Step | Hyp | Ref
| Expression |
1 | | animorr 975 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → ({𝐴, 𝐴} ∈ 𝐸 ∨ {𝐴, 𝐵} ∈ 𝐸)) |
2 | | preq2 4667 |
. . . . . . . . . 10
⊢ (𝑤 = 𝐴 → {𝐴, 𝑤} = {𝐴, 𝐴}) |
3 | 2 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑤 = 𝐴 → ({𝐴, 𝑤} ∈ 𝐸 ↔ {𝐴, 𝐴} ∈ 𝐸)) |
4 | | preq2 4667 |
. . . . . . . . . 10
⊢ (𝑤 = 𝐵 → {𝐴, 𝑤} = {𝐴, 𝐵}) |
5 | 4 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑤 = 𝐵 → ({𝐴, 𝑤} ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ 𝐸)) |
6 | 3, 5 | rexprg 4629 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → (∃𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸 ↔ ({𝐴, 𝐴} ∈ 𝐸 ∨ {𝐴, 𝐵} ∈ 𝐸))) |
7 | 6 | 3adant3 1130 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) → (∃𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸 ↔ ({𝐴, 𝐴} ∈ 𝐸 ∨ {𝐴, 𝐵} ∈ 𝐸))) |
8 | 7 | ad2antrr 722 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → (∃𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸 ↔ ({𝐴, 𝐴} ∈ 𝐸 ∨ {𝐴, 𝐵} ∈ 𝐸))) |
9 | 1, 8 | mpbird 256 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → ∃𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸) |
10 | | df-rex 3069 |
. . . . 5
⊢
(∃𝑤 ∈
{𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸 ↔ ∃𝑤(𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸)) |
11 | 9, 10 | sylib 217 |
. . . 4
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → ∃𝑤(𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸)) |
12 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑤 ∈ V |
13 | 12 | elpr 4581 |
. . . . . . . 8
⊢ (𝑤 ∈ {𝐴, 𝐵} ↔ (𝑤 = 𝐴 ∨ 𝑤 = 𝐵)) |
14 | | vex 3426 |
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V |
15 | 14 | elpr 4581 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ {𝐴, 𝐵} ↔ (𝑦 = 𝐴 ∨ 𝑦 = 𝐵)) |
16 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝐴) |
17 | 16 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝐴)) |
18 | 17 | a1i13 27 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝐴 → ({𝐴, 𝐴} ∈ 𝐸 → ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝐴)))) |
19 | | preq2 4667 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝐴 → {𝐴, 𝑦} = {𝐴, 𝐴}) |
20 | 19 | eleq1d 2823 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝐴 → ({𝐴, 𝑦} ∈ 𝐸 ↔ {𝐴, 𝐴} ∈ 𝐸)) |
21 | | eqeq2 2750 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝐴 → (𝐴 = 𝑦 ↔ 𝐴 = 𝐴)) |
22 | 21 | imbi2d 340 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝐴 → (((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝑦) ↔ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝐴))) |
23 | 22 | imbi2d 340 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝐴 → (({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝑦)) ↔ ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝐴)))) |
24 | 18, 20, 23 | 3imtr4d 293 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐴 → ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝑦)))) |
25 | | 3vfriswmgr.e |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝐸 = (Edg‘𝐺) |
26 | 25 | usgredgne 27476 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐺 ∈ USGraph ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴 ≠ 𝐴) |
27 | 26 | adantll 710 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴 ≠ 𝐴) |
28 | | df-ne 2943 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 ≠ 𝐴 ↔ ¬ 𝐴 = 𝐴) |
29 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝐴 = 𝐴 |
30 | 29 | pm2.24i 150 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
𝐴 = 𝐴 → 𝐴 = 𝐵) |
31 | 28, 30 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ≠ 𝐴 → 𝐴 = 𝐵) |
32 | 27, 31 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐴 = 𝐵) |
33 | 32 | ex 412 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({𝐴, 𝐴} ∈ 𝐸 → 𝐴 = 𝐵)) |
34 | 33 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → ({𝐴, 𝐴} ∈ 𝐸 → 𝐴 = 𝐵)) |
35 | 34 | com12 32 |
. . . . . . . . . . . . . . . . 17
⊢ ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝐵)) |
36 | 35 | 2a1i 12 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝐵 → ({𝐴, 𝐵} ∈ 𝐸 → ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝐵)))) |
37 | | preq2 4667 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝐵 → {𝐴, 𝑦} = {𝐴, 𝐵}) |
38 | 37 | eleq1d 2823 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝐵 → ({𝐴, 𝑦} ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ 𝐸)) |
39 | | eqeq2 2750 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝐵 → (𝐴 = 𝑦 ↔ 𝐴 = 𝐵)) |
40 | 39 | imbi2d 340 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝐵 → (((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝑦) ↔ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝐵))) |
41 | 40 | imbi2d 340 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝐵 → (({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝑦)) ↔ ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝐵)))) |
42 | 36, 38, 41 | 3imtr4d 293 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐵 → ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝑦)))) |
43 | 24, 42 | jaoi 853 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) → ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝑦)))) |
44 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝐴 → (𝑤 = 𝑦 ↔ 𝐴 = 𝑦)) |
45 | 44 | imbi2d 340 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝐴 → (((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦) ↔ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝑦))) |
46 | 3, 45 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝐴 → (({𝐴, 𝑤} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦)) ↔ ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝑦)))) |
47 | 46 | imbi2d 340 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝐴 → (({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝑤} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦))) ↔ ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴 = 𝑦))))) |
48 | 43, 47 | syl5ibr 245 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝐴 → ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) → ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝑤} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦))))) |
49 | 29 | pm2.24i 150 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
𝐴 = 𝐴 → 𝐵 = 𝐴) |
50 | 28, 49 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ≠ 𝐴 → 𝐵 = 𝐴) |
51 | 27, 50 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ∧ {𝐴, 𝐴} ∈ 𝐸) → 𝐵 = 𝐴) |
52 | 51 | ex 412 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ({𝐴, 𝐴} ∈ 𝐸 → 𝐵 = 𝐴)) |
53 | 52 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → ({𝐴, 𝐴} ∈ 𝐸 → 𝐵 = 𝐴)) |
54 | 53 | com12 32 |
. . . . . . . . . . . . . . . . 17
⊢ ({𝐴, 𝐴} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝐴)) |
55 | 54 | a1i13 27 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝐴 → ({𝐴, 𝐴} ∈ 𝐸 → ({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝐴)))) |
56 | | eqeq2 2750 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝐴 → (𝐵 = 𝑦 ↔ 𝐵 = 𝐴)) |
57 | 56 | imbi2d 340 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝐴 → (((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝑦) ↔ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝐴))) |
58 | 57 | imbi2d 340 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝐴 → (({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝑦)) ↔ ({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝐴)))) |
59 | 55, 20, 58 | 3imtr4d 293 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐴 → ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝑦)))) |
60 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝐵) |
61 | 60 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝐵)) |
62 | 61 | a1i13 27 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝐵 → ({𝐴, 𝐵} ∈ 𝐸 → ({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝐵)))) |
63 | | eqeq2 2750 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝐵 → (𝐵 = 𝑦 ↔ 𝐵 = 𝐵)) |
64 | 63 | imbi2d 340 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝐵 → (((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝑦) ↔ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝐵))) |
65 | 64 | imbi2d 340 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝐵 → (({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝑦)) ↔ ({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝐵)))) |
66 | 62, 38, 65 | 3imtr4d 293 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐵 → ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝑦)))) |
67 | 59, 66 | jaoi 853 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) → ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝑦)))) |
68 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝐵 → (𝑤 = 𝑦 ↔ 𝐵 = 𝑦)) |
69 | 68 | imbi2d 340 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝐵 → (((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦) ↔ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝑦))) |
70 | 5, 69 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝐵 → (({𝐴, 𝑤} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦)) ↔ ({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝑦)))) |
71 | 70 | imbi2d 340 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝐵 → (({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝑤} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦))) ↔ ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝐵} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐵 = 𝑦))))) |
72 | 67, 71 | syl5ibr 245 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝐵 → ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) → ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝑤} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦))))) |
73 | 48, 72 | jaoi 853 |
. . . . . . . . . . . 12
⊢ ((𝑤 = 𝐴 ∨ 𝑤 = 𝐵) → ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) → ({𝐴, 𝑦} ∈ 𝐸 → ({𝐴, 𝑤} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦))))) |
74 | 73 | com3l 89 |
. . . . . . . . . . 11
⊢ ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) → ({𝐴, 𝑦} ∈ 𝐸 → ((𝑤 = 𝐴 ∨ 𝑤 = 𝐵) → ({𝐴, 𝑤} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦))))) |
75 | 15, 74 | sylbi 216 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {𝐴, 𝐵} → ({𝐴, 𝑦} ∈ 𝐸 → ((𝑤 = 𝐴 ∨ 𝑤 = 𝐵) → ({𝐴, 𝑤} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦))))) |
76 | 75 | imp 406 |
. . . . . . . . 9
⊢ ((𝑦 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑦} ∈ 𝐸) → ((𝑤 = 𝐴 ∨ 𝑤 = 𝐵) → ({𝐴, 𝑤} ∈ 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦)))) |
77 | 76 | com3l 89 |
. . . . . . . 8
⊢ ((𝑤 = 𝐴 ∨ 𝑤 = 𝐵) → ({𝐴, 𝑤} ∈ 𝐸 → ((𝑦 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑦} ∈ 𝐸) → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦)))) |
78 | 13, 77 | sylbi 216 |
. . . . . . 7
⊢ (𝑤 ∈ {𝐴, 𝐵} → ({𝐴, 𝑤} ∈ 𝐸 → ((𝑦 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑦} ∈ 𝐸) → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦)))) |
79 | 78 | imp31 417 |
. . . . . 6
⊢ (((𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑦} ∈ 𝐸)) → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝑤 = 𝑦)) |
80 | 79 | com12 32 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → (((𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑦} ∈ 𝐸)) → 𝑤 = 𝑦)) |
81 | 80 | alrimivv 1932 |
. . . 4
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → ∀𝑤∀𝑦(((𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑦} ∈ 𝐸)) → 𝑤 = 𝑦)) |
82 | | eleq1w 2821 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (𝑤 ∈ {𝐴, 𝐵} ↔ 𝑦 ∈ {𝐴, 𝐵})) |
83 | | preq2 4667 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → {𝐴, 𝑤} = {𝐴, 𝑦}) |
84 | 83 | eleq1d 2823 |
. . . . . 6
⊢ (𝑤 = 𝑦 → ({𝐴, 𝑤} ∈ 𝐸 ↔ {𝐴, 𝑦} ∈ 𝐸)) |
85 | 82, 84 | anbi12d 630 |
. . . . 5
⊢ (𝑤 = 𝑦 → ((𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸) ↔ (𝑦 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑦} ∈ 𝐸))) |
86 | 85 | eu4 2617 |
. . . 4
⊢
(∃!𝑤(𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸) ↔ (∃𝑤(𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸) ∧ ∀𝑤∀𝑦(((𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑦} ∈ 𝐸)) → 𝑤 = 𝑦))) |
87 | 11, 81, 86 | sylanbrc 582 |
. . 3
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → ∃!𝑤(𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸)) |
88 | | df-reu 3070 |
. . 3
⊢
(∃!𝑤 ∈
{𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸 ↔ ∃!𝑤(𝑤 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝑤} ∈ 𝐸)) |
89 | 87, 88 | sylibr 233 |
. 2
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸) |
90 | 89 | ex 412 |
1
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐴, 𝐵} ∈ 𝐸 → ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸)) |