨ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))) | 
| 122 | 111, 121 | anbi12i 628 | . . . . 5
⊢ ((𝑥 ∈ ({𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {ℎ ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)ℎ = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) ∧ 𝑦 ∈ ({𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) ↔ ((∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∨ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) ∧ (∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∨ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))))) | 
| 123 |  | anddi 1012 | . . . . 5
⊢
(((∃𝑝 ∈ (
L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∨ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))) ∧ (∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) ∨ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))) ↔ (((∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∨ (∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))) ∨ ((∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∨ (∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))))) | 
| 124 | 122, 123 | bitri 275 | . . . 4
⊢ ((𝑥 ∈ ({𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {ℎ ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)ℎ = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) ∧ 𝑦 ∈ ({𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) ↔ (((∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∨ (∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))) ∨ ((∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∨ (∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))))) | 
| 125 | 29 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → ∀𝑎 ∈  No 
∀𝑏 ∈  No  ∀𝑐 ∈  No 
∀𝑑 ∈  No  ∀𝑒 ∈  No 
∀𝑓 ∈  No  (((( bday ‘𝑎) +no (
bday ‘𝑏))
∪ (((( bday ‘𝑐) +no ( bday
‘𝑒)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑓))) ∪
((( bday ‘𝑐) +no ( bday
‘𝑓)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑒))))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸))))) →
((𝑎 ·s
𝑏) ∈  No  ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) | 
| 126 | 37 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → 𝐴 ∈  No
) | 
| 127 | 34 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → 𝐵 ∈  No
) | 
| 128 |  | simprll 778 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → 𝑝 ∈ ( L ‘𝐴)) | 
| 129 |  | simprlr 779 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → 𝑞 ∈ ( L ‘𝐵)) | 
| 130 |  | simprrl 780 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → 𝑡 ∈ ( L ‘𝐴)) | 
| 131 |  | simprrr 781 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → 𝑢 ∈ ( R ‘𝐵)) | 
| 132 | 125, 126,
127, 128, 129, 130, 131 | mulsproplem5 28147 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) | 
| 133 |  | breq2 5146 | . . . . . . . . . . . 12
⊢ (𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → ((((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s 𝑦 ↔ (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))) | 
| 134 | 132, 133 | syl5ibrcom 247 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → (𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s 𝑦)) | 
| 135 | 134 | anassrs 467 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → (𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s 𝑦)) | 
| 136 | 135 | rexlimdvva 3212 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s 𝑦)) | 
| 137 |  | breq1 5145 | . . . . . . . . . 10
⊢ (𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) → (𝑥 <s 𝑦 ↔ (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s 𝑦)) | 
| 138 | 137 | imbi2d 340 | . . . . . . . . 9
⊢ (𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) → ((∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → 𝑥 <s 𝑦) ↔ (∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s 𝑦))) | 
| 139 | 136, 138 | syl5ibrcom 247 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) → (∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → 𝑥 <s 𝑦))) | 
| 140 | 139 | rexlimdvva 3212 | . . . . . . 7
⊢ (𝜑 → (∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) → (∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → 𝑥 <s 𝑦))) | 
| 141 | 140 | impd 410 | . . . . . 6
⊢ (𝜑 → ((∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) → 𝑥 <s 𝑦)) | 
| 142 | 29 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → ∀𝑎 ∈  No 
∀𝑏 ∈  No  ∀𝑐 ∈  No 
∀𝑑 ∈  No  ∀𝑒 ∈  No 
∀𝑓 ∈  No  (((( bday ‘𝑎) +no (
bday ‘𝑏))
∪ (((( bday ‘𝑐) +no ( bday
‘𝑒)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑓))) ∪
((( bday ‘𝑐) +no ( bday
‘𝑓)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑒))))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸))))) →
((𝑎 ·s
𝑏) ∈  No  ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) | 
| 143 | 37 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → 𝐴 ∈  No
) | 
| 144 | 34 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → 𝐵 ∈  No
) | 
| 145 |  | simprll 778 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → 𝑝 ∈ ( L ‘𝐴)) | 
| 146 |  | simprlr 779 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → 𝑞 ∈ ( L ‘𝐵)) | 
| 147 |  | simprrl 780 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → 𝑣 ∈ ( R ‘𝐴)) | 
| 148 |  | simprrr 781 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → 𝑤 ∈ ( L ‘𝐵)) | 
| 149 | 142, 143,
144, 145, 146, 147, 148 | mulsproplem6 28148 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) | 
| 150 |  | breq2 5146 | . . . . . . . . . . . 12
⊢ (𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → ((((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s 𝑦 ↔ (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))) | 
| 151 | 149, 150 | syl5ibrcom 247 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → (𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s 𝑦)) | 
| 152 | 151 | anassrs 467 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → (𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s 𝑦)) | 
| 153 | 152 | rexlimdvva 3212 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s 𝑦)) | 
| 154 | 137 | imbi2d 340 | . . . . . . . . 9
⊢ (𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) → ((∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → 𝑥 <s 𝑦) ↔ (∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) <s 𝑦))) | 
| 155 | 153, 154 | syl5ibrcom 247 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑝 ∈ ( L ‘𝐴) ∧ 𝑞 ∈ ( L ‘𝐵))) → (𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) → (∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → 𝑥 <s 𝑦))) | 
| 156 | 155 | rexlimdvva 3212 | . . . . . . 7
⊢ (𝜑 → (∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) → (∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → 𝑥 <s 𝑦))) | 
| 157 | 156 | impd 410 | . . . . . 6
⊢ (𝜑 → ((∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) → 𝑥 <s 𝑦)) | 
| 158 | 141, 157 | jaod 859 | . . . . 5
⊢ (𝜑 → (((∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∨ (∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))) → 𝑥 <s 𝑦)) | 
| 159 | 29 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → ∀𝑎 ∈  No 
∀𝑏 ∈  No  ∀𝑐 ∈  No 
∀𝑑 ∈  No  ∀𝑒 ∈  No 
∀𝑓 ∈  No  (((( bday ‘𝑎) +no (
bday ‘𝑏))
∪ (((( bday ‘𝑐) +no ( bday
‘𝑒)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑓))) ∪
((( bday ‘𝑐) +no ( bday
‘𝑓)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑒))))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸))))) →
((𝑎 ·s
𝑏) ∈  No  ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) | 
| 160 | 37 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → 𝐴 ∈  No
) | 
| 161 | 34 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → 𝐵 ∈  No
) | 
| 162 |  | simprll 778 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → 𝑟 ∈ ( R ‘𝐴)) | 
| 163 |  | simprlr 779 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → 𝑠 ∈ ( R ‘𝐵)) | 
| 164 |  | simprrl 780 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → 𝑡 ∈ ( L ‘𝐴)) | 
| 165 |  | simprrr 781 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → 𝑢 ∈ ( R ‘𝐵)) | 
| 166 | 159, 160,
161, 162, 163, 164, 165 | mulsproplem7 28149 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) | 
| 167 |  | breq2 5146 | . . . . . . . . . . . 12
⊢ (𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → ((((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s 𝑦 ↔ (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)))) | 
| 168 | 166, 167 | syl5ibrcom 247 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵)))) → (𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s 𝑦)) | 
| 169 | 168 | anassrs 467 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) ∧ (𝑡 ∈ ( L ‘𝐴) ∧ 𝑢 ∈ ( R ‘𝐵))) → (𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s 𝑦)) | 
| 170 | 169 | rexlimdvva 3212 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → (∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s 𝑦)) | 
| 171 |  | breq1 5145 | . . . . . . . . . 10
⊢ (𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) → (𝑥 <s 𝑦 ↔ (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s 𝑦)) | 
| 172 | 171 | imbi2d 340 | . . . . . . . . 9
⊢ (𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) → ((∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → 𝑥 <s 𝑦) ↔ (∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s 𝑦))) | 
| 173 | 170, 172 | syl5ibrcom 247 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → (𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) → (∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → 𝑥 <s 𝑦))) | 
| 174 | 173 | rexlimdvva 3212 | . . . . . . 7
⊢ (𝜑 → (∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) → (∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢)) → 𝑥 <s 𝑦))) | 
| 175 | 174 | impd 410 | . . . . . 6
⊢ (𝜑 → ((∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) → 𝑥 <s 𝑦)) | 
| 176 | 29 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → ∀𝑎 ∈  No 
∀𝑏 ∈  No  ∀𝑐 ∈  No 
∀𝑑 ∈  No  ∀𝑒 ∈  No 
∀𝑓 ∈  No  (((( bday ‘𝑎) +no (
bday ‘𝑏))
∪ (((( bday ‘𝑐) +no ( bday
‘𝑒)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑓))) ∪
((( bday ‘𝑐) +no ( bday
‘𝑓)) ∪
(( bday ‘𝑑) +no ( bday
‘𝑒))))) ∈
((( bday ‘𝐴) +no ( bday
‘𝐵)) ∪
(((( bday ‘𝐶) +no ( bday
‘𝐸)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐹))) ∪
((( bday ‘𝐶) +no ( bday
‘𝐹)) ∪
(( bday ‘𝐷) +no ( bday
‘𝐸))))) →
((𝑎 ·s
𝑏) ∈  No  ∧ ((𝑐 <s 𝑑 ∧ 𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒)))))) | 
| 177 | 37 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → 𝐴 ∈  No
) | 
| 178 | 34 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → 𝐵 ∈  No
) | 
| 179 |  | simprll 778 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → 𝑟 ∈ ( R ‘𝐴)) | 
| 180 |  | simprlr 779 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → 𝑠 ∈ ( R ‘𝐵)) | 
| 181 |  | simprrl 780 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → 𝑣 ∈ ( R ‘𝐴)) | 
| 182 |  | simprrr 781 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → 𝑤 ∈ ( L ‘𝐵)) | 
| 183 | 176, 177,
178, 179, 180, 181, 182 | mulsproplem8 28150 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) | 
| 184 |  | breq2 5146 | . . . . . . . . . . . 12
⊢ (𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → ((((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s 𝑦 ↔ (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))) | 
| 185 | 183, 184 | syl5ibrcom 247 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵)) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵)))) → (𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s 𝑦)) | 
| 186 | 185 | anassrs 467 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) ∧ (𝑣 ∈ ( R ‘𝐴) ∧ 𝑤 ∈ ( L ‘𝐵))) → (𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s 𝑦)) | 
| 187 | 186 | rexlimdvva 3212 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → (∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s 𝑦)) | 
| 188 | 171 | imbi2d 340 | . . . . . . . . 9
⊢ (𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) → ((∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → 𝑥 <s 𝑦) ↔ (∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) <s 𝑦))) | 
| 189 | 187, 188 | syl5ibrcom 247 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑟 ∈ ( R ‘𝐴) ∧ 𝑠 ∈ ( R ‘𝐵))) → (𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) → (∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → 𝑥 <s 𝑦))) | 
| 190 | 189 | rexlimdvva 3212 | . . . . . . 7
⊢ (𝜑 → (∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) → (∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)) → 𝑥 <s 𝑦))) | 
| 191 | 190 | impd 410 | . . . . . 6
⊢ (𝜑 → ((∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))) → 𝑥 <s 𝑦)) | 
| 192 | 175, 191 | jaod 859 | . . . . 5
⊢ (𝜑 → (((∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∨ (∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))) → 𝑥 <s 𝑦)) | 
| 193 | 158, 192 | jaod 859 | . . . 4
⊢ (𝜑 → ((((∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∨ (∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑥 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ∧ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤)))) ∨ ((∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑦 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))) ∨ (∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑥 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)) ∧ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑦 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))))) → 𝑥 <s 𝑦)) | 
| 194 | 124, 193 | biimtrid 242 | . . 3
⊢ (𝜑 → ((𝑥 ∈ ({𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {ℎ ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)ℎ = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) ∧ 𝑦 ∈ ({𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) → 𝑥 <s 𝑦)) | 
| 195 | 194 | 3impib 1116 | . 2
⊢ ((𝜑 ∧ 𝑥 ∈ ({𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {ℎ ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)ℎ = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) ∧ 𝑦 ∈ ({𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) → 𝑥 <s 𝑦) | 
| 196 | 16, 28, 68, 101, 195 | ssltd 27837 | 1
⊢ (𝜑 → ({𝑔 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑔 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {ℎ ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)ℎ = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s ({𝑖 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑖 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑗 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑗 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) |