![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relogbf | Structured version Visualization version GIF version |
Description: The general logarithm to a real base greater than 1 regarded as function restricted to the positive integers. Property in [Cohen4] p. 349. (Contributed by AV, 12-Jun-2020.) |
Ref | Expression |
---|---|
relogbf | ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → ((curry logb ‘𝐵) ↾ ℝ+):ℝ+⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpcndif0 12047 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ (ℂ ∖ {0})) | |
2 | 1 | adantl 467 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ (ℂ ∖ {0})) |
3 | rpcn 12037 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ) | |
4 | 3 | adantr 466 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → 𝐵 ∈ ℂ) |
5 | rpne0 12044 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ≠ 0) | |
6 | 5 | adantr 466 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → 𝐵 ≠ 0) |
7 | simpr 471 | . . . . . . . . . . . 12 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → 1 < 𝐵) | |
8 | 7 | olcd 863 | . . . . . . . . . . 11 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → (𝐵 < 1 ∨ 1 < 𝐵)) |
9 | rpre 12035 | . . . . . . . . . . . 12 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
10 | 1red 10255 | . . . . . . . . . . . 12 ⊢ (1 < 𝐵 → 1 ∈ ℝ) | |
11 | lttri2 10320 | . . . . . . . . . . . 12 ⊢ ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐵 ≠ 1 ↔ (𝐵 < 1 ∨ 1 < 𝐵))) | |
12 | 9, 10, 11 | syl2an 583 | . . . . . . . . . . 11 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → (𝐵 ≠ 1 ↔ (𝐵 < 1 ∨ 1 < 𝐵))) |
13 | 8, 12 | mpbird 247 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → 𝐵 ≠ 1) |
14 | 4, 6, 13 | 3jca 1122 | . . . . . . . . 9 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) |
15 | logbmpt 24740 | . . . . . . . . 9 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb ‘𝐵) = (𝑥 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑥) / (log‘𝐵)))) | |
16 | 14, 15 | syl 17 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → (curry logb ‘𝐵) = (𝑥 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑥) / (log‘𝐵)))) |
17 | 16 | dmeqd 5462 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → dom (curry logb ‘𝐵) = dom (𝑥 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑥) / (log‘𝐵)))) |
18 | ovexd 6823 | . . . . . . . . 9 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((log‘𝑥) / (log‘𝐵)) ∈ V) | |
19 | 18 | ralrimiva 3115 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → ∀𝑥 ∈ (ℂ ∖ {0})((log‘𝑥) / (log‘𝐵)) ∈ V) |
20 | dmmptg 5774 | . . . . . . . 8 ⊢ (∀𝑥 ∈ (ℂ ∖ {0})((log‘𝑥) / (log‘𝐵)) ∈ V → dom (𝑥 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑥) / (log‘𝐵))) = (ℂ ∖ {0})) | |
21 | 19, 20 | syl 17 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → dom (𝑥 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑥) / (log‘𝐵))) = (ℂ ∖ {0})) |
22 | 17, 21 | eqtrd 2805 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → dom (curry logb ‘𝐵) = (ℂ ∖ {0})) |
23 | 22 | adantr 466 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → dom (curry logb ‘𝐵) = (ℂ ∖ {0})) |
24 | 2, 23 | eleqtrrd 2853 | . . . 4 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ dom (curry logb ‘𝐵)) |
25 | logbfval 24742 | . . . . . 6 ⊢ (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((curry logb ‘𝐵)‘𝑥) = (𝐵 logb 𝑥)) | |
26 | 14, 1, 25 | syl2an 583 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → ((curry logb ‘𝐵)‘𝑥) = (𝐵 logb 𝑥)) |
27 | simpll 750 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ+) | |
28 | simpr 471 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+) | |
29 | 13 | adantr 466 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ≠ 1) |
30 | 27, 28, 29 | 3jca 1122 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → (𝐵 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ∧ 𝐵 ≠ 1)) |
31 | relogbcl 24725 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ∧ 𝐵 ≠ 1) → (𝐵 logb 𝑥) ∈ ℝ) | |
32 | 30, 31 | syl 17 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → (𝐵 logb 𝑥) ∈ ℝ) |
33 | 26, 32 | eqeltrd 2850 | . . . 4 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → ((curry logb ‘𝐵)‘𝑥) ∈ ℝ) |
34 | 24, 33 | jca 501 | . . 3 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ dom (curry logb ‘𝐵) ∧ ((curry logb ‘𝐵)‘𝑥) ∈ ℝ)) |
35 | 34 | ralrimiva 3115 | . 2 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → ∀𝑥 ∈ ℝ+ (𝑥 ∈ dom (curry logb ‘𝐵) ∧ ((curry logb ‘𝐵)‘𝑥) ∈ ℝ)) |
36 | logbf 24741 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb ‘𝐵):(ℂ ∖ {0})⟶ℂ) | |
37 | 14, 36 | syl 17 | . . 3 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → (curry logb ‘𝐵):(ℂ ∖ {0})⟶ℂ) |
38 | ffun 6186 | . . 3 ⊢ ((curry logb ‘𝐵):(ℂ ∖ {0})⟶ℂ → Fun (curry logb ‘𝐵)) | |
39 | ffvresb 6534 | . . 3 ⊢ (Fun (curry logb ‘𝐵) → (((curry logb ‘𝐵) ↾ ℝ+):ℝ+⟶ℝ ↔ ∀𝑥 ∈ ℝ+ (𝑥 ∈ dom (curry logb ‘𝐵) ∧ ((curry logb ‘𝐵)‘𝑥) ∈ ℝ))) | |
40 | 37, 38, 39 | 3syl 18 | . 2 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → (((curry logb ‘𝐵) ↾ ℝ+):ℝ+⟶ℝ ↔ ∀𝑥 ∈ ℝ+ (𝑥 ∈ dom (curry logb ‘𝐵) ∧ ((curry logb ‘𝐵)‘𝑥) ∈ ℝ))) |
41 | 35, 40 | mpbird 247 | 1 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → ((curry logb ‘𝐵) ↾ ℝ+):ℝ+⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∨ wo 836 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∀wral 3061 Vcvv 3351 ∖ cdif 3720 {csn 4316 class class class wbr 4786 ↦ cmpt 4863 dom cdm 5249 ↾ cres 5251 Fun wfun 6023 ⟶wf 6025 ‘cfv 6029 (class class class)co 6791 curry ccur 7541 ℂcc 10134 ℝcr 10135 0cc0 10136 1c1 10137 < clt 10274 / cdiv 10884 ℝ+crp 12028 logclog 24515 logb clogb 24716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7094 ax-inf2 8700 ax-cnex 10192 ax-resscn 10193 ax-1cn 10194 ax-icn 10195 ax-addcl 10196 ax-addrcl 10197 ax-mulcl 10198 ax-mulrcl 10199 ax-mulcom 10200 ax-addass 10201 ax-mulass 10202 ax-distr 10203 ax-i2m1 10204 ax-1ne0 10205 ax-1rid 10206 ax-rnegex 10207 ax-rrecex 10208 ax-cnre 10209 ax-pre-lttri 10210 ax-pre-lttrn 10211 ax-pre-ltadd 10212 ax-pre-mulgt0 10213 ax-pre-sup 10214 ax-addf 10215 ax-mulf 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5821 df-ord 5867 df-on 5868 df-lim 5869 df-suc 5870 df-iota 5992 df-fun 6031 df-fn 6032 df-f 6033 df-f1 6034 df-fo 6035 df-f1o 6036 df-fv 6037 df-isom 6038 df-riota 6752 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-of 7042 df-om 7211 df-1st 7313 df-2nd 7314 df-supp 7445 df-cur 7543 df-wrecs 7557 df-recs 7619 df-rdg 7657 df-1o 7711 df-2o 7712 df-oadd 7715 df-er 7894 df-map 8009 df-pm 8010 df-ixp 8061 df-en 8108 df-dom 8109 df-sdom 8110 df-fin 8111 df-fsupp 8430 df-fi 8471 df-sup 8502 df-inf 8503 df-oi 8569 df-card 8963 df-cda 9190 df-pnf 10276 df-mnf 10277 df-xr 10278 df-ltxr 10279 df-le 10280 df-sub 10468 df-neg 10469 df-div 10885 df-nn 11221 df-2 11279 df-3 11280 df-4 11281 df-5 11282 df-6 11283 df-7 11284 df-8 11285 df-9 11286 df-n0 11493 df-z 11578 df-dec 11694 df-uz 11887 df-q 11990 df-rp 12029 df-xneg 12144 df-xadd 12145 df-xmul 12146 df-ioo 12377 df-ioc 12378 df-ico 12379 df-icc 12380 df-fz 12527 df-fzo 12667 df-fl 12794 df-mod 12870 df-seq 13002 df-exp 13061 df-fac 13258 df-bc 13287 df-hash 13315 df-shft 14008 df-cj 14040 df-re 14041 df-im 14042 df-sqrt 14176 df-abs 14177 df-limsup 14403 df-clim 14420 df-rlim 14421 df-sum 14618 df-ef 14997 df-sin 14999 df-cos 15000 df-pi 15002 df-struct 16059 df-ndx 16060 df-slot 16061 df-base 16063 df-sets 16064 df-ress 16065 df-plusg 16155 df-mulr 16156 df-starv 16157 df-sca 16158 df-vsca 16159 df-ip 16160 df-tset 16161 df-ple 16162 df-ds 16165 df-unif 16166 df-hom 16167 df-cco 16168 df-rest 16284 df-topn 16285 df-0g 16303 df-gsum 16304 df-topgen 16305 df-pt 16306 df-prds 16309 df-xrs 16363 df-qtop 16368 df-imas 16369 df-xps 16371 df-mre 16447 df-mrc 16448 df-acs 16450 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-submnd 17537 df-mulg 17742 df-cntz 17950 df-cmn 18395 df-psmet 19946 df-xmet 19947 df-met 19948 df-bl 19949 df-mopn 19950 df-fbas 19951 df-fg 19952 df-cnfld 19955 df-top 20912 df-topon 20929 df-topsp 20951 df-bases 20964 df-cld 21037 df-ntr 21038 df-cls 21039 df-nei 21116 df-lp 21154 df-perf 21155 df-cn 21245 df-cnp 21246 df-haus 21333 df-tx 21579 df-hmeo 21772 df-fil 21863 df-fm 21955 df-flim 21956 df-flf 21957 df-xms 22338 df-ms 22339 df-tms 22340 df-cncf 22894 df-limc 23843 df-dv 23844 df-log 24517 df-logb 24717 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |