MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3vfriswmgrlem Structured version   Visualization version   GIF version

Theorem 3vfriswmgrlem 30309
Description: Lemma for 3vfriswmgr 30310. (Contributed by Alexander van der Vekens, 6-Oct-2017.) (Revised by AV, 31-Mar-2021.)
Hypotheses
Ref Expression
3vfriswmgr.v 𝑉 = (Vtx‘𝐺)
3vfriswmgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
3vfriswmgrlem (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐴, 𝐵} ∈ 𝐸 → ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸))
Distinct variable groups:   𝑤,𝐴   𝑤,𝐵   𝑤,𝐶   𝑤,𝐸   𝑤,𝐺   𝑤,𝑉   𝑤,𝑋   𝑤,𝑌

Proof of Theorem 3vfriswmgrlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 animorr 979 . . . . . 6 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → ({𝐴, 𝐴} ∈ 𝐸 ∨ {𝐴, 𝐵} ∈ 𝐸))
2 preq2 4759 . . . . . . . . . 10 (𝑤 = 𝐴 → {𝐴, 𝑤} = {𝐴, 𝐴})
32eleq1d 2829 . . . . . . . . 9 (𝑤 = 𝐴 → ({𝐴, 𝑤} ∈ 𝐸 ↔ {𝐴, 𝐴} ∈ 𝐸))
4 preq2 4759 . . . . . . . . . 10 (𝑤 = 𝐵 → {𝐴, 𝑤} = {𝐴, 𝐵})
54eleq1d 2829 . . . . . . . . 9 (𝑤 = 𝐵 → ({𝐴, 𝑤} ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ 𝐸))
63, 5rexprg 4721 . . . . . . . 8 ((𝐴𝑋𝐵𝑌) → (∃𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸 ↔ ({𝐴, 𝐴} ∈ 𝐸 ∨ {𝐴, 𝐵} ∈ 𝐸)))
763adant3 1132 . . . . . . 7 ((𝐴𝑋𝐵𝑌𝐴𝐵) → (∃𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸 ↔ ({𝐴, 𝐴} ∈ 𝐸 ∨ {𝐴, 𝐵} ∈ 𝐸)))
87ad2antrr 725 . . . . . 6 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → (∃𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸 ↔ ({𝐴, 𝐴} ∈ 𝐸 ∨ {𝐴, 𝐵} ∈ 𝐸)))
91, 8mpbird 257 . . . . 5 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → ∃𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸)
10 df-rex 3077 . . . . 5 (∃𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸 ↔ ∃𝑤(𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸))
119, 10sylib 218 . . . 4 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → ∃𝑤(𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸))
12 vex 3492 . . . . . . . . 9 𝑤 ∈ V
1312elpr 4672 . . . . . . . 8 (𝑤 ∈ {𝐴, 𝐵} ↔ (𝑤 = 𝐴𝑤 = 𝐵))
14 vex 3492 . . . . . . . . . . . 12 𝑦 ∈ V
1514elpr 4672 . . . . . . . . . . 11 (𝑦 ∈ {𝐴, 𝐵} ↔ (𝑦 = 𝐴𝑦 = 𝐵))
16 eqidd 2741 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝐴)
1716a1i 11 . . . . . . . . . . . . . . . . 17 ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝐴))
1817a1i13 27 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐴 → ({𝐴, 𝐴} ∈ 𝐸 → ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝐴))))
19 preq2 4759 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐴 → {𝐴, 𝑦} = {𝐴, 𝐴})
2019eleq1d 2829 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐴 → ({𝐴, 𝑦} ∈ 𝐸 ↔ {𝐴, 𝐴} ∈ 𝐸))
21 eqeq2 2752 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝐴 → (𝐴 = 𝑦𝐴 = 𝐴))
2221imbi2d 340 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐴 → (((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝑦) ↔ ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝐴)))
2322imbi2d 340 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐴 → (({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝑦)) ↔ ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝐴))))
2418, 20, 233imtr4d 294 . . . . . . . . . . . . . . 15 (𝑦 = 𝐴 → ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝑦))))
25 3vfriswmgr.e . . . . . . . . . . . . . . . . . . . . . . 23 𝐸 = (Edg‘𝐺)
2625usgredgne 29241 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ USGraph ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴𝐴)
2726adantll 713 . . . . . . . . . . . . . . . . . . . . 21 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴𝐴)
28 df-ne 2947 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴𝐴 ↔ ¬ 𝐴 = 𝐴)
29 eqid 2740 . . . . . . . . . . . . . . . . . . . . . . 23 𝐴 = 𝐴
3029pm2.24i 150 . . . . . . . . . . . . . . . . . . . . . 22 𝐴 = 𝐴𝐴 = 𝐵)
3128, 30sylbi 217 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐴𝐴 = 𝐵)
3227, 31syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴 = 𝐵)
3332ex 412 . . . . . . . . . . . . . . . . . . 19 ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({𝐴, 𝐴} ∈ 𝐸𝐴 = 𝐵))
3433ad2antlr 726 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → ({𝐴, 𝐴} ∈ 𝐸𝐴 = 𝐵))
3534com12 32 . . . . . . . . . . . . . . . . 17 ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝐵))
36352a1i 12 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐵 → ({𝐴, 𝐵} ∈ 𝐸 → ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝐵))))
37 preq2 4759 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐵 → {𝐴, 𝑦} = {𝐴, 𝐵})
3837eleq1d 2829 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐵 → ({𝐴, 𝑦} ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ 𝐸))
39 eqeq2 2752 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝐵 → (𝐴 = 𝑦𝐴 = 𝐵))
4039imbi2d 340 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐵 → (((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝑦) ↔ ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝐵)))
4140imbi2d 340 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐵 → (({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝑦)) ↔ ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝐵))))
4236, 38, 413imtr4d 294 . . . . . . . . . . . . . . 15 (𝑦 = 𝐵 → ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝑦))))
4324, 42jaoi 856 . . . . . . . . . . . . . 14 ((𝑦 = 𝐴𝑦 = 𝐵) → ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝑦))))
44 eqeq1 2744 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝐴 → (𝑤 = 𝑦𝐴 = 𝑦))
4544imbi2d 340 . . . . . . . . . . . . . . . 16 (𝑤 = 𝐴 → (((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦) ↔ ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝑦)))
463, 45imbi12d 344 . . . . . . . . . . . . . . 15 (𝑤 = 𝐴 → (({𝐴, 𝑤} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦)) ↔ ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝑦))))
4746imbi2d 340 . . . . . . . . . . . . . 14 (𝑤 = 𝐴 → (({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝑤} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦))) ↔ ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝑦)))))
4843, 47imbitrrid 246 . . . . . . . . . . . . 13 (𝑤 = 𝐴 → ((𝑦 = 𝐴𝑦 = 𝐵) → ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝑤} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦)))))
4929pm2.24i 150 . . . . . . . . . . . . . . . . . . . . . 22 𝐴 = 𝐴𝐵 = 𝐴)
5028, 49sylbi 217 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐴𝐵 = 𝐴)
5127, 50syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐵 = 𝐴)
5251ex 412 . . . . . . . . . . . . . . . . . . 19 ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({𝐴, 𝐴} ∈ 𝐸𝐵 = 𝐴))
5352ad2antlr 726 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → ({𝐴, 𝐴} ∈ 𝐸𝐵 = 𝐴))
5453com12 32 . . . . . . . . . . . . . . . . 17 ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝐴))
5554a1i13 27 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐴 → ({𝐴, 𝐴} ∈ 𝐸 → ({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝐴))))
56 eqeq2 2752 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝐴 → (𝐵 = 𝑦𝐵 = 𝐴))
5756imbi2d 340 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐴 → (((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝑦) ↔ ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝐴)))
5857imbi2d 340 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐴 → (({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝑦)) ↔ ({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝐴))))
5955, 20, 583imtr4d 294 . . . . . . . . . . . . . . 15 (𝑦 = 𝐴 → ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝑦))))
60 eqidd 2741 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝐵)
6160a1i 11 . . . . . . . . . . . . . . . . 17 ({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝐵))
6261a1i13 27 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐵 → ({𝐴, 𝐵} ∈ 𝐸 → ({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝐵))))
63 eqeq2 2752 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝐵 → (𝐵 = 𝑦𝐵 = 𝐵))
6463imbi2d 340 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐵 → (((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝑦) ↔ ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝐵)))
6564imbi2d 340 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐵 → (({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝑦)) ↔ ({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝐵))))
6662, 38, 653imtr4d 294 . . . . . . . . . . . . . . 15 (𝑦 = 𝐵 → ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝑦))))
6759, 66jaoi 856 . . . . . . . . . . . . . 14 ((𝑦 = 𝐴𝑦 = 𝐵) → ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝑦))))
68 eqeq1 2744 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝐵 → (𝑤 = 𝑦𝐵 = 𝑦))
6968imbi2d 340 . . . . . . . . . . . . . . . 16 (𝑤 = 𝐵 → (((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦) ↔ ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝑦)))
705, 69imbi12d 344 . . . . . . . . . . . . . . 15 (𝑤 = 𝐵 → (({𝐴, 𝑤} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦)) ↔ ({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝑦))))
7170imbi2d 340 . . . . . . . . . . . . . 14 (𝑤 = 𝐵 → (({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝑤} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦))) ↔ ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝑦)))))
7267, 71imbitrrid 246 . . . . . . . . . . . . 13 (𝑤 = 𝐵 → ((𝑦 = 𝐴𝑦 = 𝐵) → ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝑤} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦)))))
7348, 72jaoi 856 . . . . . . . . . . . 12 ((𝑤 = 𝐴𝑤 = 𝐵) → ((𝑦 = 𝐴𝑦 = 𝐵) → ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝑤} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦)))))
7473com3l 89 . . . . . . . . . . 11 ((𝑦 = 𝐴𝑦 = 𝐵) → ({𝐴, 𝑦} ∈ 𝐸 → ((𝑤 = 𝐴𝑤 = 𝐵) → ({𝐴, 𝑤} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦)))))
7515, 74sylbi 217 . . . . . . . . . 10 (𝑦 ∈ {𝐴, 𝐵} → ({𝐴, 𝑦} ∈ 𝐸 → ((𝑤 = 𝐴𝑤 = 𝐵) → ({𝐴, 𝑤} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦)))))
7675imp 406 . . . . . . . . 9 ((𝑦 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑦} ∈ 𝐸) → ((𝑤 = 𝐴𝑤 = 𝐵) → ({𝐴, 𝑤} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦))))
7776com3l 89 . . . . . . . 8 ((𝑤 = 𝐴𝑤 = 𝐵) → ({𝐴, 𝑤} ∈ 𝐸 → ((𝑦 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑦} ∈ 𝐸) → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦))))
7813, 77sylbi 217 . . . . . . 7 (𝑤 ∈ {𝐴, 𝐵} → ({𝐴, 𝑤} ∈ 𝐸 → ((𝑦 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑦} ∈ 𝐸) → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦))))
7978imp31 417 . . . . . 6 (((𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑦} ∈ 𝐸)) → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦))
8079com12 32 . . . . 5 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → (((𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑦} ∈ 𝐸)) → 𝑤 = 𝑦))
8180alrimivv 1927 . . . 4 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → ∀𝑤𝑦(((𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑦} ∈ 𝐸)) → 𝑤 = 𝑦))
82 eleq1w 2827 . . . . . 6 (𝑤 = 𝑦 → (𝑤 ∈ {𝐴, 𝐵} ↔ 𝑦 ∈ {𝐴, 𝐵}))
83 preq2 4759 . . . . . . 7 (𝑤 = 𝑦 → {𝐴, 𝑤} = {𝐴, 𝑦})
8483eleq1d 2829 . . . . . 6 (𝑤 = 𝑦 → ({𝐴, 𝑤} ∈ 𝐸 ↔ {𝐴, 𝑦} ∈ 𝐸))
8582, 84anbi12d 631 . . . . 5 (𝑤 = 𝑦 → ((𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸) ↔ (𝑦 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑦} ∈ 𝐸)))
8685eu4 2618 . . . 4 (∃!𝑤(𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸) ↔ (∃𝑤(𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸) ∧ ∀𝑤𝑦(((𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑦} ∈ 𝐸)) → 𝑤 = 𝑦)))
8711, 81, 86sylanbrc 582 . . 3 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → ∃!𝑤(𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸))
88 df-reu 3389 . . 3 (∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸 ↔ ∃!𝑤(𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸))
8987, 88sylibr 234 . 2 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸)
9089ex 412 1 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐴, 𝐵} ∈ 𝐸 → ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087  wal 1535   = wceq 1537  wex 1777  wcel 2108  ∃!weu 2571  wne 2946  wrex 3076  ∃!wreu 3386  {cpr 4650  {ctp 4652  cfv 6573  Vtxcvtx 29031  Edgcedg 29082  USGraphcusgr 29184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380  df-edg 29083  df-umgr 29118  df-usgr 29186
This theorem is referenced by:  3vfriswmgr  30310
  Copyright terms: Public domain W3C validator