Step | Hyp | Ref
| Expression |
1 | | gsummonply1.f |
. . 3
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐴) finSupp 0 ) |
2 | | gsummonply1.a |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐴 ∈ 𝐾) |
3 | 2 | r19.21bi 3134 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ 𝐾) |
4 | 3 | fmpttd 6989 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐴):ℕ0⟶𝐾) |
5 | | gsummonply1.k |
. . . . . . . 8
⊢ 𝐾 = (Base‘𝑅) |
6 | 5 | fvexi 6788 |
. . . . . . 7
⊢ 𝐾 ∈ V |
7 | 6 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ V) |
8 | | nn0ex 12239 |
. . . . . 6
⊢
ℕ0 ∈ V |
9 | | elmapg 8628 |
. . . . . 6
⊢ ((𝐾 ∈ V ∧
ℕ0 ∈ V) → ((𝑘 ∈ ℕ0 ↦ 𝐴) ∈ (𝐾 ↑m ℕ0)
↔ (𝑘 ∈
ℕ0 ↦ 𝐴):ℕ0⟶𝐾)) |
10 | 7, 8, 9 | sylancl 586 |
. . . . 5
⊢ (𝜑 → ((𝑘 ∈ ℕ0 ↦ 𝐴) ∈ (𝐾 ↑m ℕ0)
↔ (𝑘 ∈
ℕ0 ↦ 𝐴):ℕ0⟶𝐾)) |
11 | 4, 10 | mpbird 256 |
. . . 4
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐴) ∈ (𝐾 ↑m
ℕ0)) |
12 | | gsummonply1.0 |
. . . . 5
⊢ 0 =
(0g‘𝑅) |
13 | 12 | fvexi 6788 |
. . . 4
⊢ 0 ∈
V |
14 | | fsuppmapnn0ub 13715 |
. . . 4
⊢ (((𝑘 ∈ ℕ0
↦ 𝐴) ∈ (𝐾 ↑m
ℕ0) ∧ 0 ∈ V) → ((𝑘 ∈ ℕ0
↦ 𝐴) finSupp 0 →
∃𝑠 ∈
ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑘 ∈ ℕ0 ↦ 𝐴)‘𝑥) = 0 ))) |
15 | 11, 13, 14 | sylancl 586 |
. . 3
⊢ (𝜑 → ((𝑘 ∈ ℕ0 ↦ 𝐴) finSupp 0 → ∃𝑠 ∈ ℕ0
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 → ((𝑘 ∈ ℕ0
↦ 𝐴)‘𝑥) = 0 ))) |
16 | 1, 15 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑠 < 𝑥 → ((𝑘 ∈ ℕ0 ↦ 𝐴)‘𝑥) = 0 )) |
17 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ 𝑥 ∈
ℕ0) |
18 | 2 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ ∀𝑘 ∈
ℕ0 𝐴
∈ 𝐾) |
19 | | rspcsbela 4369 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℕ0
∧ ∀𝑘 ∈
ℕ0 𝐴
∈ 𝐾) →
⦋𝑥 / 𝑘⦌𝐴 ∈ 𝐾) |
20 | 17, 18, 19 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ ⦋𝑥 /
𝑘⦌𝐴 ∈ 𝐾) |
21 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
↦ 𝐴) = (𝑘 ∈ ℕ0
↦ 𝐴) |
22 | 21 | fvmpts 6878 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℕ0
∧ ⦋𝑥 /
𝑘⦌𝐴 ∈ 𝐾) → ((𝑘 ∈ ℕ0 ↦ 𝐴)‘𝑥) = ⦋𝑥 / 𝑘⦌𝐴) |
23 | 17, 20, 22 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ ((𝑘 ∈
ℕ0 ↦ 𝐴)‘𝑥) = ⦋𝑥 / 𝑘⦌𝐴) |
24 | 23 | eqeq1d 2740 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ (((𝑘 ∈
ℕ0 ↦ 𝐴)‘𝑥) = 0 ↔
⦋𝑥 / 𝑘⦌𝐴 = 0 )) |
25 | 24 | imbi2d 341 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ ((𝑠 < 𝑥 → ((𝑘 ∈ ℕ0 ↦ 𝐴)‘𝑥) = 0 ) ↔ (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐴 = 0 ))) |
26 | 25 | biimpd 228 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ ((𝑠 < 𝑥 → ((𝑘 ∈ ℕ0 ↦ 𝐴)‘𝑥) = 0 ) → (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐴 = 0 ))) |
27 | 26 | ralimdva 3108 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ0) →
(∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 → ((𝑘 ∈ ℕ0
↦ 𝐴)‘𝑥) = 0 ) → ∀𝑥 ∈ ℕ0
(𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐴 = 0 ))) |
28 | | gsummonply1.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝑃) |
29 | | eqid 2738 |
. . . . . . . . 9
⊢
(0g‘𝑃) = (0g‘𝑃) |
30 | | gsummonply1.r |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ Ring) |
31 | | gsummonply1.p |
. . . . . . . . . . . 12
⊢ 𝑃 = (Poly1‘𝑅) |
32 | 31 | ply1ring 21419 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
33 | | ringcmn 19820 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ Ring → 𝑃 ∈ CMnd) |
34 | 30, 32, 33 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ CMnd) |
35 | 34 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) → 𝑃 ∈ CMnd) |
36 | 30 | 3ad2ant1 1132 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾) → 𝑅 ∈ Ring) |
37 | | simp3 1137 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾) → 𝐴 ∈ 𝐾) |
38 | | simp2 1136 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾) → 𝑘 ∈ ℕ0) |
39 | | gsummonply1.x |
. . . . . . . . . . . . . . 15
⊢ 𝑋 = (var1‘𝑅) |
40 | | gsummonply1.m |
. . . . . . . . . . . . . . 15
⊢ ∗ = (
·𝑠 ‘𝑃) |
41 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(mulGrp‘𝑃) =
(mulGrp‘𝑃) |
42 | | gsummonply1.e |
. . . . . . . . . . . . . . 15
⊢ ↑ =
(.g‘(mulGrp‘𝑃)) |
43 | 5, 31, 39, 40, 41, 42, 28 | ply1tmcl 21443 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐾 ∧ 𝑘 ∈ ℕ0) → (𝐴 ∗ (𝑘 ↑ 𝑋)) ∈ 𝐵) |
44 | 36, 37, 38, 43 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾) → (𝐴 ∗ (𝑘 ↑ 𝑋)) ∈ 𝐵) |
45 | 44 | 3expia 1120 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴 ∈ 𝐾 → (𝐴 ∗ (𝑘 ↑ 𝑋)) ∈ 𝐵)) |
46 | 45 | ralimdva 3108 |
. . . . . . . . . . 11
⊢ (𝜑 → (∀𝑘 ∈ ℕ0
𝐴 ∈ 𝐾 → ∀𝑘 ∈ ℕ0 (𝐴 ∗ (𝑘 ↑ 𝑋)) ∈ 𝐵)) |
47 | 2, 46 | mpd 15 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝐴 ∗ (𝑘 ↑ 𝑋)) ∈ 𝐵) |
48 | 47 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) → ∀𝑘 ∈ ℕ0
(𝐴 ∗ (𝑘 ↑ 𝑋)) ∈ 𝐵) |
49 | | simplr 766 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) → 𝑠 ∈
ℕ0) |
50 | | nfv 1917 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘 𝑠 < 𝑥 |
51 | | nfcsb1v 3857 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋𝑥 / 𝑘⦌𝐴 |
52 | 51 | nfeq1 2922 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘⦋𝑥 / 𝑘⦌𝐴 = 0 |
53 | 50, 52 | nfim 1899 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘(𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐴 = 0 ) |
54 | | nfv 1917 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(𝑠 < 𝑘 → ⦋𝑘 / 𝑘⦌𝐴 = 0 ) |
55 | | breq2 5078 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑘 → (𝑠 < 𝑥 ↔ 𝑠 < 𝑘)) |
56 | | csbeq1 3835 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑘 → ⦋𝑥 / 𝑘⦌𝐴 = ⦋𝑘 / 𝑘⦌𝐴) |
57 | 56 | eqeq1d 2740 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑘 → (⦋𝑥 / 𝑘⦌𝐴 = 0 ↔
⦋𝑘 / 𝑘⦌𝐴 = 0 )) |
58 | 55, 57 | imbi12d 345 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑘 → ((𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐴 = 0 ) ↔ (𝑠 < 𝑘 → ⦋𝑘 / 𝑘⦌𝐴 = 0 ))) |
59 | 53, 54, 58 | cbvralw 3373 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 ) ↔ ∀𝑘 ∈ ℕ0
(𝑠 < 𝑘 → ⦋𝑘 / 𝑘⦌𝐴 = 0 )) |
60 | | csbid 3845 |
. . . . . . . . . . . . . . 15
⊢
⦋𝑘 /
𝑘⦌𝐴 = 𝐴 |
61 | 60 | eqeq1i 2743 |
. . . . . . . . . . . . . 14
⊢
(⦋𝑘 /
𝑘⦌𝐴 = 0 ↔ 𝐴 = 0 ) |
62 | | oveq1 7282 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 = 0 → (𝐴 ∗ (𝑘 ↑ 𝑋)) = ( 0 ∗ (𝑘 ↑ 𝑋))) |
63 | 31 | ply1sca 21424 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃)) |
64 | 30, 63 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
65 | 64 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (0g‘𝑅) =
(0g‘(Scalar‘𝑃))) |
66 | 12, 65 | eqtrid 2790 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 0 =
(0g‘(Scalar‘𝑃))) |
67 | 66 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ 0
= (0g‘(Scalar‘𝑃))) |
68 | 67 | oveq1d 7290 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ ( 0 ∗ (𝑘 ↑ 𝑋)) =
((0g‘(Scalar‘𝑃)) ∗ (𝑘 ↑ 𝑋))) |
69 | 31 | ply1lmod 21423 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
70 | 30, 69 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑃 ∈ LMod) |
71 | 70 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ 𝑃 ∈
LMod) |
72 | 41 | ringmgp 19789 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑃 ∈ Ring →
(mulGrp‘𝑃) ∈
Mnd) |
73 | 30, 32, 72 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (mulGrp‘𝑃) ∈ Mnd) |
74 | 73 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (mulGrp‘𝑃)
∈ Mnd) |
75 | | simpr 485 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ 𝑘 ∈
ℕ0) |
76 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(Base‘𝑃) =
(Base‘𝑃) |
77 | 39, 31, 76 | vr1cl 21388 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃)) |
78 | 30, 77 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑋 ∈ (Base‘𝑃)) |
79 | 78 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ 𝑋 ∈
(Base‘𝑃)) |
80 | 41, 76 | mgpbas 19726 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(Base‘𝑃) =
(Base‘(mulGrp‘𝑃)) |
81 | 80, 42 | mulgnn0cl 18720 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((mulGrp‘𝑃)
∈ Mnd ∧ 𝑘 ∈
ℕ0 ∧ 𝑋
∈ (Base‘𝑃))
→ (𝑘 ↑ 𝑋) ∈ (Base‘𝑃)) |
82 | 74, 75, 79, 81 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝑘 ↑ 𝑋) ∈ (Base‘𝑃)) |
83 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
84 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢
(0g‘(Scalar‘𝑃)) =
(0g‘(Scalar‘𝑃)) |
85 | 76, 83, 40, 84, 29 | lmod0vs 20156 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃 ∈ LMod ∧ (𝑘 ↑ 𝑋) ∈ (Base‘𝑃)) →
((0g‘(Scalar‘𝑃)) ∗ (𝑘 ↑ 𝑋)) = (0g‘𝑃)) |
86 | 71, 82, 85 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ ((0g‘(Scalar‘𝑃)) ∗ (𝑘 ↑ 𝑋)) = (0g‘𝑃)) |
87 | 68, 86 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ ( 0 ∗ (𝑘 ↑ 𝑋)) = (0g‘𝑃)) |
88 | 62, 87 | sylan9eqr 2800 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
∧ 𝐴 = 0 ) →
(𝐴 ∗ (𝑘 ↑ 𝑋)) = (0g‘𝑃)) |
89 | 88 | ex 413 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝐴 = 0 → (𝐴 ∗ (𝑘 ↑ 𝑋)) = (0g‘𝑃))) |
90 | 61, 89 | syl5bi 241 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (⦋𝑘 /
𝑘⦌𝐴 = 0 → (𝐴 ∗ (𝑘 ↑ 𝑋)) = (0g‘𝑃))) |
91 | 90 | imim2d 57 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ ((𝑠 < 𝑘 → ⦋𝑘 / 𝑘⦌𝐴 = 0 ) → (𝑠 < 𝑘 → (𝐴 ∗ (𝑘 ↑ 𝑋)) = (0g‘𝑃)))) |
92 | 91 | ralimdva 3108 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ0) →
(∀𝑘 ∈
ℕ0 (𝑠 <
𝑘 →
⦋𝑘 / 𝑘⦌𝐴 = 0 ) → ∀𝑘 ∈ ℕ0
(𝑠 < 𝑘 → (𝐴 ∗ (𝑘 ↑ 𝑋)) = (0g‘𝑃)))) |
93 | 59, 92 | syl5bi 241 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ0) →
(∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 ) → ∀𝑘 ∈ ℕ0
(𝑠 < 𝑘 → (𝐴 ∗ (𝑘 ↑ 𝑋)) = (0g‘𝑃)))) |
94 | 93 | imp 407 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) → ∀𝑘 ∈ ℕ0
(𝑠 < 𝑘 → (𝐴 ∗ (𝑘 ↑ 𝑋)) = (0g‘𝑃))) |
95 | 28, 29, 35, 48, 49, 94 | gsummptnn0fz 19587 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) → (𝑃 Σg
(𝑘 ∈
ℕ0 ↦ (𝐴 ∗ (𝑘 ↑ 𝑋)))) = (𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ (𝐴 ∗ (𝑘 ↑ 𝑋))))) |
96 | 95 | fveq2d 6778 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) →
(coe1‘(𝑃
Σg (𝑘 ∈ ℕ0 ↦ (𝐴 ∗ (𝑘 ↑ 𝑋))))) = (coe1‘(𝑃 Σg
(𝑘 ∈ (0...𝑠) ↦ (𝐴 ∗ (𝑘 ↑ 𝑋)))))) |
97 | 96 | fveq1d 6776 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) →
((coe1‘(𝑃
Σg (𝑘 ∈ ℕ0 ↦ (𝐴 ∗ (𝑘 ↑ 𝑋)))))‘𝐿) = ((coe1‘(𝑃 Σg
(𝑘 ∈ (0...𝑠) ↦ (𝐴 ∗ (𝑘 ↑ 𝑋)))))‘𝐿)) |
98 | 30 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) → 𝑅 ∈ Ring) |
99 | | gsummonply1.l |
. . . . . . . 8
⊢ (𝜑 → 𝐿 ∈
ℕ0) |
100 | 99 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) → 𝐿 ∈
ℕ0) |
101 | | elfznn0 13349 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0...𝑠) → 𝑘 ∈ ℕ0) |
102 | | simpll 764 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ 𝜑) |
103 | 3 | adantlr 712 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ 𝐴 ∈ 𝐾) |
104 | 102, 75, 103 | 3jca 1127 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝜑 ∧ 𝑘 ∈ ℕ0
∧ 𝐴 ∈ 𝐾)) |
105 | 101, 104 | sylan2 593 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑠)) → (𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾)) |
106 | 105, 44 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑠)) → (𝐴 ∗ (𝑘 ↑ 𝑋)) ∈ 𝐵) |
107 | 106 | ralrimiva 3103 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ0) →
∀𝑘 ∈ (0...𝑠)(𝐴 ∗ (𝑘 ↑ 𝑋)) ∈ 𝐵) |
108 | 107 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) → ∀𝑘 ∈ (0...𝑠)(𝐴 ∗ (𝑘 ↑ 𝑋)) ∈ 𝐵) |
109 | | fzfid 13693 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) → (0...𝑠) ∈ Fin) |
110 | 31, 28, 98, 100, 108, 109 | coe1fzgsumd 21473 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) →
((coe1‘(𝑃
Σg (𝑘 ∈ (0...𝑠) ↦ (𝐴 ∗ (𝑘 ↑ 𝑋)))))‘𝐿) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘(𝐴 ∗ (𝑘 ↑ 𝑋)))‘𝐿)))) |
111 | | nfv 1917 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝜑 ∧ 𝑠 ∈ ℕ0) |
112 | | nfcv 2907 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘ℕ0 |
113 | 112, 53 | nfralw 3151 |
. . . . . . . . . 10
⊢
Ⅎ𝑘∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐴 = 0 ) |
114 | 111, 113 | nfan 1902 |
. . . . . . . . 9
⊢
Ⅎ𝑘((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) |
115 | 30 | ad3antrrr 727 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → 𝑅 ∈ Ring) |
116 | 3 | expcom 414 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ0
→ (𝜑 → 𝐴 ∈ 𝐾)) |
117 | 116, 101 | syl11 33 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑘 ∈ (0...𝑠) → 𝐴 ∈ 𝐾)) |
118 | 117 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) → (𝑘 ∈ (0...𝑠) → 𝐴 ∈ 𝐾)) |
119 | 118 | imp 407 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → 𝐴 ∈ 𝐾) |
120 | 101 | adantl 482 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → 𝑘 ∈ ℕ0) |
121 | 12, 5, 31, 39, 40, 41, 42 | coe1tm 21444 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐾 ∧ 𝑘 ∈ ℕ0) →
(coe1‘(𝐴
∗
(𝑘 ↑ 𝑋))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑘, 𝐴, 0 ))) |
122 | 115, 119,
120, 121 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → (coe1‘(𝐴 ∗ (𝑘 ↑ 𝑋))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑘, 𝐴, 0 ))) |
123 | | eqeq1 2742 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝐿 → (𝑛 = 𝑘 ↔ 𝐿 = 𝑘)) |
124 | 123 | ifbid 4482 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝐿 → if(𝑛 = 𝑘, 𝐴, 0 ) = if(𝐿 = 𝑘, 𝐴, 0 )) |
125 | 124 | adantl 482 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ ℕ0)
∧ ∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) ∧ 𝑛 = 𝐿) → if(𝑛 = 𝑘, 𝐴, 0 ) = if(𝐿 = 𝑘, 𝐴, 0 )) |
126 | 99 | ad3antrrr 727 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → 𝐿 ∈
ℕ0) |
127 | 5, 12 | ring0cl 19808 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ Ring → 0 ∈ 𝐾) |
128 | 30, 127 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ∈ 𝐾) |
129 | 128 | ad3antrrr 727 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → 0 ∈ 𝐾) |
130 | 119, 129 | ifcld 4505 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → if(𝐿 = 𝑘, 𝐴, 0 ) ∈ 𝐾) |
131 | 122, 125,
126, 130 | fvmptd 6882 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → ((coe1‘(𝐴 ∗ (𝑘 ↑ 𝑋)))‘𝐿) = if(𝐿 = 𝑘, 𝐴, 0 )) |
132 | 114, 131 | mpteq2da 5172 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) → (𝑘 ∈ (0...𝑠) ↦ ((coe1‘(𝐴 ∗ (𝑘 ↑ 𝑋)))‘𝐿)) = (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) |
133 | 132 | oveq2d 7291 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) → (𝑅 Σg
(𝑘 ∈ (0...𝑠) ↦
((coe1‘(𝐴
∗
(𝑘 ↑ 𝑋)))‘𝐿))) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 )))) |
134 | | breq2 5078 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝐿 → (𝑠 < 𝑥 ↔ 𝑠 < 𝐿)) |
135 | | csbeq1 3835 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝐿 → ⦋𝑥 / 𝑘⦌𝐴 = ⦋𝐿 / 𝑘⦌𝐴) |
136 | 135 | eqeq1d 2740 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝐿 → (⦋𝑥 / 𝑘⦌𝐴 = 0 ↔
⦋𝐿 / 𝑘⦌𝐴 = 0 )) |
137 | 134, 136 | imbi12d 345 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝐿 → ((𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌𝐴 = 0 ) ↔ (𝑠 < 𝐿 → ⦋𝐿 / 𝑘⦌𝐴 = 0 ))) |
138 | 137 | rspcva 3559 |
. . . . . . . . . . . . . 14
⊢ ((𝐿 ∈ ℕ0
∧ ∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) → (𝑠 < 𝐿 → ⦋𝐿 / 𝑘⦌𝐴 = 0 )) |
139 | | nfv 1917 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘(𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿)) |
140 | | nfcsb1v 3857 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘⦋𝐿 / 𝑘⦌𝐴 |
141 | 140 | nfeq1 2922 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘⦋𝐿 / 𝑘⦌𝐴 = 0 |
142 | 139, 141 | nfan 1902 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿)) ∧ ⦋𝐿 / 𝑘⦌𝐴 = 0 ) |
143 | | elfz2nn0 13347 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑘 ∈ (0...𝑠) ↔ (𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0
∧ 𝑘 ≤ 𝑠)) |
144 | | nn0re 12242 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℝ) |
145 | 144 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (((𝑘 ∈ ℕ0
∧ 𝑠 ∈
ℕ0) ∧ 𝐿 ∈ ℕ0) → 𝑘 ∈
ℝ) |
146 | | nn0re 12242 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (𝑠 ∈ ℕ0
→ 𝑠 ∈
ℝ) |
147 | 146 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝑘 ∈ ℕ0
∧ 𝑠 ∈
ℕ0) → 𝑠 ∈ ℝ) |
148 | 147 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (((𝑘 ∈ ℕ0
∧ 𝑠 ∈
ℕ0) ∧ 𝐿 ∈ ℕ0) → 𝑠 ∈
ℝ) |
149 | | nn0re 12242 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝐿 ∈ ℕ0
→ 𝐿 ∈
ℝ) |
150 | 149 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (((𝑘 ∈ ℕ0
∧ 𝑠 ∈
ℕ0) ∧ 𝐿 ∈ ℕ0) → 𝐿 ∈
ℝ) |
151 | | lelttr 11065 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑘 ∈ ℝ ∧ 𝑠 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝑘 ≤ 𝑠 ∧ 𝑠 < 𝐿) → 𝑘 < 𝐿)) |
152 | 145, 148,
150, 151 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (((𝑘 ∈ ℕ0
∧ 𝑠 ∈
ℕ0) ∧ 𝐿 ∈ ℕ0) → ((𝑘 ≤ 𝑠 ∧ 𝑠 < 𝐿) → 𝑘 < 𝐿)) |
153 | | animorr 976 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((((𝑘 ∈ ℕ0
∧ 𝑠 ∈
ℕ0) ∧ 𝐿 ∈ ℕ0) ∧ 𝑘 < 𝐿) → (𝐿 < 𝑘 ∨ 𝑘 < 𝐿)) |
154 | | df-ne 2944 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (𝐿 ≠ 𝑘 ↔ ¬ 𝐿 = 𝑘) |
155 | 144 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ ((𝑘 ∈ ℕ0
∧ 𝑠 ∈
ℕ0) → 𝑘 ∈ ℝ) |
156 | | lttri2 11057 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ ((𝐿 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐿 ≠ 𝑘 ↔ (𝐿 < 𝑘 ∨ 𝑘 < 𝐿))) |
157 | 149, 155,
156 | syl2anr 597 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (((𝑘 ∈ ℕ0
∧ 𝑠 ∈
ℕ0) ∧ 𝐿 ∈ ℕ0) → (𝐿 ≠ 𝑘 ↔ (𝐿 < 𝑘 ∨ 𝑘 < 𝐿))) |
158 | 157 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((((𝑘 ∈ ℕ0
∧ 𝑠 ∈
ℕ0) ∧ 𝐿 ∈ ℕ0) ∧ 𝑘 < 𝐿) → (𝐿 ≠ 𝑘 ↔ (𝐿 < 𝑘 ∨ 𝑘 < 𝐿))) |
159 | 154, 158 | bitr3id 285 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((((𝑘 ∈ ℕ0
∧ 𝑠 ∈
ℕ0) ∧ 𝐿 ∈ ℕ0) ∧ 𝑘 < 𝐿) → (¬ 𝐿 = 𝑘 ↔ (𝐿 < 𝑘 ∨ 𝑘 < 𝐿))) |
160 | 153, 159 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((((𝑘 ∈ ℕ0
∧ 𝑠 ∈
ℕ0) ∧ 𝐿 ∈ ℕ0) ∧ 𝑘 < 𝐿) → ¬ 𝐿 = 𝑘) |
161 | 160 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (((𝑘 ∈ ℕ0
∧ 𝑠 ∈
ℕ0) ∧ 𝐿 ∈ ℕ0) → (𝑘 < 𝐿 → ¬ 𝐿 = 𝑘)) |
162 | 152, 161 | syld 47 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((𝑘 ∈ ℕ0
∧ 𝑠 ∈
ℕ0) ∧ 𝐿 ∈ ℕ0) → ((𝑘 ≤ 𝑠 ∧ 𝑠 < 𝐿) → ¬ 𝐿 = 𝑘)) |
163 | 162 | exp4b 431 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑘 ∈ ℕ0
∧ 𝑠 ∈
ℕ0) → (𝐿 ∈ ℕ0 → (𝑘 ≤ 𝑠 → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘)))) |
164 | 163 | expimpd 454 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑘 ∈ ℕ0
→ ((𝑠 ∈
ℕ0 ∧ 𝐿
∈ ℕ0) → (𝑘 ≤ 𝑠 → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘)))) |
165 | 164 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑘 ∈ ℕ0
→ (𝑘 ≤ 𝑠 → ((𝑠 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0)
→ (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘)))) |
166 | 165 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑘 ∈ ℕ0
∧ 𝑘 ≤ 𝑠) → ((𝑠 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0)
→ (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘))) |
167 | 166 | 3adant2 1130 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑘 ∈ ℕ0
∧ 𝑠 ∈
ℕ0 ∧ 𝑘
≤ 𝑠) → ((𝑠 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘))) |
168 | 143, 167 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑘 ∈ (0...𝑠) → ((𝑠 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0)
→ (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘))) |
169 | 168 | expd 416 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑘 ∈ (0...𝑠) → (𝑠 ∈ ℕ0 → (𝐿 ∈ ℕ0
→ (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘)))) |
170 | 99, 169 | syl7 74 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 ∈ (0...𝑠) → (𝑠 ∈ ℕ0 → (𝜑 → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘)))) |
171 | 170 | com12 32 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑠 ∈ ℕ0
→ (𝑘 ∈ (0...𝑠) → (𝜑 → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘)))) |
172 | 171 | com24 95 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑠 ∈ ℕ0
→ (𝑠 < 𝐿 → (𝜑 → (𝑘 ∈ (0...𝑠) → ¬ 𝐿 = 𝑘)))) |
173 | 172 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑠 ∈ ℕ0
∧ 𝑠 < 𝐿) → (𝜑 → (𝑘 ∈ (0...𝑠) → ¬ 𝐿 = 𝑘))) |
174 | 173 | impcom 408 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿)) → (𝑘 ∈ (0...𝑠) → ¬ 𝐿 = 𝑘)) |
175 | 174 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿)) ∧ ⦋𝐿 / 𝑘⦌𝐴 = 0 ) → (𝑘 ∈ (0...𝑠) → ¬ 𝐿 = 𝑘)) |
176 | 175 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿)) ∧ ⦋𝐿 / 𝑘⦌𝐴 = 0 ) ∧ 𝑘 ∈ (0...𝑠)) → ¬ 𝐿 = 𝑘) |
177 | 176 | iffalsed 4470 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿)) ∧ ⦋𝐿 / 𝑘⦌𝐴 = 0 ) ∧ 𝑘 ∈ (0...𝑠)) → if(𝐿 = 𝑘, 𝐴, 0 ) = 0 ) |
178 | 142, 177 | mpteq2da 5172 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿)) ∧ ⦋𝐿 / 𝑘⦌𝐴 = 0 ) → (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 )) = (𝑘 ∈ (0...𝑠) ↦ 0 )) |
179 | 178 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿)) ∧ ⦋𝐿 / 𝑘⦌𝐴 = 0 ) → (𝑅 Σg
(𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ 0 ))) |
180 | | ringmnd 19793 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
181 | 30, 180 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑅 ∈ Mnd) |
182 | 181 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿)) → 𝑅 ∈ Mnd) |
183 | | ovex 7308 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(0...𝑠) ∈
V |
184 | 12 | gsumz 18474 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ Mnd ∧ (0...𝑠) ∈ V) → (𝑅 Σg
(𝑘 ∈ (0...𝑠) ↦ 0 )) = 0 ) |
185 | 182, 183,
184 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿)) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ 0 )) = 0 ) |
186 | 185 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿)) ∧ ⦋𝐿 / 𝑘⦌𝐴 = 0 ) → (𝑅 Σg
(𝑘 ∈ (0...𝑠) ↦ 0 )) = 0 ) |
187 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(⦋𝐿 /
𝑘⦌𝐴 = 0 →
⦋𝐿 / 𝑘⦌𝐴 = 0 ) |
188 | 187 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(⦋𝐿 /
𝑘⦌𝐴 = 0 → 0 = ⦋𝐿 / 𝑘⦌𝐴) |
189 | 188 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿)) ∧ ⦋𝐿 / 𝑘⦌𝐴 = 0 ) → 0 =
⦋𝐿 / 𝑘⦌𝐴) |
190 | 179, 186,
189 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿)) ∧ ⦋𝐿 / 𝑘⦌𝐴 = 0 ) → (𝑅 Σg
(𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = ⦋𝐿 / 𝑘⦌𝐴) |
191 | 190 | ex 413 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿)) → (⦋𝐿 / 𝑘⦌𝐴 = 0 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = ⦋𝐿 / 𝑘⦌𝐴)) |
192 | 191 | expr 457 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ0) → (𝑠 < 𝐿 → (⦋𝐿 / 𝑘⦌𝐴 = 0 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = ⦋𝐿 / 𝑘⦌𝐴))) |
193 | 192 | a2d 29 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ0) → ((𝑠 < 𝐿 → ⦋𝐿 / 𝑘⦌𝐴 = 0 ) → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = ⦋𝐿 / 𝑘⦌𝐴))) |
194 | 193 | ex 413 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑠 ∈ ℕ0 → ((𝑠 < 𝐿 → ⦋𝐿 / 𝑘⦌𝐴 = 0 ) → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = ⦋𝐿 / 𝑘⦌𝐴)))) |
195 | 194 | com13 88 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 < 𝐿 → ⦋𝐿 / 𝑘⦌𝐴 = 0 ) → (𝑠 ∈ ℕ0
→ (𝜑 → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = ⦋𝐿 / 𝑘⦌𝐴)))) |
196 | 138, 195 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝐿 ∈ ℕ0
∧ ∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) → (𝑠 ∈ ℕ0
→ (𝜑 → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = ⦋𝐿 / 𝑘⦌𝐴)))) |
197 | 196 | ex 413 |
. . . . . . . . . . . 12
⊢ (𝐿 ∈ ℕ0
→ (∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 ) → (𝑠 ∈ ℕ0
→ (𝜑 → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = ⦋𝐿 / 𝑘⦌𝐴))))) |
198 | 197 | com24 95 |
. . . . . . . . . . 11
⊢ (𝐿 ∈ ℕ0
→ (𝜑 → (𝑠 ∈ ℕ0
→ (∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 ) → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = ⦋𝐿 / 𝑘⦌𝐴))))) |
199 | 99, 198 | mpcom 38 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑠 ∈ ℕ0 →
(∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 ) → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = ⦋𝐿 / 𝑘⦌𝐴)))) |
200 | 199 | imp31 418 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = ⦋𝐿 / 𝑘⦌𝐴)) |
201 | 200 | com12 32 |
. . . . . . . 8
⊢ (𝑠 < 𝐿 → (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) → (𝑅 Σg
(𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = ⦋𝐿 / 𝑘⦌𝐴)) |
202 | | pm3.2 470 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ0) → (¬
𝑠 < 𝐿 → ((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ ¬
𝑠 < 𝐿))) |
203 | 202 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) → (¬ 𝑠 < 𝐿 → ((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ ¬
𝑠 < 𝐿))) |
204 | 181 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ ¬
𝑠 < 𝐿) → 𝑅 ∈ Mnd) |
205 | 183 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ ¬
𝑠 < 𝐿) → (0...𝑠) ∈ V) |
206 | 99 | nn0red 12294 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐿 ∈ ℝ) |
207 | | lenlt 11053 |
. . . . . . . . . . . . 13
⊢ ((𝐿 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (𝐿 ≤ 𝑠 ↔ ¬ 𝑠 < 𝐿)) |
208 | 206, 146,
207 | syl2an 596 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ0) → (𝐿 ≤ 𝑠 ↔ ¬ 𝑠 < 𝐿)) |
209 | 99 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝐿 ≤ 𝑠) → 𝐿 ∈
ℕ0) |
210 | | simplr 766 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝐿 ≤ 𝑠) → 𝑠 ∈ ℕ0) |
211 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝐿 ≤ 𝑠) → 𝐿 ≤ 𝑠) |
212 | | elfz2nn0 13347 |
. . . . . . . . . . . . . 14
⊢ (𝐿 ∈ (0...𝑠) ↔ (𝐿 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0
∧ 𝐿 ≤ 𝑠)) |
213 | 209, 210,
211, 212 | syl3anbrc 1342 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝐿 ≤ 𝑠) → 𝐿 ∈ (0...𝑠)) |
214 | 213 | ex 413 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ0) → (𝐿 ≤ 𝑠 → 𝐿 ∈ (0...𝑠))) |
215 | 208, 214 | sylbird 259 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ0) → (¬
𝑠 < 𝐿 → 𝐿 ∈ (0...𝑠))) |
216 | 215 | imp 407 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ ¬
𝑠 < 𝐿) → 𝐿 ∈ (0...𝑠)) |
217 | | eqcom 2745 |
. . . . . . . . . . . 12
⊢ (𝐿 = 𝑘 ↔ 𝑘 = 𝐿) |
218 | | ifbi 4481 |
. . . . . . . . . . . 12
⊢ ((𝐿 = 𝑘 ↔ 𝑘 = 𝐿) → if(𝐿 = 𝑘, 𝐴, 0 ) = if(𝑘 = 𝐿, 𝐴, 0 )) |
219 | 217, 218 | ax-mp 5 |
. . . . . . . . . . 11
⊢ if(𝐿 = 𝑘, 𝐴, 0 ) = if(𝑘 = 𝐿, 𝐴, 0 ) |
220 | 219 | mpteq2i 5179 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 )) = (𝑘 ∈ (0...𝑠) ↦ if(𝑘 = 𝐿, 𝐴, 0 )) |
221 | 3, 5 | eleqtrdi 2849 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ (Base‘𝑅)) |
222 | 221 | ex 413 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑘 ∈ ℕ0 → 𝐴 ∈ (Base‘𝑅))) |
223 | 222 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ0) → (𝑘 ∈ ℕ0
→ 𝐴 ∈
(Base‘𝑅))) |
224 | 223, 101 | impel 506 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑠)) → 𝐴 ∈ (Base‘𝑅)) |
225 | 224 | ralrimiva 3103 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ0) →
∀𝑘 ∈ (0...𝑠)𝐴 ∈ (Base‘𝑅)) |
226 | 225 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ ¬
𝑠 < 𝐿) → ∀𝑘 ∈ (0...𝑠)𝐴 ∈ (Base‘𝑅)) |
227 | 12, 204, 205, 216, 220, 226 | gsummpt1n0 19566 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧ ¬
𝑠 < 𝐿) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = ⦋𝐿 / 𝑘⦌𝐴) |
228 | 203, 227 | syl6com 37 |
. . . . . . . 8
⊢ (¬
𝑠 < 𝐿 → (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) → (𝑅 Σg
(𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = ⦋𝐿 / 𝑘⦌𝐴)) |
229 | 201, 228 | pm2.61i 182 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) → (𝑅 Σg
(𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = ⦋𝐿 / 𝑘⦌𝐴) |
230 | 133, 229 | eqtrd 2778 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) → (𝑅 Σg
(𝑘 ∈ (0...𝑠) ↦
((coe1‘(𝐴
∗
(𝑘 ↑ 𝑋)))‘𝐿))) = ⦋𝐿 / 𝑘⦌𝐴) |
231 | 97, 110, 230 | 3eqtrd 2782 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ0) ∧
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 )) →
((coe1‘(𝑃
Σg (𝑘 ∈ ℕ0 ↦ (𝐴 ∗ (𝑘 ↑ 𝑋)))))‘𝐿) = ⦋𝐿 / 𝑘⦌𝐴) |
232 | 231 | ex 413 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ0) →
(∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 →
⦋𝑥 / 𝑘⦌𝐴 = 0 ) →
((coe1‘(𝑃
Σg (𝑘 ∈ ℕ0 ↦ (𝐴 ∗ (𝑘 ↑ 𝑋)))))‘𝐿) = ⦋𝐿 / 𝑘⦌𝐴)) |
233 | 27, 232 | syld 47 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ0) →
(∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 → ((𝑘 ∈ ℕ0
↦ 𝐴)‘𝑥) = 0 ) →
((coe1‘(𝑃
Σg (𝑘 ∈ ℕ0 ↦ (𝐴 ∗ (𝑘 ↑ 𝑋)))))‘𝐿) = ⦋𝐿 / 𝑘⦌𝐴)) |
234 | 233 | rexlimdva 3213 |
. 2
⊢ (𝜑 → (∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑠 < 𝑥 → ((𝑘 ∈ ℕ0 ↦ 𝐴)‘𝑥) = 0 ) →
((coe1‘(𝑃
Σg (𝑘 ∈ ℕ0 ↦ (𝐴 ∗ (𝑘 ↑ 𝑋)))))‘𝐿) = ⦋𝐿 / 𝑘⦌𝐴)) |
235 | 16, 234 | mpd 15 |
1
⊢ (𝜑 →
((coe1‘(𝑃
Σg (𝑘 ∈ ℕ0 ↦ (𝐴 ∗ (𝑘 ↑ 𝑋)))))‘𝐿) = ⦋𝐿 / 𝑘⦌𝐴) |