MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummoncoe1 Structured version   Visualization version   GIF version

Theorem gsummoncoe1 21385
Description: A coefficient of the polynomial represented as a sum of scaled monomials is the coefficient of the corresponding scaled monomial. (Contributed by AV, 13-Oct-2019.)
Hypotheses
Ref Expression
gsummonply1.p 𝑃 = (Poly1𝑅)
gsummonply1.b 𝐵 = (Base‘𝑃)
gsummonply1.x 𝑋 = (var1𝑅)
gsummonply1.e = (.g‘(mulGrp‘𝑃))
gsummonply1.r (𝜑𝑅 ∈ Ring)
gsummonply1.k 𝐾 = (Base‘𝑅)
gsummonply1.m = ( ·𝑠𝑃)
gsummonply1.0 0 = (0g𝑅)
gsummonply1.a (𝜑 → ∀𝑘 ∈ ℕ0 𝐴𝐾)
gsummonply1.f (𝜑 → (𝑘 ∈ ℕ0𝐴) finSupp 0 )
gsummonply1.l (𝜑𝐿 ∈ ℕ0)
Assertion
Ref Expression
gsummoncoe1 (𝜑 → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))))‘𝐿) = 𝐿 / 𝑘𝐴)
Distinct variable groups:   𝐵,𝑘   𝑘,𝐾   𝜑,𝑘   ,𝑘   𝑘,𝐿   𝑃,𝑘   𝑅,𝑘   0 ,𝑘   ,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝑋(𝑘)

Proof of Theorem gsummoncoe1
Dummy variables 𝑛 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsummonply1.f . . 3 (𝜑 → (𝑘 ∈ ℕ0𝐴) finSupp 0 )
2 gsummonply1.a . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ0 𝐴𝐾)
32r19.21bi 3132 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝐴𝐾)
43fmpttd 6971 . . . . 5 (𝜑 → (𝑘 ∈ ℕ0𝐴):ℕ0𝐾)
5 gsummonply1.k . . . . . . . 8 𝐾 = (Base‘𝑅)
65fvexi 6770 . . . . . . 7 𝐾 ∈ V
76a1i 11 . . . . . 6 (𝜑𝐾 ∈ V)
8 nn0ex 12169 . . . . . 6 0 ∈ V
9 elmapg 8586 . . . . . 6 ((𝐾 ∈ V ∧ ℕ0 ∈ V) → ((𝑘 ∈ ℕ0𝐴) ∈ (𝐾m0) ↔ (𝑘 ∈ ℕ0𝐴):ℕ0𝐾))
107, 8, 9sylancl 585 . . . . 5 (𝜑 → ((𝑘 ∈ ℕ0𝐴) ∈ (𝐾m0) ↔ (𝑘 ∈ ℕ0𝐴):ℕ0𝐾))
114, 10mpbird 256 . . . 4 (𝜑 → (𝑘 ∈ ℕ0𝐴) ∈ (𝐾m0))
12 gsummonply1.0 . . . . 5 0 = (0g𝑅)
1312fvexi 6770 . . . 4 0 ∈ V
14 fsuppmapnn0ub 13643 . . . 4 (((𝑘 ∈ ℕ0𝐴) ∈ (𝐾m0) ∧ 0 ∈ V) → ((𝑘 ∈ ℕ0𝐴) finSupp 0 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑘 ∈ ℕ0𝐴)‘𝑥) = 0 )))
1511, 13, 14sylancl 585 . . 3 (𝜑 → ((𝑘 ∈ ℕ0𝐴) finSupp 0 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑘 ∈ ℕ0𝐴)‘𝑥) = 0 )))
161, 15mpd 15 . 2 (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑘 ∈ ℕ0𝐴)‘𝑥) = 0 ))
17 simpr 484 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
182ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 𝐴𝐾)
19 rspcsbela 4366 . . . . . . . . . 10 ((𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐴𝐾) → 𝑥 / 𝑘𝐴𝐾)
2017, 18, 19syl2anc 583 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 / 𝑘𝐴𝐾)
21 eqid 2738 . . . . . . . . . 10 (𝑘 ∈ ℕ0𝐴) = (𝑘 ∈ ℕ0𝐴)
2221fvmpts 6860 . . . . . . . . 9 ((𝑥 ∈ ℕ0𝑥 / 𝑘𝐴𝐾) → ((𝑘 ∈ ℕ0𝐴)‘𝑥) = 𝑥 / 𝑘𝐴)
2317, 20, 22syl2anc 583 . . . . . . . 8 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0𝐴)‘𝑥) = 𝑥 / 𝑘𝐴)
2423eqeq1d 2740 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (((𝑘 ∈ ℕ0𝐴)‘𝑥) = 0𝑥 / 𝑘𝐴 = 0 ))
2524imbi2d 340 . . . . . 6 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ((𝑘 ∈ ℕ0𝐴)‘𝑥) = 0 ) ↔ (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )))
2625biimpd 228 . . . . 5 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ((𝑘 ∈ ℕ0𝐴)‘𝑥) = 0 ) → (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )))
2726ralimdva 3102 . . . 4 ((𝜑𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑘 ∈ ℕ0𝐴)‘𝑥) = 0 ) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )))
28 gsummonply1.b . . . . . . . . 9 𝐵 = (Base‘𝑃)
29 eqid 2738 . . . . . . . . 9 (0g𝑃) = (0g𝑃)
30 gsummonply1.r . . . . . . . . . . 11 (𝜑𝑅 ∈ Ring)
31 gsummonply1.p . . . . . . . . . . . 12 𝑃 = (Poly1𝑅)
3231ply1ring 21329 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
33 ringcmn 19735 . . . . . . . . . . 11 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
3430, 32, 333syl 18 . . . . . . . . . 10 (𝜑𝑃 ∈ CMnd)
3534ad2antrr 722 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → 𝑃 ∈ CMnd)
36303ad2ant1 1131 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0𝐴𝐾) → 𝑅 ∈ Ring)
37 simp3 1136 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0𝐴𝐾) → 𝐴𝐾)
38 simp2 1135 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0𝐴𝐾) → 𝑘 ∈ ℕ0)
39 gsummonply1.x . . . . . . . . . . . . . . 15 𝑋 = (var1𝑅)
40 gsummonply1.m . . . . . . . . . . . . . . 15 = ( ·𝑠𝑃)
41 eqid 2738 . . . . . . . . . . . . . . 15 (mulGrp‘𝑃) = (mulGrp‘𝑃)
42 gsummonply1.e . . . . . . . . . . . . . . 15 = (.g‘(mulGrp‘𝑃))
435, 31, 39, 40, 41, 42, 28ply1tmcl 21353 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐴𝐾𝑘 ∈ ℕ0) → (𝐴 (𝑘 𝑋)) ∈ 𝐵)
4436, 37, 38, 43syl3anc 1369 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0𝐴𝐾) → (𝐴 (𝑘 𝑋)) ∈ 𝐵)
45443expia 1119 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝐾 → (𝐴 (𝑘 𝑋)) ∈ 𝐵))
4645ralimdva 3102 . . . . . . . . . . 11 (𝜑 → (∀𝑘 ∈ ℕ0 𝐴𝐾 → ∀𝑘 ∈ ℕ0 (𝐴 (𝑘 𝑋)) ∈ 𝐵))
472, 46mpd 15 . . . . . . . . . 10 (𝜑 → ∀𝑘 ∈ ℕ0 (𝐴 (𝑘 𝑋)) ∈ 𝐵)
4847ad2antrr 722 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → ∀𝑘 ∈ ℕ0 (𝐴 (𝑘 𝑋)) ∈ 𝐵)
49 simplr 765 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → 𝑠 ∈ ℕ0)
50 nfv 1918 . . . . . . . . . . . . 13 𝑘 𝑠 < 𝑥
51 nfcsb1v 3853 . . . . . . . . . . . . . 14 𝑘𝑥 / 𝑘𝐴
5251nfeq1 2921 . . . . . . . . . . . . 13 𝑘𝑥 / 𝑘𝐴 = 0
5350, 52nfim 1900 . . . . . . . . . . . 12 𝑘(𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )
54 nfv 1918 . . . . . . . . . . . 12 𝑥(𝑠 < 𝑘𝑘 / 𝑘𝐴 = 0 )
55 breq2 5074 . . . . . . . . . . . . 13 (𝑥 = 𝑘 → (𝑠 < 𝑥𝑠 < 𝑘))
56 csbeq1 3831 . . . . . . . . . . . . . 14 (𝑥 = 𝑘𝑥 / 𝑘𝐴 = 𝑘 / 𝑘𝐴)
5756eqeq1d 2740 . . . . . . . . . . . . 13 (𝑥 = 𝑘 → (𝑥 / 𝑘𝐴 = 0𝑘 / 𝑘𝐴 = 0 ))
5855, 57imbi12d 344 . . . . . . . . . . . 12 (𝑥 = 𝑘 → ((𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 ) ↔ (𝑠 < 𝑘𝑘 / 𝑘𝐴 = 0 )))
5953, 54, 58cbvralw 3363 . . . . . . . . . . 11 (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 ) ↔ ∀𝑘 ∈ ℕ0 (𝑠 < 𝑘𝑘 / 𝑘𝐴 = 0 ))
60 csbid 3841 . . . . . . . . . . . . . . 15 𝑘 / 𝑘𝐴 = 𝐴
6160eqeq1i 2743 . . . . . . . . . . . . . 14 (𝑘 / 𝑘𝐴 = 0𝐴 = 0 )
62 oveq1 7262 . . . . . . . . . . . . . . . 16 (𝐴 = 0 → (𝐴 (𝑘 𝑋)) = ( 0 (𝑘 𝑋)))
6331ply1sca 21334 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
6430, 63syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑅 = (Scalar‘𝑃))
6564fveq2d 6760 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (0g𝑅) = (0g‘(Scalar‘𝑃)))
6612, 65eqtrid 2790 . . . . . . . . . . . . . . . . . . 19 (𝜑0 = (0g‘(Scalar‘𝑃)))
6766ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 0 = (0g‘(Scalar‘𝑃)))
6867oveq1d 7270 . . . . . . . . . . . . . . . . 17 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ( 0 (𝑘 𝑋)) = ((0g‘(Scalar‘𝑃)) (𝑘 𝑋)))
6931ply1lmod 21333 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
7030, 69syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ LMod)
7170ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑃 ∈ LMod)
7241ringmgp 19704 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
7330, 32, 723syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (mulGrp‘𝑃) ∈ Mnd)
7473ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (mulGrp‘𝑃) ∈ Mnd)
75 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
76 eqid 2738 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝑃) = (Base‘𝑃)
7739, 31, 76vr1cl 21298 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
7830, 77syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑋 ∈ (Base‘𝑃))
7978ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑋 ∈ (Base‘𝑃))
8041, 76mgpbas 19641 . . . . . . . . . . . . . . . . . . . 20 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
8180, 42mulgnn0cl 18635 . . . . . . . . . . . . . . . . . . 19 (((mulGrp‘𝑃) ∈ Mnd ∧ 𝑘 ∈ ℕ0𝑋 ∈ (Base‘𝑃)) → (𝑘 𝑋) ∈ (Base‘𝑃))
8274, 75, 79, 81syl3anc 1369 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ (Base‘𝑃))
83 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (Scalar‘𝑃) = (Scalar‘𝑃)
84 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝑃))
8576, 83, 40, 84, 29lmod0vs 20071 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ LMod ∧ (𝑘 𝑋) ∈ (Base‘𝑃)) → ((0g‘(Scalar‘𝑃)) (𝑘 𝑋)) = (0g𝑃))
8671, 82, 85syl2anc 583 . . . . . . . . . . . . . . . . 17 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((0g‘(Scalar‘𝑃)) (𝑘 𝑋)) = (0g𝑃))
8768, 86eqtrd 2778 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ( 0 (𝑘 𝑋)) = (0g𝑃))
8862, 87sylan9eqr 2801 . . . . . . . . . . . . . . 15 ((((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0 ) → (𝐴 (𝑘 𝑋)) = (0g𝑃))
8988ex 412 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴 = 0 → (𝐴 (𝑘 𝑋)) = (0g𝑃)))
9061, 89syl5bi 241 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 / 𝑘𝐴 = 0 → (𝐴 (𝑘 𝑋)) = (0g𝑃)))
9190imim2d 57 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑠 < 𝑘𝑘 / 𝑘𝐴 = 0 ) → (𝑠 < 𝑘 → (𝐴 (𝑘 𝑋)) = (0g𝑃))))
9291ralimdva 3102 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ℕ0) → (∀𝑘 ∈ ℕ0 (𝑠 < 𝑘𝑘 / 𝑘𝐴 = 0 ) → ∀𝑘 ∈ ℕ0 (𝑠 < 𝑘 → (𝐴 (𝑘 𝑋)) = (0g𝑃))))
9359, 92syl5bi 241 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 ) → ∀𝑘 ∈ ℕ0 (𝑠 < 𝑘 → (𝐴 (𝑘 𝑋)) = (0g𝑃))))
9493imp 406 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → ∀𝑘 ∈ ℕ0 (𝑠 < 𝑘 → (𝐴 (𝑘 𝑋)) = (0g𝑃)))
9528, 29, 35, 48, 49, 94gsummptnn0fz 19502 . . . . . . . 8 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))) = (𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ (𝐴 (𝑘 𝑋)))))
9695fveq2d 6760 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋))))) = (coe1‘(𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ (𝐴 (𝑘 𝑋))))))
9796fveq1d 6758 . . . . . 6 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))))‘𝐿) = ((coe1‘(𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ (𝐴 (𝑘 𝑋)))))‘𝐿))
9830ad2antrr 722 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → 𝑅 ∈ Ring)
99 gsummonply1.l . . . . . . . 8 (𝜑𝐿 ∈ ℕ0)
10099ad2antrr 722 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → 𝐿 ∈ ℕ0)
101 elfznn0 13278 . . . . . . . . . . 11 (𝑘 ∈ (0...𝑠) → 𝑘 ∈ ℕ0)
102 simpll 763 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝜑)
1033adantlr 711 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐴𝐾)
104102, 75, 1033jca 1126 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝜑𝑘 ∈ ℕ0𝐴𝐾))
105101, 104sylan2 592 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑠)) → (𝜑𝑘 ∈ ℕ0𝐴𝐾))
106105, 44syl 17 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑠)) → (𝐴 (𝑘 𝑋)) ∈ 𝐵)
107106ralrimiva 3107 . . . . . . . 8 ((𝜑𝑠 ∈ ℕ0) → ∀𝑘 ∈ (0...𝑠)(𝐴 (𝑘 𝑋)) ∈ 𝐵)
108107adantr 480 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → ∀𝑘 ∈ (0...𝑠)(𝐴 (𝑘 𝑋)) ∈ 𝐵)
109 fzfid 13621 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (0...𝑠) ∈ Fin)
11031, 28, 98, 100, 108, 109coe1fzgsumd 21383 . . . . . 6 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → ((coe1‘(𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ (𝐴 (𝑘 𝑋)))))‘𝐿) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘(𝐴 (𝑘 𝑋)))‘𝐿))))
111 nfv 1918 . . . . . . . . . 10 𝑘(𝜑𝑠 ∈ ℕ0)
112 nfcv 2906 . . . . . . . . . . 11 𝑘0
113112, 53nfralw 3149 . . . . . . . . . 10 𝑘𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )
114111, 113nfan 1903 . . . . . . . . 9 𝑘((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 ))
11530ad3antrrr 726 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → 𝑅 ∈ Ring)
1163expcom 413 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (𝜑𝐴𝐾))
117116, 101syl11 33 . . . . . . . . . . . . 13 (𝜑 → (𝑘 ∈ (0...𝑠) → 𝐴𝐾))
118117ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑘 ∈ (0...𝑠) → 𝐴𝐾))
119118imp 406 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → 𝐴𝐾)
120101adantl 481 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → 𝑘 ∈ ℕ0)
12112, 5, 31, 39, 40, 41, 42coe1tm 21354 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐴𝐾𝑘 ∈ ℕ0) → (coe1‘(𝐴 (𝑘 𝑋))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑘, 𝐴, 0 )))
122115, 119, 120, 121syl3anc 1369 . . . . . . . . . 10 ((((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → (coe1‘(𝐴 (𝑘 𝑋))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑘, 𝐴, 0 )))
123 eqeq1 2742 . . . . . . . . . . . 12 (𝑛 = 𝐿 → (𝑛 = 𝑘𝐿 = 𝑘))
124123ifbid 4479 . . . . . . . . . . 11 (𝑛 = 𝐿 → if(𝑛 = 𝑘, 𝐴, 0 ) = if(𝐿 = 𝑘, 𝐴, 0 ))
125124adantl 481 . . . . . . . . . 10 (((((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) ∧ 𝑛 = 𝐿) → if(𝑛 = 𝑘, 𝐴, 0 ) = if(𝐿 = 𝑘, 𝐴, 0 ))
12699ad3antrrr 726 . . . . . . . . . 10 ((((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → 𝐿 ∈ ℕ0)
1275, 12ring0cl 19723 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 0𝐾)
12830, 127syl 17 . . . . . . . . . . . 12 (𝜑0𝐾)
129128ad3antrrr 726 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → 0𝐾)
130119, 129ifcld 4502 . . . . . . . . . 10 ((((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → if(𝐿 = 𝑘, 𝐴, 0 ) ∈ 𝐾)
131122, 125, 126, 130fvmptd 6864 . . . . . . . . 9 ((((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → ((coe1‘(𝐴 (𝑘 𝑋)))‘𝐿) = if(𝐿 = 𝑘, 𝐴, 0 ))
132114, 131mpteq2da 5168 . . . . . . . 8 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑘 ∈ (0...𝑠) ↦ ((coe1‘(𝐴 (𝑘 𝑋)))‘𝐿)) = (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 )))
133132oveq2d 7271 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘(𝐴 (𝑘 𝑋)))‘𝐿))) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))))
134 breq2 5074 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐿 → (𝑠 < 𝑥𝑠 < 𝐿))
135 csbeq1 3831 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐿𝑥 / 𝑘𝐴 = 𝐿 / 𝑘𝐴)
136135eqeq1d 2740 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐿 → (𝑥 / 𝑘𝐴 = 0𝐿 / 𝑘𝐴 = 0 ))
137134, 136imbi12d 344 . . . . . . . . . . . . . . 15 (𝑥 = 𝐿 → ((𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 ) ↔ (𝑠 < 𝐿𝐿 / 𝑘𝐴 = 0 )))
138137rspcva 3550 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑠 < 𝐿𝐿 / 𝑘𝐴 = 0 ))
139 nfv 1918 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘(𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿))
140 nfcsb1v 3853 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘𝐿 / 𝑘𝐴
141140nfeq1 2921 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘𝐿 / 𝑘𝐴 = 0
142139, 141nfan 1903 . . . . . . . . . . . . . . . . . . . . . 22 𝑘((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) ∧ 𝐿 / 𝑘𝐴 = 0 )
143 elfz2nn0 13276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 ∈ (0...𝑠) ↔ (𝑘 ∈ ℕ0𝑠 ∈ ℕ0𝑘𝑠))
144 nn0re 12172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
145144ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → 𝑘 ∈ ℝ)
146 nn0re 12172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑠 ∈ ℕ0𝑠 ∈ ℝ)
147146adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) → 𝑠 ∈ ℝ)
148147adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → 𝑠 ∈ ℝ)
149 nn0re 12172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
150149adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → 𝐿 ∈ ℝ)
151 lelttr 10996 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑘 ∈ ℝ ∧ 𝑠 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝑘𝑠𝑠 < 𝐿) → 𝑘 < 𝐿))
152145, 148, 150, 151syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → ((𝑘𝑠𝑠 < 𝐿) → 𝑘 < 𝐿))
153 animorr 975 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) ∧ 𝑘 < 𝐿) → (𝐿 < 𝑘𝑘 < 𝐿))
154 df-ne 2943 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐿𝑘 ↔ ¬ 𝐿 = 𝑘)
155144adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) → 𝑘 ∈ ℝ)
156 lttri2 10988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝐿 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐿𝑘 ↔ (𝐿 < 𝑘𝑘 < 𝐿)))
157149, 155, 156syl2anr 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → (𝐿𝑘 ↔ (𝐿 < 𝑘𝑘 < 𝐿)))
158157adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) ∧ 𝑘 < 𝐿) → (𝐿𝑘 ↔ (𝐿 < 𝑘𝑘 < 𝐿)))
159154, 158bitr3id 284 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) ∧ 𝑘 < 𝐿) → (¬ 𝐿 = 𝑘 ↔ (𝐿 < 𝑘𝑘 < 𝐿)))
160153, 159mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) ∧ 𝑘 < 𝐿) → ¬ 𝐿 = 𝑘)
161160ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → (𝑘 < 𝐿 → ¬ 𝐿 = 𝑘))
162152, 161syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → ((𝑘𝑠𝑠 < 𝐿) → ¬ 𝐿 = 𝑘))
163162exp4b 430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) → (𝐿 ∈ ℕ0 → (𝑘𝑠 → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘))))
164163expimpd 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑘 ∈ ℕ0 → ((𝑠 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑘𝑠 → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘))))
165164com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑘 ∈ ℕ0 → (𝑘𝑠 → ((𝑠 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘))))
166165imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑘 ∈ ℕ0𝑘𝑠) → ((𝑠 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘)))
1671663adant2 1129 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0𝑘𝑠) → ((𝑠 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘)))
168143, 167sylbi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 ∈ (0...𝑠) → ((𝑠 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘)))
169168expd 415 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 ∈ (0...𝑠) → (𝑠 ∈ ℕ0 → (𝐿 ∈ ℕ0 → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘))))
17099, 169syl7 74 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 ∈ (0...𝑠) → (𝑠 ∈ ℕ0 → (𝜑 → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘))))
171170com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑠 ∈ ℕ0 → (𝑘 ∈ (0...𝑠) → (𝜑 → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘))))
172171com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 ∈ ℕ0 → (𝑠 < 𝐿 → (𝜑 → (𝑘 ∈ (0...𝑠) → ¬ 𝐿 = 𝑘))))
173172imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑠 ∈ ℕ0𝑠 < 𝐿) → (𝜑 → (𝑘 ∈ (0...𝑠) → ¬ 𝐿 = 𝑘)))
174173impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) → (𝑘 ∈ (0...𝑠) → ¬ 𝐿 = 𝑘))
175174adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) ∧ 𝐿 / 𝑘𝐴 = 0 ) → (𝑘 ∈ (0...𝑠) → ¬ 𝐿 = 𝑘))
176175imp 406 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) ∧ 𝐿 / 𝑘𝐴 = 0 ) ∧ 𝑘 ∈ (0...𝑠)) → ¬ 𝐿 = 𝑘)
177176iffalsed 4467 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) ∧ 𝐿 / 𝑘𝐴 = 0 ) ∧ 𝑘 ∈ (0...𝑠)) → if(𝐿 = 𝑘, 𝐴, 0 ) = 0 )
178142, 177mpteq2da 5168 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) ∧ 𝐿 / 𝑘𝐴 = 0 ) → (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 )) = (𝑘 ∈ (0...𝑠) ↦ 0 ))
179178oveq2d 7271 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) ∧ 𝐿 / 𝑘𝐴 = 0 ) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ 0 )))
180 ringmnd 19708 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
18130, 180syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑅 ∈ Mnd)
182181adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) → 𝑅 ∈ Mnd)
183 ovex 7288 . . . . . . . . . . . . . . . . . . . . . 22 (0...𝑠) ∈ V
18412gsumz 18389 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Mnd ∧ (0...𝑠) ∈ V) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ 0 )) = 0 )
185182, 183, 184sylancl 585 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ 0 )) = 0 )
186185adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) ∧ 𝐿 / 𝑘𝐴 = 0 ) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ 0 )) = 0 )
187 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝐿 / 𝑘𝐴 = 0𝐿 / 𝑘𝐴 = 0 )
188187eqcomd 2744 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 / 𝑘𝐴 = 00 = 𝐿 / 𝑘𝐴)
189188adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) ∧ 𝐿 / 𝑘𝐴 = 0 ) → 0 = 𝐿 / 𝑘𝐴)
190179, 186, 1893eqtrd 2782 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) ∧ 𝐿 / 𝑘𝐴 = 0 ) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴)
191190ex 412 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) → (𝐿 / 𝑘𝐴 = 0 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴))
192191expr 456 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ ℕ0) → (𝑠 < 𝐿 → (𝐿 / 𝑘𝐴 = 0 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴)))
193192a2d 29 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ ℕ0) → ((𝑠 < 𝐿𝐿 / 𝑘𝐴 = 0 ) → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴)))
194193ex 412 . . . . . . . . . . . . . . 15 (𝜑 → (𝑠 ∈ ℕ0 → ((𝑠 < 𝐿𝐿 / 𝑘𝐴 = 0 ) → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴))))
195194com13 88 . . . . . . . . . . . . . 14 ((𝑠 < 𝐿𝐿 / 𝑘𝐴 = 0 ) → (𝑠 ∈ ℕ0 → (𝜑 → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴))))
196138, 195syl 17 . . . . . . . . . . . . 13 ((𝐿 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑠 ∈ ℕ0 → (𝜑 → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴))))
197196ex 412 . . . . . . . . . . . 12 (𝐿 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 ) → (𝑠 ∈ ℕ0 → (𝜑 → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴)))))
198197com24 95 . . . . . . . . . . 11 (𝐿 ∈ ℕ0 → (𝜑 → (𝑠 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 ) → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴)))))
19999, 198mpcom 38 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 ) → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴))))
200199imp31 417 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴))
201200com12 32 . . . . . . . 8 (𝑠 < 𝐿 → (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴))
202 pm3.2 469 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℕ0) → (¬ 𝑠 < 𝐿 → ((𝜑𝑠 ∈ ℕ0) ∧ ¬ 𝑠 < 𝐿)))
203202adantr 480 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (¬ 𝑠 < 𝐿 → ((𝜑𝑠 ∈ ℕ0) ∧ ¬ 𝑠 < 𝐿)))
204181ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℕ0) ∧ ¬ 𝑠 < 𝐿) → 𝑅 ∈ Mnd)
205183a1i 11 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℕ0) ∧ ¬ 𝑠 < 𝐿) → (0...𝑠) ∈ V)
20699nn0red 12224 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ ℝ)
207 lenlt 10984 . . . . . . . . . . . . 13 ((𝐿 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (𝐿𝑠 ↔ ¬ 𝑠 < 𝐿))
208206, 146, 207syl2an 595 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℕ0) → (𝐿𝑠 ↔ ¬ 𝑠 < 𝐿))
20999ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℕ0) ∧ 𝐿𝑠) → 𝐿 ∈ ℕ0)
210 simplr 765 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℕ0) ∧ 𝐿𝑠) → 𝑠 ∈ ℕ0)
211 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℕ0) ∧ 𝐿𝑠) → 𝐿𝑠)
212 elfz2nn0 13276 . . . . . . . . . . . . . 14 (𝐿 ∈ (0...𝑠) ↔ (𝐿 ∈ ℕ0𝑠 ∈ ℕ0𝐿𝑠))
213209, 210, 211, 212syl3anbrc 1341 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℕ0) ∧ 𝐿𝑠) → 𝐿 ∈ (0...𝑠))
214213ex 412 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℕ0) → (𝐿𝑠𝐿 ∈ (0...𝑠)))
215208, 214sylbird 259 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ℕ0) → (¬ 𝑠 < 𝐿𝐿 ∈ (0...𝑠)))
216215imp 406 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℕ0) ∧ ¬ 𝑠 < 𝐿) → 𝐿 ∈ (0...𝑠))
217 eqcom 2745 . . . . . . . . . . . 12 (𝐿 = 𝑘𝑘 = 𝐿)
218 ifbi 4478 . . . . . . . . . . . 12 ((𝐿 = 𝑘𝑘 = 𝐿) → if(𝐿 = 𝑘, 𝐴, 0 ) = if(𝑘 = 𝐿, 𝐴, 0 ))
219217, 218ax-mp 5 . . . . . . . . . . 11 if(𝐿 = 𝑘, 𝐴, 0 ) = if(𝑘 = 𝐿, 𝐴, 0 )
220219mpteq2i 5175 . . . . . . . . . 10 (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 )) = (𝑘 ∈ (0...𝑠) ↦ if(𝑘 = 𝐿, 𝐴, 0 ))
2213, 5eleqtrdi 2849 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ0) → 𝐴 ∈ (Base‘𝑅))
222221ex 412 . . . . . . . . . . . . . 14 (𝜑 → (𝑘 ∈ ℕ0𝐴 ∈ (Base‘𝑅)))
223222adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ ℕ0) → (𝑘 ∈ ℕ0𝐴 ∈ (Base‘𝑅)))
224223, 101impel 505 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑠)) → 𝐴 ∈ (Base‘𝑅))
225224ralrimiva 3107 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ℕ0) → ∀𝑘 ∈ (0...𝑠)𝐴 ∈ (Base‘𝑅))
226225adantr 480 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℕ0) ∧ ¬ 𝑠 < 𝐿) → ∀𝑘 ∈ (0...𝑠)𝐴 ∈ (Base‘𝑅))
22712, 204, 205, 216, 220, 226gsummpt1n0 19481 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ ¬ 𝑠 < 𝐿) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴)
228203, 227syl6com 37 . . . . . . . 8 𝑠 < 𝐿 → (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴))
229201, 228pm2.61i 182 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴)
230133, 229eqtrd 2778 . . . . . 6 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘(𝐴 (𝑘 𝑋)))‘𝐿))) = 𝐿 / 𝑘𝐴)
23197, 110, 2303eqtrd 2782 . . . . 5 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))))‘𝐿) = 𝐿 / 𝑘𝐴)
232231ex 412 . . . 4 ((𝜑𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 ) → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))))‘𝐿) = 𝐿 / 𝑘𝐴))
23327, 232syld 47 . . 3 ((𝜑𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑘 ∈ ℕ0𝐴)‘𝑥) = 0 ) → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))))‘𝐿) = 𝐿 / 𝑘𝐴))
234233rexlimdva 3212 . 2 (𝜑 → (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑘 ∈ ℕ0𝐴)‘𝑥) = 0 ) → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))))‘𝐿) = 𝐿 / 𝑘𝐴))
23516, 234mpd 15 1 (𝜑 → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))))‘𝐿) = 𝐿 / 𝑘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  csb 3828  ifcif 4456   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573   finSupp cfsupp 9058  cr 10801  0cc0 10802   < clt 10940  cle 10941  0cn0 12163  ...cfz 13168  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067   Σg cgsu 17068  Mndcmnd 18300  .gcmg 18615  CMndccmn 19301  mulGrpcmgp 19635  Ringcrg 19698  LModclmod 20038  var1cv1 21257  Poly1cpl1 21258  coe1cco1 21259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-tset 16907  df-ple 16908  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-subrg 19937  df-lmod 20040  df-lss 20109  df-psr 21022  df-mvr 21023  df-mpl 21024  df-opsr 21026  df-psr1 21261  df-vr1 21262  df-ply1 21263  df-coe1 21264
This theorem is referenced by:  gsumply1eq  21386  pm2mpf1lem  21851  pm2mpcoe1  21857  pm2mpmhmlem2  21876  cayleyhamilton1  21949  ply1mulgsum  45619
  Copyright terms: Public domain W3C validator