MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummoncoe1 Structured version   Visualization version   GIF version

Theorem gsummoncoe1 22193
Description: A coefficient of the polynomial represented as a sum of scaled monomials is the coefficient of the corresponding scaled monomial. (Contributed by AV, 13-Oct-2019.)
Hypotheses
Ref Expression
gsummonply1.p 𝑃 = (Poly1𝑅)
gsummonply1.b 𝐵 = (Base‘𝑃)
gsummonply1.x 𝑋 = (var1𝑅)
gsummonply1.e = (.g‘(mulGrp‘𝑃))
gsummonply1.r (𝜑𝑅 ∈ Ring)
gsummonply1.k 𝐾 = (Base‘𝑅)
gsummonply1.m = ( ·𝑠𝑃)
gsummonply1.0 0 = (0g𝑅)
gsummonply1.a (𝜑 → ∀𝑘 ∈ ℕ0 𝐴𝐾)
gsummonply1.f (𝜑 → (𝑘 ∈ ℕ0𝐴) finSupp 0 )
gsummonply1.l (𝜑𝐿 ∈ ℕ0)
Assertion
Ref Expression
gsummoncoe1 (𝜑 → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))))‘𝐿) = 𝐿 / 𝑘𝐴)
Distinct variable groups:   𝐵,𝑘   𝑘,𝐾   𝜑,𝑘   ,𝑘   𝑘,𝐿   𝑃,𝑘   𝑅,𝑘   0 ,𝑘   ,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝑋(𝑘)

Proof of Theorem gsummoncoe1
Dummy variables 𝑛 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsummonply1.f . . 3 (𝜑 → (𝑘 ∈ ℕ0𝐴) finSupp 0 )
2 gsummonply1.a . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ0 𝐴𝐾)
32r19.21bi 3221 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝐴𝐾)
43fmpttd 7049 . . . . 5 (𝜑 → (𝑘 ∈ ℕ0𝐴):ℕ0𝐾)
5 gsummonply1.k . . . . . . . 8 𝐾 = (Base‘𝑅)
65fvexi 6836 . . . . . . 7 𝐾 ∈ V
76a1i 11 . . . . . 6 (𝜑𝐾 ∈ V)
8 nn0ex 12390 . . . . . 6 0 ∈ V
9 elmapg 8766 . . . . . 6 ((𝐾 ∈ V ∧ ℕ0 ∈ V) → ((𝑘 ∈ ℕ0𝐴) ∈ (𝐾m0) ↔ (𝑘 ∈ ℕ0𝐴):ℕ0𝐾))
107, 8, 9sylancl 586 . . . . 5 (𝜑 → ((𝑘 ∈ ℕ0𝐴) ∈ (𝐾m0) ↔ (𝑘 ∈ ℕ0𝐴):ℕ0𝐾))
114, 10mpbird 257 . . . 4 (𝜑 → (𝑘 ∈ ℕ0𝐴) ∈ (𝐾m0))
12 gsummonply1.0 . . . . 5 0 = (0g𝑅)
1312fvexi 6836 . . . 4 0 ∈ V
14 fsuppmapnn0ub 13902 . . . 4 (((𝑘 ∈ ℕ0𝐴) ∈ (𝐾m0) ∧ 0 ∈ V) → ((𝑘 ∈ ℕ0𝐴) finSupp 0 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑘 ∈ ℕ0𝐴)‘𝑥) = 0 )))
1511, 13, 14sylancl 586 . . 3 (𝜑 → ((𝑘 ∈ ℕ0𝐴) finSupp 0 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑘 ∈ ℕ0𝐴)‘𝑥) = 0 )))
161, 15mpd 15 . 2 (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑘 ∈ ℕ0𝐴)‘𝑥) = 0 ))
17 simpr 484 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
182ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 𝐴𝐾)
19 rspcsbela 4389 . . . . . . . . . 10 ((𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐴𝐾) → 𝑥 / 𝑘𝐴𝐾)
2017, 18, 19syl2anc 584 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 / 𝑘𝐴𝐾)
21 eqid 2729 . . . . . . . . . 10 (𝑘 ∈ ℕ0𝐴) = (𝑘 ∈ ℕ0𝐴)
2221fvmpts 6933 . . . . . . . . 9 ((𝑥 ∈ ℕ0𝑥 / 𝑘𝐴𝐾) → ((𝑘 ∈ ℕ0𝐴)‘𝑥) = 𝑥 / 𝑘𝐴)
2317, 20, 22syl2anc 584 . . . . . . . 8 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0𝐴)‘𝑥) = 𝑥 / 𝑘𝐴)
2423eqeq1d 2731 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (((𝑘 ∈ ℕ0𝐴)‘𝑥) = 0𝑥 / 𝑘𝐴 = 0 ))
2524imbi2d 340 . . . . . 6 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ((𝑘 ∈ ℕ0𝐴)‘𝑥) = 0 ) ↔ (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )))
2625biimpd 229 . . . . 5 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ((𝑘 ∈ ℕ0𝐴)‘𝑥) = 0 ) → (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )))
2726ralimdva 3141 . . . 4 ((𝜑𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑘 ∈ ℕ0𝐴)‘𝑥) = 0 ) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )))
28 gsummonply1.b . . . . . . . . 9 𝐵 = (Base‘𝑃)
29 eqid 2729 . . . . . . . . 9 (0g𝑃) = (0g𝑃)
30 gsummonply1.r . . . . . . . . . . 11 (𝜑𝑅 ∈ Ring)
31 gsummonply1.p . . . . . . . . . . . 12 𝑃 = (Poly1𝑅)
3231ply1ring 22130 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
33 ringcmn 20167 . . . . . . . . . . 11 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
3430, 32, 333syl 18 . . . . . . . . . 10 (𝜑𝑃 ∈ CMnd)
3534ad2antrr 726 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → 𝑃 ∈ CMnd)
36303ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0𝐴𝐾) → 𝑅 ∈ Ring)
37 simp3 1138 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0𝐴𝐾) → 𝐴𝐾)
38 simp2 1137 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0𝐴𝐾) → 𝑘 ∈ ℕ0)
39 gsummonply1.x . . . . . . . . . . . . . . 15 𝑋 = (var1𝑅)
40 gsummonply1.m . . . . . . . . . . . . . . 15 = ( ·𝑠𝑃)
41 eqid 2729 . . . . . . . . . . . . . . 15 (mulGrp‘𝑃) = (mulGrp‘𝑃)
42 gsummonply1.e . . . . . . . . . . . . . . 15 = (.g‘(mulGrp‘𝑃))
435, 31, 39, 40, 41, 42, 28ply1tmcl 22156 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐴𝐾𝑘 ∈ ℕ0) → (𝐴 (𝑘 𝑋)) ∈ 𝐵)
4436, 37, 38, 43syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0𝐴𝐾) → (𝐴 (𝑘 𝑋)) ∈ 𝐵)
45443expia 1121 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝐾 → (𝐴 (𝑘 𝑋)) ∈ 𝐵))
4645ralimdva 3141 . . . . . . . . . . 11 (𝜑 → (∀𝑘 ∈ ℕ0 𝐴𝐾 → ∀𝑘 ∈ ℕ0 (𝐴 (𝑘 𝑋)) ∈ 𝐵))
472, 46mpd 15 . . . . . . . . . 10 (𝜑 → ∀𝑘 ∈ ℕ0 (𝐴 (𝑘 𝑋)) ∈ 𝐵)
4847ad2antrr 726 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → ∀𝑘 ∈ ℕ0 (𝐴 (𝑘 𝑋)) ∈ 𝐵)
49 simplr 768 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → 𝑠 ∈ ℕ0)
50 nfv 1914 . . . . . . . . . . . . 13 𝑘 𝑠 < 𝑥
51 nfcsb1v 3875 . . . . . . . . . . . . . 14 𝑘𝑥 / 𝑘𝐴
5251nfeq1 2907 . . . . . . . . . . . . 13 𝑘𝑥 / 𝑘𝐴 = 0
5350, 52nfim 1896 . . . . . . . . . . . 12 𝑘(𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )
54 nfv 1914 . . . . . . . . . . . 12 𝑥(𝑠 < 𝑘𝑘 / 𝑘𝐴 = 0 )
55 breq2 5096 . . . . . . . . . . . . 13 (𝑥 = 𝑘 → (𝑠 < 𝑥𝑠 < 𝑘))
56 csbeq1 3854 . . . . . . . . . . . . . 14 (𝑥 = 𝑘𝑥 / 𝑘𝐴 = 𝑘 / 𝑘𝐴)
5756eqeq1d 2731 . . . . . . . . . . . . 13 (𝑥 = 𝑘 → (𝑥 / 𝑘𝐴 = 0𝑘 / 𝑘𝐴 = 0 ))
5855, 57imbi12d 344 . . . . . . . . . . . 12 (𝑥 = 𝑘 → ((𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 ) ↔ (𝑠 < 𝑘𝑘 / 𝑘𝐴 = 0 )))
5953, 54, 58cbvralw 3271 . . . . . . . . . . 11 (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 ) ↔ ∀𝑘 ∈ ℕ0 (𝑠 < 𝑘𝑘 / 𝑘𝐴 = 0 ))
60 csbid 3864 . . . . . . . . . . . . . . 15 𝑘 / 𝑘𝐴 = 𝐴
6160eqeq1i 2734 . . . . . . . . . . . . . 14 (𝑘 / 𝑘𝐴 = 0𝐴 = 0 )
62 oveq1 7356 . . . . . . . . . . . . . . . 16 (𝐴 = 0 → (𝐴 (𝑘 𝑋)) = ( 0 (𝑘 𝑋)))
6331ply1sca 22135 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
6430, 63syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑅 = (Scalar‘𝑃))
6564fveq2d 6826 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (0g𝑅) = (0g‘(Scalar‘𝑃)))
6612, 65eqtrid 2776 . . . . . . . . . . . . . . . . . . 19 (𝜑0 = (0g‘(Scalar‘𝑃)))
6766ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 0 = (0g‘(Scalar‘𝑃)))
6867oveq1d 7364 . . . . . . . . . . . . . . . . 17 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ( 0 (𝑘 𝑋)) = ((0g‘(Scalar‘𝑃)) (𝑘 𝑋)))
6931ply1lmod 22134 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
7030, 69syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ LMod)
7170ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑃 ∈ LMod)
72 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (Base‘𝑃) = (Base‘𝑃)
7341, 72mgpbas 20030 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
7441ringmgp 20124 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
7530, 32, 743syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (mulGrp‘𝑃) ∈ Mnd)
7675ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (mulGrp‘𝑃) ∈ Mnd)
77 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
7839, 31, 72vr1cl 22100 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
7930, 78syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑋 ∈ (Base‘𝑃))
8079ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑋 ∈ (Base‘𝑃))
8173, 42, 76, 77, 80mulgnn0cld 18974 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ (Base‘𝑃))
82 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (Scalar‘𝑃) = (Scalar‘𝑃)
83 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝑃))
8472, 82, 40, 83, 29lmod0vs 20798 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ LMod ∧ (𝑘 𝑋) ∈ (Base‘𝑃)) → ((0g‘(Scalar‘𝑃)) (𝑘 𝑋)) = (0g𝑃))
8571, 81, 84syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((0g‘(Scalar‘𝑃)) (𝑘 𝑋)) = (0g𝑃))
8668, 85eqtrd 2764 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ( 0 (𝑘 𝑋)) = (0g𝑃))
8762, 86sylan9eqr 2786 . . . . . . . . . . . . . . 15 ((((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0 ) → (𝐴 (𝑘 𝑋)) = (0g𝑃))
8887ex 412 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴 = 0 → (𝐴 (𝑘 𝑋)) = (0g𝑃)))
8961, 88biimtrid 242 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 / 𝑘𝐴 = 0 → (𝐴 (𝑘 𝑋)) = (0g𝑃)))
9089imim2d 57 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑠 < 𝑘𝑘 / 𝑘𝐴 = 0 ) → (𝑠 < 𝑘 → (𝐴 (𝑘 𝑋)) = (0g𝑃))))
9190ralimdva 3141 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ℕ0) → (∀𝑘 ∈ ℕ0 (𝑠 < 𝑘𝑘 / 𝑘𝐴 = 0 ) → ∀𝑘 ∈ ℕ0 (𝑠 < 𝑘 → (𝐴 (𝑘 𝑋)) = (0g𝑃))))
9259, 91biimtrid 242 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 ) → ∀𝑘 ∈ ℕ0 (𝑠 < 𝑘 → (𝐴 (𝑘 𝑋)) = (0g𝑃))))
9392imp 406 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → ∀𝑘 ∈ ℕ0 (𝑠 < 𝑘 → (𝐴 (𝑘 𝑋)) = (0g𝑃)))
9428, 29, 35, 48, 49, 93gsummptnn0fz 19865 . . . . . . . 8 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))) = (𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ (𝐴 (𝑘 𝑋)))))
9594fveq2d 6826 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋))))) = (coe1‘(𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ (𝐴 (𝑘 𝑋))))))
9695fveq1d 6824 . . . . . 6 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))))‘𝐿) = ((coe1‘(𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ (𝐴 (𝑘 𝑋)))))‘𝐿))
9730ad2antrr 726 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → 𝑅 ∈ Ring)
98 gsummonply1.l . . . . . . . 8 (𝜑𝐿 ∈ ℕ0)
9998ad2antrr 726 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → 𝐿 ∈ ℕ0)
100 elfznn0 13523 . . . . . . . . . . 11 (𝑘 ∈ (0...𝑠) → 𝑘 ∈ ℕ0)
101 simpll 766 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝜑)
1023adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐴𝐾)
103101, 77, 1023jca 1128 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝜑𝑘 ∈ ℕ0𝐴𝐾))
104100, 103sylan2 593 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑠)) → (𝜑𝑘 ∈ ℕ0𝐴𝐾))
105104, 44syl 17 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑠)) → (𝐴 (𝑘 𝑋)) ∈ 𝐵)
106105ralrimiva 3121 . . . . . . . 8 ((𝜑𝑠 ∈ ℕ0) → ∀𝑘 ∈ (0...𝑠)(𝐴 (𝑘 𝑋)) ∈ 𝐵)
107106adantr 480 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → ∀𝑘 ∈ (0...𝑠)(𝐴 (𝑘 𝑋)) ∈ 𝐵)
108 fzfid 13880 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (0...𝑠) ∈ Fin)
10931, 28, 97, 99, 107, 108coe1fzgsumd 22189 . . . . . 6 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → ((coe1‘(𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ (𝐴 (𝑘 𝑋)))))‘𝐿) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘(𝐴 (𝑘 𝑋)))‘𝐿))))
110 nfv 1914 . . . . . . . . . 10 𝑘(𝜑𝑠 ∈ ℕ0)
111 nfcv 2891 . . . . . . . . . . 11 𝑘0
112111, 53nfralw 3276 . . . . . . . . . 10 𝑘𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )
113110, 112nfan 1899 . . . . . . . . 9 𝑘((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 ))
11430ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → 𝑅 ∈ Ring)
1153expcom 413 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (𝜑𝐴𝐾))
116115, 100syl11 33 . . . . . . . . . . . . 13 (𝜑 → (𝑘 ∈ (0...𝑠) → 𝐴𝐾))
117116ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑘 ∈ (0...𝑠) → 𝐴𝐾))
118117imp 406 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → 𝐴𝐾)
119100adantl 481 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → 𝑘 ∈ ℕ0)
12012, 5, 31, 39, 40, 41, 42coe1tm 22157 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐴𝐾𝑘 ∈ ℕ0) → (coe1‘(𝐴 (𝑘 𝑋))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑘, 𝐴, 0 )))
121114, 118, 119, 120syl3anc 1373 . . . . . . . . . 10 ((((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → (coe1‘(𝐴 (𝑘 𝑋))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑘, 𝐴, 0 )))
122 eqeq1 2733 . . . . . . . . . . . 12 (𝑛 = 𝐿 → (𝑛 = 𝑘𝐿 = 𝑘))
123122ifbid 4500 . . . . . . . . . . 11 (𝑛 = 𝐿 → if(𝑛 = 𝑘, 𝐴, 0 ) = if(𝐿 = 𝑘, 𝐴, 0 ))
124123adantl 481 . . . . . . . . . 10 (((((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) ∧ 𝑛 = 𝐿) → if(𝑛 = 𝑘, 𝐴, 0 ) = if(𝐿 = 𝑘, 𝐴, 0 ))
12598ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → 𝐿 ∈ ℕ0)
1265, 12ring0cl 20152 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 0𝐾)
12730, 126syl 17 . . . . . . . . . . . 12 (𝜑0𝐾)
128127ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → 0𝐾)
129118, 128ifcld 4523 . . . . . . . . . 10 ((((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → if(𝐿 = 𝑘, 𝐴, 0 ) ∈ 𝐾)
130121, 124, 125, 129fvmptd 6937 . . . . . . . . 9 ((((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → ((coe1‘(𝐴 (𝑘 𝑋)))‘𝐿) = if(𝐿 = 𝑘, 𝐴, 0 ))
131113, 130mpteq2da 5184 . . . . . . . 8 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑘 ∈ (0...𝑠) ↦ ((coe1‘(𝐴 (𝑘 𝑋)))‘𝐿)) = (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 )))
132131oveq2d 7365 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘(𝐴 (𝑘 𝑋)))‘𝐿))) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))))
133 breq2 5096 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐿 → (𝑠 < 𝑥𝑠 < 𝐿))
134 csbeq1 3854 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐿𝑥 / 𝑘𝐴 = 𝐿 / 𝑘𝐴)
135134eqeq1d 2731 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐿 → (𝑥 / 𝑘𝐴 = 0𝐿 / 𝑘𝐴 = 0 ))
136133, 135imbi12d 344 . . . . . . . . . . . . . . 15 (𝑥 = 𝐿 → ((𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 ) ↔ (𝑠 < 𝐿𝐿 / 𝑘𝐴 = 0 )))
137136rspcva 3575 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑠 < 𝐿𝐿 / 𝑘𝐴 = 0 ))
138 nfv 1914 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘(𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿))
139 nfcsb1v 3875 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘𝐿 / 𝑘𝐴
140139nfeq1 2907 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘𝐿 / 𝑘𝐴 = 0
141138, 140nfan 1899 . . . . . . . . . . . . . . . . . . . . . 22 𝑘((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) ∧ 𝐿 / 𝑘𝐴 = 0 )
142 elfz2nn0 13521 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 ∈ (0...𝑠) ↔ (𝑘 ∈ ℕ0𝑠 ∈ ℕ0𝑘𝑠))
143 nn0re 12393 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
144143ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → 𝑘 ∈ ℝ)
145 nn0re 12393 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑠 ∈ ℕ0𝑠 ∈ ℝ)
146145adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) → 𝑠 ∈ ℝ)
147146adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → 𝑠 ∈ ℝ)
148 nn0re 12393 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
149148adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → 𝐿 ∈ ℝ)
150 lelttr 11206 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑘 ∈ ℝ ∧ 𝑠 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝑘𝑠𝑠 < 𝐿) → 𝑘 < 𝐿))
151144, 147, 149, 150syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → ((𝑘𝑠𝑠 < 𝐿) → 𝑘 < 𝐿))
152 animorr 980 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) ∧ 𝑘 < 𝐿) → (𝐿 < 𝑘𝑘 < 𝐿))
153 df-ne 2926 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐿𝑘 ↔ ¬ 𝐿 = 𝑘)
154143adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) → 𝑘 ∈ ℝ)
155 lttri2 11198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝐿 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐿𝑘 ↔ (𝐿 < 𝑘𝑘 < 𝐿)))
156148, 154, 155syl2anr 597 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → (𝐿𝑘 ↔ (𝐿 < 𝑘𝑘 < 𝐿)))
157156adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) ∧ 𝑘 < 𝐿) → (𝐿𝑘 ↔ (𝐿 < 𝑘𝑘 < 𝐿)))
158153, 157bitr3id 285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) ∧ 𝑘 < 𝐿) → (¬ 𝐿 = 𝑘 ↔ (𝐿 < 𝑘𝑘 < 𝐿)))
159152, 158mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) ∧ 𝑘 < 𝐿) → ¬ 𝐿 = 𝑘)
160159ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → (𝑘 < 𝐿 → ¬ 𝐿 = 𝑘))
161151, 160syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → ((𝑘𝑠𝑠 < 𝐿) → ¬ 𝐿 = 𝑘))
162161exp4b 430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) → (𝐿 ∈ ℕ0 → (𝑘𝑠 → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘))))
163162expimpd 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑘 ∈ ℕ0 → ((𝑠 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑘𝑠 → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘))))
164163com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑘 ∈ ℕ0 → (𝑘𝑠 → ((𝑠 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘))))
165164imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑘 ∈ ℕ0𝑘𝑠) → ((𝑠 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘)))
1661653adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0𝑘𝑠) → ((𝑠 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘)))
167142, 166sylbi 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 ∈ (0...𝑠) → ((𝑠 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘)))
168167expd 415 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 ∈ (0...𝑠) → (𝑠 ∈ ℕ0 → (𝐿 ∈ ℕ0 → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘))))
16998, 168syl7 74 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 ∈ (0...𝑠) → (𝑠 ∈ ℕ0 → (𝜑 → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘))))
170169com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑠 ∈ ℕ0 → (𝑘 ∈ (0...𝑠) → (𝜑 → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘))))
171170com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 ∈ ℕ0 → (𝑠 < 𝐿 → (𝜑 → (𝑘 ∈ (0...𝑠) → ¬ 𝐿 = 𝑘))))
172171imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑠 ∈ ℕ0𝑠 < 𝐿) → (𝜑 → (𝑘 ∈ (0...𝑠) → ¬ 𝐿 = 𝑘)))
173172impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) → (𝑘 ∈ (0...𝑠) → ¬ 𝐿 = 𝑘))
174173adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) ∧ 𝐿 / 𝑘𝐴 = 0 ) → (𝑘 ∈ (0...𝑠) → ¬ 𝐿 = 𝑘))
175174imp 406 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) ∧ 𝐿 / 𝑘𝐴 = 0 ) ∧ 𝑘 ∈ (0...𝑠)) → ¬ 𝐿 = 𝑘)
176175iffalsed 4487 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) ∧ 𝐿 / 𝑘𝐴 = 0 ) ∧ 𝑘 ∈ (0...𝑠)) → if(𝐿 = 𝑘, 𝐴, 0 ) = 0 )
177141, 176mpteq2da 5184 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) ∧ 𝐿 / 𝑘𝐴 = 0 ) → (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 )) = (𝑘 ∈ (0...𝑠) ↦ 0 ))
178177oveq2d 7365 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) ∧ 𝐿 / 𝑘𝐴 = 0 ) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ 0 )))
179 ringmnd 20128 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
18030, 179syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑅 ∈ Mnd)
181180adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) → 𝑅 ∈ Mnd)
182 ovex 7382 . . . . . . . . . . . . . . . . . . . . . 22 (0...𝑠) ∈ V
18312gsumz 18710 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Mnd ∧ (0...𝑠) ∈ V) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ 0 )) = 0 )
184181, 182, 183sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ 0 )) = 0 )
185184adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) ∧ 𝐿 / 𝑘𝐴 = 0 ) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ 0 )) = 0 )
186 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝐿 / 𝑘𝐴 = 0𝐿 / 𝑘𝐴 = 0 )
187186eqcomd 2735 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 / 𝑘𝐴 = 00 = 𝐿 / 𝑘𝐴)
188187adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) ∧ 𝐿 / 𝑘𝐴 = 0 ) → 0 = 𝐿 / 𝑘𝐴)
189178, 185, 1883eqtrd 2768 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) ∧ 𝐿 / 𝑘𝐴 = 0 ) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴)
190189ex 412 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) → (𝐿 / 𝑘𝐴 = 0 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴))
191190expr 456 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ ℕ0) → (𝑠 < 𝐿 → (𝐿 / 𝑘𝐴 = 0 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴)))
192191a2d 29 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ ℕ0) → ((𝑠 < 𝐿𝐿 / 𝑘𝐴 = 0 ) → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴)))
193192ex 412 . . . . . . . . . . . . . . 15 (𝜑 → (𝑠 ∈ ℕ0 → ((𝑠 < 𝐿𝐿 / 𝑘𝐴 = 0 ) → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴))))
194193com13 88 . . . . . . . . . . . . . 14 ((𝑠 < 𝐿𝐿 / 𝑘𝐴 = 0 ) → (𝑠 ∈ ℕ0 → (𝜑 → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴))))
195137, 194syl 17 . . . . . . . . . . . . 13 ((𝐿 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑠 ∈ ℕ0 → (𝜑 → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴))))
196195ex 412 . . . . . . . . . . . 12 (𝐿 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 ) → (𝑠 ∈ ℕ0 → (𝜑 → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴)))))
197196com24 95 . . . . . . . . . . 11 (𝐿 ∈ ℕ0 → (𝜑 → (𝑠 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 ) → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴)))))
19898, 197mpcom 38 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 ) → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴))))
199198imp31 417 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴))
200199com12 32 . . . . . . . 8 (𝑠 < 𝐿 → (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴))
201 pm3.2 469 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℕ0) → (¬ 𝑠 < 𝐿 → ((𝜑𝑠 ∈ ℕ0) ∧ ¬ 𝑠 < 𝐿)))
202201adantr 480 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (¬ 𝑠 < 𝐿 → ((𝜑𝑠 ∈ ℕ0) ∧ ¬ 𝑠 < 𝐿)))
203180ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℕ0) ∧ ¬ 𝑠 < 𝐿) → 𝑅 ∈ Mnd)
204182a1i 11 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℕ0) ∧ ¬ 𝑠 < 𝐿) → (0...𝑠) ∈ V)
20598nn0red 12446 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ ℝ)
206 lenlt 11194 . . . . . . . . . . . . 13 ((𝐿 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (𝐿𝑠 ↔ ¬ 𝑠 < 𝐿))
207205, 145, 206syl2an 596 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℕ0) → (𝐿𝑠 ↔ ¬ 𝑠 < 𝐿))
20898ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℕ0) ∧ 𝐿𝑠) → 𝐿 ∈ ℕ0)
209 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℕ0) ∧ 𝐿𝑠) → 𝑠 ∈ ℕ0)
210 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℕ0) ∧ 𝐿𝑠) → 𝐿𝑠)
211 elfz2nn0 13521 . . . . . . . . . . . . . 14 (𝐿 ∈ (0...𝑠) ↔ (𝐿 ∈ ℕ0𝑠 ∈ ℕ0𝐿𝑠))
212208, 209, 210, 211syl3anbrc 1344 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℕ0) ∧ 𝐿𝑠) → 𝐿 ∈ (0...𝑠))
213212ex 412 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℕ0) → (𝐿𝑠𝐿 ∈ (0...𝑠)))
214207, 213sylbird 260 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ℕ0) → (¬ 𝑠 < 𝐿𝐿 ∈ (0...𝑠)))
215214imp 406 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℕ0) ∧ ¬ 𝑠 < 𝐿) → 𝐿 ∈ (0...𝑠))
216 eqcom 2736 . . . . . . . . . . . 12 (𝐿 = 𝑘𝑘 = 𝐿)
217 ifbi 4499 . . . . . . . . . . . 12 ((𝐿 = 𝑘𝑘 = 𝐿) → if(𝐿 = 𝑘, 𝐴, 0 ) = if(𝑘 = 𝐿, 𝐴, 0 ))
218216, 217ax-mp 5 . . . . . . . . . . 11 if(𝐿 = 𝑘, 𝐴, 0 ) = if(𝑘 = 𝐿, 𝐴, 0 )
219218mpteq2i 5188 . . . . . . . . . 10 (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 )) = (𝑘 ∈ (0...𝑠) ↦ if(𝑘 = 𝐿, 𝐴, 0 ))
2203, 5eleqtrdi 2838 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ0) → 𝐴 ∈ (Base‘𝑅))
221220ex 412 . . . . . . . . . . . . . 14 (𝜑 → (𝑘 ∈ ℕ0𝐴 ∈ (Base‘𝑅)))
222221adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ ℕ0) → (𝑘 ∈ ℕ0𝐴 ∈ (Base‘𝑅)))
223222, 100impel 505 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑠)) → 𝐴 ∈ (Base‘𝑅))
224223ralrimiva 3121 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ℕ0) → ∀𝑘 ∈ (0...𝑠)𝐴 ∈ (Base‘𝑅))
225224adantr 480 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℕ0) ∧ ¬ 𝑠 < 𝐿) → ∀𝑘 ∈ (0...𝑠)𝐴 ∈ (Base‘𝑅))
22612, 203, 204, 215, 219, 225gsummpt1n0 19844 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ ¬ 𝑠 < 𝐿) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴)
227202, 226syl6com 37 . . . . . . . 8 𝑠 < 𝐿 → (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴))
228200, 227pm2.61i 182 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴)
229132, 228eqtrd 2764 . . . . . 6 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘(𝐴 (𝑘 𝑋)))‘𝐿))) = 𝐿 / 𝑘𝐴)
23096, 109, 2293eqtrd 2768 . . . . 5 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))))‘𝐿) = 𝐿 / 𝑘𝐴)
231230ex 412 . . . 4 ((𝜑𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 ) → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))))‘𝐿) = 𝐿 / 𝑘𝐴))
23227, 231syld 47 . . 3 ((𝜑𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑘 ∈ ℕ0𝐴)‘𝑥) = 0 ) → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))))‘𝐿) = 𝐿 / 𝑘𝐴))
233232rexlimdva 3130 . 2 (𝜑 → (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑘 ∈ ℕ0𝐴)‘𝑥) = 0 ) → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))))‘𝐿) = 𝐿 / 𝑘𝐴))
23416, 233mpd 15 1 (𝜑 → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))))‘𝐿) = 𝐿 / 𝑘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3436  csb 3851  ifcif 4476   class class class wbr 5092  cmpt 5173  wf 6478  cfv 6482  (class class class)co 7349  m cmap 8753   finSupp cfsupp 9251  cr 11008  0cc0 11009   < clt 11149  cle 11150  0cn0 12384  ...cfz 13410  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18608  .gcmg 18946  CMndccmn 19659  mulGrpcmgp 20025  Ringcrg 20118  LModclmod 20763  var1cv1 22058  Poly1cpl1 22059  coe1cco1 22060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-subrng 20431  df-subrg 20455  df-lmod 20765  df-lss 20835  df-psr 21816  df-mvr 21817  df-mpl 21818  df-opsr 21820  df-psr1 22062  df-vr1 22063  df-ply1 22064  df-coe1 22065
This theorem is referenced by:  gsumply1eq  22194  pm2mpf1lem  22679  pm2mpcoe1  22685  pm2mpmhmlem2  22704  cayleyhamilton1  22777  gsummoncoe1fzo  33530  ply1mulgsum  48375
  Copyright terms: Public domain W3C validator