![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relogbf | Structured version Visualization version GIF version |
Description: The general logarithm to a real base greater than 1 regarded as function restricted to the positive integers. Property in [Cohen4] p. 349. (Contributed by AV, 12-Jun-2020.) |
Ref | Expression |
---|---|
relogbf | ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → ((curry logb ‘𝐵) ↾ ℝ+):ℝ+⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpcndif0 12934 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ (ℂ ∖ {0})) | |
2 | 1 | adantl 482 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ (ℂ ∖ {0})) |
3 | rpcn 12925 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ) | |
4 | 3 | adantr 481 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → 𝐵 ∈ ℂ) |
5 | rpne0 12931 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ≠ 0) | |
6 | 5 | adantr 481 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → 𝐵 ≠ 0) |
7 | animorr 977 | . . . . . . . . . . 11 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → (𝐵 < 1 ∨ 1 < 𝐵)) | |
8 | rpre 12923 | . . . . . . . . . . . 12 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
9 | 1red 11156 | . . . . . . . . . . . 12 ⊢ (1 < 𝐵 → 1 ∈ ℝ) | |
10 | lttri2 11237 | . . . . . . . . . . . 12 ⊢ ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐵 ≠ 1 ↔ (𝐵 < 1 ∨ 1 < 𝐵))) | |
11 | 8, 9, 10 | syl2an 596 | . . . . . . . . . . 11 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → (𝐵 ≠ 1 ↔ (𝐵 < 1 ∨ 1 < 𝐵))) |
12 | 7, 11 | mpbird 256 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → 𝐵 ≠ 1) |
13 | 4, 6, 12 | 3jca 1128 | . . . . . . . . 9 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) |
14 | logbmpt 26138 | . . . . . . . . 9 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb ‘𝐵) = (𝑥 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑥) / (log‘𝐵)))) | |
15 | 13, 14 | syl 17 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → (curry logb ‘𝐵) = (𝑥 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑥) / (log‘𝐵)))) |
16 | 15 | dmeqd 5861 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → dom (curry logb ‘𝐵) = dom (𝑥 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑥) / (log‘𝐵)))) |
17 | ovexd 7392 | . . . . . . . . 9 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((log‘𝑥) / (log‘𝐵)) ∈ V) | |
18 | 17 | ralrimiva 3143 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → ∀𝑥 ∈ (ℂ ∖ {0})((log‘𝑥) / (log‘𝐵)) ∈ V) |
19 | dmmptg 6194 | . . . . . . . 8 ⊢ (∀𝑥 ∈ (ℂ ∖ {0})((log‘𝑥) / (log‘𝐵)) ∈ V → dom (𝑥 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑥) / (log‘𝐵))) = (ℂ ∖ {0})) | |
20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → dom (𝑥 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑥) / (log‘𝐵))) = (ℂ ∖ {0})) |
21 | 16, 20 | eqtrd 2776 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → dom (curry logb ‘𝐵) = (ℂ ∖ {0})) |
22 | 21 | adantr 481 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → dom (curry logb ‘𝐵) = (ℂ ∖ {0})) |
23 | 2, 22 | eleqtrrd 2841 | . . . 4 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ dom (curry logb ‘𝐵)) |
24 | logbfval 26140 | . . . . . 6 ⊢ (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((curry logb ‘𝐵)‘𝑥) = (𝐵 logb 𝑥)) | |
25 | 13, 1, 24 | syl2an 596 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → ((curry logb ‘𝐵)‘𝑥) = (𝐵 logb 𝑥)) |
26 | simpll 765 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ+) | |
27 | simpr 485 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+) | |
28 | 12 | adantr 481 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → 𝐵 ≠ 1) |
29 | 26, 27, 28 | 3jca 1128 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → (𝐵 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ∧ 𝐵 ≠ 1)) |
30 | relogbcl 26123 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ∧ 𝐵 ≠ 1) → (𝐵 logb 𝑥) ∈ ℝ) | |
31 | 29, 30 | syl 17 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → (𝐵 logb 𝑥) ∈ ℝ) |
32 | 25, 31 | eqeltrd 2838 | . . . 4 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → ((curry logb ‘𝐵)‘𝑥) ∈ ℝ) |
33 | 23, 32 | jca 512 | . . 3 ⊢ (((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ dom (curry logb ‘𝐵) ∧ ((curry logb ‘𝐵)‘𝑥) ∈ ℝ)) |
34 | 33 | ralrimiva 3143 | . 2 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → ∀𝑥 ∈ ℝ+ (𝑥 ∈ dom (curry logb ‘𝐵) ∧ ((curry logb ‘𝐵)‘𝑥) ∈ ℝ)) |
35 | logbf 26139 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb ‘𝐵):(ℂ ∖ {0})⟶ℂ) | |
36 | 13, 35 | syl 17 | . . 3 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → (curry logb ‘𝐵):(ℂ ∖ {0})⟶ℂ) |
37 | ffun 6671 | . . 3 ⊢ ((curry logb ‘𝐵):(ℂ ∖ {0})⟶ℂ → Fun (curry logb ‘𝐵)) | |
38 | ffvresb 7072 | . . 3 ⊢ (Fun (curry logb ‘𝐵) → (((curry logb ‘𝐵) ↾ ℝ+):ℝ+⟶ℝ ↔ ∀𝑥 ∈ ℝ+ (𝑥 ∈ dom (curry logb ‘𝐵) ∧ ((curry logb ‘𝐵)‘𝑥) ∈ ℝ))) | |
39 | 36, 37, 38 | 3syl 18 | . 2 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → (((curry logb ‘𝐵) ↾ ℝ+):ℝ+⟶ℝ ↔ ∀𝑥 ∈ ℝ+ (𝑥 ∈ dom (curry logb ‘𝐵) ∧ ((curry logb ‘𝐵)‘𝑥) ∈ ℝ))) |
40 | 34, 39 | mpbird 256 | 1 ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → ((curry logb ‘𝐵) ↾ ℝ+):ℝ+⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 Vcvv 3445 ∖ cdif 3907 {csn 4586 class class class wbr 5105 ↦ cmpt 5188 dom cdm 5633 ↾ cres 5635 Fun wfun 6490 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 curry ccur 8196 ℂcc 11049 ℝcr 11050 0cc0 11051 1c1 11052 < clt 11189 / cdiv 11812 ℝ+crp 12915 logclog 25910 logb clogb 26114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-addf 11130 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-cur 8198 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8648 df-map 8767 df-pm 8768 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-fi 9347 df-sup 9378 df-inf 9379 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13268 df-ioc 13269 df-ico 13270 df-icc 13271 df-fz 13425 df-fzo 13568 df-fl 13697 df-mod 13775 df-seq 13907 df-exp 13968 df-fac 14174 df-bc 14203 df-hash 14231 df-shft 14952 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-limsup 15353 df-clim 15370 df-rlim 15371 df-sum 15571 df-ef 15950 df-sin 15952 df-cos 15953 df-pi 15955 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-hom 17157 df-cco 17158 df-rest 17304 df-topn 17305 df-0g 17323 df-gsum 17324 df-topgen 17325 df-pt 17326 df-prds 17329 df-xrs 17384 df-qtop 17389 df-imas 17390 df-xps 17392 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-mulg 18873 df-cntz 19097 df-cmn 19564 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-fbas 20793 df-fg 20794 df-cnfld 20797 df-top 22243 df-topon 22260 df-topsp 22282 df-bases 22296 df-cld 22370 df-ntr 22371 df-cls 22372 df-nei 22449 df-lp 22487 df-perf 22488 df-cn 22578 df-cnp 22579 df-haus 22666 df-tx 22913 df-hmeo 23106 df-fil 23197 df-fm 23289 df-flim 23290 df-flf 23291 df-xms 23673 df-ms 23674 df-tms 23675 df-cncf 24241 df-limc 25230 df-dv 25231 df-log 25912 df-logb 26115 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |