MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3vfriswmgrlem Structured version   Visualization version   GIF version

Theorem 3vfriswmgrlem 27973
Description: Lemma for 3vfriswmgr 27974. (Contributed by Alexander van der Vekens, 6-Oct-2017.) (Revised by AV, 31-Mar-2021.)
Hypotheses
Ref Expression
3vfriswmgr.v 𝑉 = (Vtx‘𝐺)
3vfriswmgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
3vfriswmgrlem (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐴, 𝐵} ∈ 𝐸 → ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸))
Distinct variable groups:   𝑤,𝐴   𝑤,𝐵   𝑤,𝐶   𝑤,𝐸   𝑤,𝐺   𝑤,𝑉   𝑤,𝑋   𝑤,𝑌

Proof of Theorem 3vfriswmgrlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 animorr 974 . . . . . 6 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → ({𝐴, 𝐴} ∈ 𝐸 ∨ {𝐴, 𝐵} ∈ 𝐸))
2 preq2 4669 . . . . . . . . . 10 (𝑤 = 𝐴 → {𝐴, 𝑤} = {𝐴, 𝐴})
32eleq1d 2902 . . . . . . . . 9 (𝑤 = 𝐴 → ({𝐴, 𝑤} ∈ 𝐸 ↔ {𝐴, 𝐴} ∈ 𝐸))
4 preq2 4669 . . . . . . . . . 10 (𝑤 = 𝐵 → {𝐴, 𝑤} = {𝐴, 𝐵})
54eleq1d 2902 . . . . . . . . 9 (𝑤 = 𝐵 → ({𝐴, 𝑤} ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ 𝐸))
63, 5rexprg 4632 . . . . . . . 8 ((𝐴𝑋𝐵𝑌) → (∃𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸 ↔ ({𝐴, 𝐴} ∈ 𝐸 ∨ {𝐴, 𝐵} ∈ 𝐸)))
763adant3 1126 . . . . . . 7 ((𝐴𝑋𝐵𝑌𝐴𝐵) → (∃𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸 ↔ ({𝐴, 𝐴} ∈ 𝐸 ∨ {𝐴, 𝐵} ∈ 𝐸)))
87ad2antrr 722 . . . . . 6 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → (∃𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸 ↔ ({𝐴, 𝐴} ∈ 𝐸 ∨ {𝐴, 𝐵} ∈ 𝐸)))
91, 8mpbird 258 . . . . 5 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → ∃𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸)
10 df-rex 3149 . . . . 5 (∃𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸 ↔ ∃𝑤(𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸))
119, 10sylib 219 . . . 4 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → ∃𝑤(𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸))
12 vex 3503 . . . . . . . . 9 𝑤 ∈ V
1312elpr 4587 . . . . . . . 8 (𝑤 ∈ {𝐴, 𝐵} ↔ (𝑤 = 𝐴𝑤 = 𝐵))
14 vex 3503 . . . . . . . . . . . 12 𝑦 ∈ V
1514elpr 4587 . . . . . . . . . . 11 (𝑦 ∈ {𝐴, 𝐵} ↔ (𝑦 = 𝐴𝑦 = 𝐵))
16 eqidd 2827 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝐴)
1716a1i 11 . . . . . . . . . . . . . . . . 17 ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝐴))
1817a1i13 27 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐴 → ({𝐴, 𝐴} ∈ 𝐸 → ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝐴))))
19 preq2 4669 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐴 → {𝐴, 𝑦} = {𝐴, 𝐴})
2019eleq1d 2902 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐴 → ({𝐴, 𝑦} ∈ 𝐸 ↔ {𝐴, 𝐴} ∈ 𝐸))
21 eqeq2 2838 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝐴 → (𝐴 = 𝑦𝐴 = 𝐴))
2221imbi2d 342 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐴 → (((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝑦) ↔ ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝐴)))
2322imbi2d 342 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐴 → (({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝑦)) ↔ ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝐴))))
2418, 20, 233imtr4d 295 . . . . . . . . . . . . . . 15 (𝑦 = 𝐴 → ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝑦))))
25 3vfriswmgr.e . . . . . . . . . . . . . . . . . . . . . . 23 𝐸 = (Edg‘𝐺)
2625usgredgne 26905 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ USGraph ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴𝐴)
2726adantll 710 . . . . . . . . . . . . . . . . . . . . 21 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴𝐴)
28 df-ne 3022 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴𝐴 ↔ ¬ 𝐴 = 𝐴)
29 eqid 2826 . . . . . . . . . . . . . . . . . . . . . . 23 𝐴 = 𝐴
3029pm2.24i 153 . . . . . . . . . . . . . . . . . . . . . 22 𝐴 = 𝐴𝐴 = 𝐵)
3128, 30sylbi 218 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐴𝐴 = 𝐵)
3227, 31syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴 = 𝐵)
3332ex 413 . . . . . . . . . . . . . . . . . . 19 ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({𝐴, 𝐴} ∈ 𝐸𝐴 = 𝐵))
3433ad2antlr 723 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → ({𝐴, 𝐴} ∈ 𝐸𝐴 = 𝐵))
3534com12 32 . . . . . . . . . . . . . . . . 17 ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝐵))
36352a1i 12 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐵 → ({𝐴, 𝐵} ∈ 𝐸 → ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝐵))))
37 preq2 4669 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐵 → {𝐴, 𝑦} = {𝐴, 𝐵})
3837eleq1d 2902 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐵 → ({𝐴, 𝑦} ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ 𝐸))
39 eqeq2 2838 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝐵 → (𝐴 = 𝑦𝐴 = 𝐵))
4039imbi2d 342 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐵 → (((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝑦) ↔ ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝐵)))
4140imbi2d 342 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐵 → (({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝑦)) ↔ ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝐵))))
4236, 38, 413imtr4d 295 . . . . . . . . . . . . . . 15 (𝑦 = 𝐵 → ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝑦))))
4324, 42jaoi 853 . . . . . . . . . . . . . 14 ((𝑦 = 𝐴𝑦 = 𝐵) → ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝑦))))
44 eqeq1 2830 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝐴 → (𝑤 = 𝑦𝐴 = 𝑦))
4544imbi2d 342 . . . . . . . . . . . . . . . 16 (𝑤 = 𝐴 → (((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦) ↔ ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝑦)))
463, 45imbi12d 346 . . . . . . . . . . . . . . 15 (𝑤 = 𝐴 → (({𝐴, 𝑤} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦)) ↔ ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝑦))))
4746imbi2d 342 . . . . . . . . . . . . . 14 (𝑤 = 𝐴 → (({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝑤} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦))) ↔ ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝑦)))))
4843, 47syl5ibr 247 . . . . . . . . . . . . 13 (𝑤 = 𝐴 → ((𝑦 = 𝐴𝑦 = 𝐵) → ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝑤} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦)))))
4929pm2.24i 153 . . . . . . . . . . . . . . . . . . . . . 22 𝐴 = 𝐴𝐵 = 𝐴)
5028, 49sylbi 218 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐴𝐵 = 𝐴)
5127, 50syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐵 = 𝐴)
5251ex 413 . . . . . . . . . . . . . . . . . . 19 ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({𝐴, 𝐴} ∈ 𝐸𝐵 = 𝐴))
5352ad2antlr 723 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → ({𝐴, 𝐴} ∈ 𝐸𝐵 = 𝐴))
5453com12 32 . . . . . . . . . . . . . . . . 17 ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝐴))
5554a1i13 27 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐴 → ({𝐴, 𝐴} ∈ 𝐸 → ({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝐴))))
56 eqeq2 2838 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝐴 → (𝐵 = 𝑦𝐵 = 𝐴))
5756imbi2d 342 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐴 → (((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝑦) ↔ ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝐴)))
5857imbi2d 342 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐴 → (({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝑦)) ↔ ({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝐴))))
5955, 20, 583imtr4d 295 . . . . . . . . . . . . . . 15 (𝑦 = 𝐴 → ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝑦))))
60 eqidd 2827 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝐵)
6160a1i 11 . . . . . . . . . . . . . . . . 17 ({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝐵))
6261a1i13 27 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐵 → ({𝐴, 𝐵} ∈ 𝐸 → ({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝐵))))
63 eqeq2 2838 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝐵 → (𝐵 = 𝑦𝐵 = 𝐵))
6463imbi2d 342 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐵 → (((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝑦) ↔ ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝐵)))
6564imbi2d 342 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐵 → (({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝑦)) ↔ ({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝐵))))
6662, 38, 653imtr4d 295 . . . . . . . . . . . . . . 15 (𝑦 = 𝐵 → ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝑦))))
6759, 66jaoi 853 . . . . . . . . . . . . . 14 ((𝑦 = 𝐴𝑦 = 𝐵) → ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝑦))))
68 eqeq1 2830 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝐵 → (𝑤 = 𝑦𝐵 = 𝑦))
6968imbi2d 342 . . . . . . . . . . . . . . . 16 (𝑤 = 𝐵 → (((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦) ↔ ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝑦)))
705, 69imbi12d 346 . . . . . . . . . . . . . . 15 (𝑤 = 𝐵 → (({𝐴, 𝑤} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦)) ↔ ({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝑦))))
7170imbi2d 342 . . . . . . . . . . . . . 14 (𝑤 = 𝐵 → (({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝑤} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦))) ↔ ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝑦)))))
7267, 71syl5ibr 247 . . . . . . . . . . . . 13 (𝑤 = 𝐵 → ((𝑦 = 𝐴𝑦 = 𝐵) → ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝑤} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦)))))
7348, 72jaoi 853 . . . . . . . . . . . 12 ((𝑤 = 𝐴𝑤 = 𝐵) → ((𝑦 = 𝐴𝑦 = 𝐵) → ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝑤} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦)))))
7473com3l 89 . . . . . . . . . . 11 ((𝑦 = 𝐴𝑦 = 𝐵) → ({𝐴, 𝑦} ∈ 𝐸 → ((𝑤 = 𝐴𝑤 = 𝐵) → ({𝐴, 𝑤} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦)))))
7515, 74sylbi 218 . . . . . . . . . 10 (𝑦 ∈ {𝐴, 𝐵} → ({𝐴, 𝑦} ∈ 𝐸 → ((𝑤 = 𝐴𝑤 = 𝐵) → ({𝐴, 𝑤} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦)))))
7675imp 407 . . . . . . . . 9 ((𝑦 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑦} ∈ 𝐸) → ((𝑤 = 𝐴𝑤 = 𝐵) → ({𝐴, 𝑤} ∈ 𝐸 → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦))))
7776com3l 89 . . . . . . . 8 ((𝑤 = 𝐴𝑤 = 𝐵) → ({𝐴, 𝑤} ∈ 𝐸 → ((𝑦 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑦} ∈ 𝐸) → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦))))
7813, 77sylbi 218 . . . . . . 7 (𝑤 ∈ {𝐴, 𝐵} → ({𝐴, 𝑤} ∈ 𝐸 → ((𝑦 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑦} ∈ 𝐸) → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦))))
7978imp31 418 . . . . . 6 (((𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑦} ∈ 𝐸)) → ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦))
8079com12 32 . . . . 5 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → (((𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑦} ∈ 𝐸)) → 𝑤 = 𝑦))
8180alrimivv 1922 . . . 4 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → ∀𝑤𝑦(((𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑦} ∈ 𝐸)) → 𝑤 = 𝑦))
82 eleq1w 2900 . . . . . 6 (𝑤 = 𝑦 → (𝑤 ∈ {𝐴, 𝐵} ↔ 𝑦 ∈ {𝐴, 𝐵}))
83 preq2 4669 . . . . . . 7 (𝑤 = 𝑦 → {𝐴, 𝑤} = {𝐴, 𝑦})
8483eleq1d 2902 . . . . . 6 (𝑤 = 𝑦 → ({𝐴, 𝑤} ∈ 𝐸 ↔ {𝐴, 𝑦} ∈ 𝐸))
8582, 84anbi12d 630 . . . . 5 (𝑤 = 𝑦 → ((𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸) ↔ (𝑦 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑦} ∈ 𝐸)))
8685eu4 2698 . . . 4 (∃!𝑤(𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸) ↔ (∃𝑤(𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸) ∧ ∀𝑤𝑦(((𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑦} ∈ 𝐸)) → 𝑤 = 𝑦)))
8711, 81, 86sylanbrc 583 . . 3 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → ∃!𝑤(𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸))
88 df-reu 3150 . . 3 (∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸 ↔ ∃!𝑤(𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸))
8987, 88sylibr 235 . 2 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸)
9089ex 413 1 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐴, 𝐵} ∈ 𝐸 → ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 843  w3a 1081  wal 1528   = wceq 1530  wex 1773  wcel 2107  ∃!weu 2651  wne 3021  wrex 3144  ∃!wreu 3145  {cpr 4566  {ctp 4568  cfv 6352  Vtxcvtx 26698  Edgcedg 26749  USGraphcusgr 26851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-dju 9319  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-n0 11887  df-z 11971  df-uz 12233  df-fz 12883  df-hash 13681  df-edg 26750  df-umgr 26785  df-usgr 26853
This theorem is referenced by:  3vfriswmgr  27974
  Copyright terms: Public domain W3C validator