| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relogbf | Structured version Visualization version GIF version | ||
| Description: The general logarithm to a real base greater than 1 regarded as function restricted to the positive integers. Property in [Cohen4] p. 349. (Contributed by AV, 12-Jun-2020.) |
| Ref | Expression |
|---|---|
| relogbf | ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → ((curry logb ‘𝐵) ↾ ℝ+):ℝ+⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpcndif0 12906 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ (ℂ ∖ {0})) | |
| 2 | 1 | adantl 481 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ (ℂ ∖ {0})) |
| 3 | rpcn 12896 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ) | |
| 4 | 3 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → 𝐵 ∈ ℂ) |
| 5 | rpne0 12902 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ≠ 0) | |
| 6 | 5 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → 𝐵 ≠ 0) |
| 7 | animorr 980 | . . . . . . . . . . 11 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → (𝐵 < 1 ∨ 1 < 𝐵)) | |
| 8 | rpre 12894 | . . . . . . . . . . . 12 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
| 9 | 1red 11108 | . . . . . . . . . . . 12 ⊢ (1 < 𝐵 → 1 ∈ ℝ) | |
| 10 | lttri2 11190 | . . . . . . . . . . . 12 ⊢ ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐵 ≠ 1 ↔ (𝐵 < 1 ∨ 1 < 𝐵))) | |
| 11 | 8, 9, 10 | syl2an 596 | . . . . . . . . . . 11 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → (𝐵 ≠ 1 ↔ (𝐵 < 1 ∨ 1 < 𝐵))) |
| 12 | 7, 11 | mpbird 257 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → 𝐵 ≠ 1) |
| 13 | 4, 6, 12 | 3jca 1128 | . . . . . . . . 9 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) |
| 14 | logbmpt 26720 | . . . . . . . . 9 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb ‘𝐵) = (𝑥 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑥) / (log‘𝐵)))) | |
| 15 | 13, 14 | syl 17 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → (curry logb ‘𝐵) = (𝑥 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑥) / (log‘𝐵)))) |
| 16 | 15 | dmeqd 5840 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → dom (curry logb ‘𝐵) = dom (𝑥 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑥) / (log‘𝐵)))) |
| 17 | ovexd 7376 | . . . . . . . . 9 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((log‘𝑥) / (log‘𝐵)) ∈ V) | |
| 18 | 17 | ralrimiva 3124 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → ∀𝑥 ∈ (ℂ ∖ {0})((log‘𝑥) / (log‘𝐵)) ∈ V) |
| 19 | dmmptg 6184 | . . . . . . . 8 ⊢ (∀𝑥 ∈ (ℂ ∖ {0})((log‘𝑥) / (log‘𝐵)) ∈ V → dom (𝑥 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑥) / (log‘𝐵))) = (ℂ ∖ {0})) | |
| 20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → dom (𝑥 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑥) / (log‘𝐵))) = (ℂ ∖ {0})) |
| 21 | 16, 20 | eqtrd 2766 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → dom (curry logb ‘𝐵) = (ℂ ∖ {0})) |
| 22 | 21 | adantr 480 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → dom (curry logb ‘𝐵) = (ℂ ∖ {0})) |
| 23 | 2, 22 | eleqtrrd 2834 | . . . 4 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ dom (curry logb ‘𝐵)) |
| 24 | logbfval 26722 | . . . . . 6 ⊢ (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((curry logb ‘𝐵)‘𝑥) = (𝐵 logb 𝑥)) | |
| 25 | 13, 1, 24 | syl2an 596 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → ((curry logb ‘𝐵)‘𝑥) = (𝐵 logb 𝑥)) |
| 26 | simpll 766 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ+) | |
| 27 | simpr 484 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+) | |
| 28 | 12 | adantr 480 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ≠ 1) |
| 29 | 26, 27, 28 | 3jca 1128 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → (𝐵 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ∧ 𝐵 ≠ 1)) |
| 30 | relogbcl 26705 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ∧ 𝐵 ≠ 1) → (𝐵 logb 𝑥) ∈ ℝ) | |
| 31 | 29, 30 | syl 17 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → (𝐵 logb 𝑥) ∈ ℝ) |
| 32 | 25, 31 | eqeltrd 2831 | . . . 4 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → ((curry logb ‘𝐵)‘𝑥) ∈ ℝ) |
| 33 | 23, 32 | jca 511 | . . 3 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ dom (curry logb ‘𝐵) ∧ ((curry logb ‘𝐵)‘𝑥) ∈ ℝ)) |
| 34 | 33 | ralrimiva 3124 | . 2 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → ∀𝑥 ∈ ℝ+ (𝑥 ∈ dom (curry logb ‘𝐵) ∧ ((curry logb ‘𝐵)‘𝑥) ∈ ℝ)) |
| 35 | logbf 26721 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb ‘𝐵):(ℂ ∖ {0})⟶ℂ) | |
| 36 | ffun 6649 | . . 3 ⊢ ((curry logb ‘𝐵):(ℂ ∖ {0})⟶ℂ → Fun (curry logb ‘𝐵)) | |
| 37 | ffvresb 7053 | . . 3 ⊢ (Fun (curry logb ‘𝐵) → (((curry logb ‘𝐵) ↾ ℝ+):ℝ+⟶ℝ ↔ ∀𝑥 ∈ ℝ+ (𝑥 ∈ dom (curry logb ‘𝐵) ∧ ((curry logb ‘𝐵)‘𝑥) ∈ ℝ))) | |
| 38 | 13, 35, 36, 37 | 4syl 19 | . 2 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → (((curry logb ‘𝐵) ↾ ℝ+):ℝ+⟶ℝ ↔ ∀𝑥 ∈ ℝ+ (𝑥 ∈ dom (curry logb ‘𝐵) ∧ ((curry logb ‘𝐵)‘𝑥) ∈ ℝ))) |
| 39 | 34, 38 | mpbird 257 | 1 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → ((curry logb ‘𝐵) ↾ ℝ+):ℝ+⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 Vcvv 3436 ∖ cdif 3894 {csn 4571 class class class wbr 5086 ↦ cmpt 5167 dom cdm 5611 ↾ cres 5613 Fun wfun 6470 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 curry ccur 8190 ℂcc 10999 ℝcr 11000 0cc0 11001 1c1 11002 < clt 11141 / cdiv 11769 ℝ+crp 12885 logclog 26485 logb clogb 26696 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-addf 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-cur 8192 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-q 12842 df-rp 12886 df-xneg 13006 df-xadd 13007 df-xmul 13008 df-ioo 13244 df-ioc 13245 df-ico 13246 df-icc 13247 df-fz 13403 df-fzo 13550 df-fl 13691 df-mod 13769 df-seq 13904 df-exp 13964 df-fac 14176 df-bc 14205 df-hash 14233 df-shft 14969 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-limsup 15373 df-clim 15390 df-rlim 15391 df-sum 15589 df-ef 15969 df-sin 15971 df-cos 15972 df-pi 15974 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-hom 17180 df-cco 17181 df-rest 17321 df-topn 17322 df-0g 17340 df-gsum 17341 df-topgen 17342 df-pt 17343 df-prds 17346 df-xrs 17401 df-qtop 17406 df-imas 17407 df-xps 17409 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-mulg 18976 df-cntz 19224 df-cmn 19689 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-fbas 21283 df-fg 21284 df-cnfld 21287 df-top 22804 df-topon 22821 df-topsp 22843 df-bases 22856 df-cld 22929 df-ntr 22930 df-cls 22931 df-nei 23008 df-lp 23046 df-perf 23047 df-cn 23137 df-cnp 23138 df-haus 23225 df-tx 23472 df-hmeo 23665 df-fil 23756 df-fm 23848 df-flim 23849 df-flf 23850 df-xms 24230 df-ms 24231 df-tms 24232 df-cncf 24793 df-limc 25789 df-dv 25790 df-log 26487 df-logb 26697 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |