MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummoncoe1 Structured version   Visualization version   GIF version

Theorem gsummoncoe1 22327
Description: A coefficient of the polynomial represented as a sum of scaled monomials is the coefficient of the corresponding scaled monomial. (Contributed by AV, 13-Oct-2019.)
Hypotheses
Ref Expression
gsummonply1.p 𝑃 = (Poly1𝑅)
gsummonply1.b 𝐵 = (Base‘𝑃)
gsummonply1.x 𝑋 = (var1𝑅)
gsummonply1.e = (.g‘(mulGrp‘𝑃))
gsummonply1.r (𝜑𝑅 ∈ Ring)
gsummonply1.k 𝐾 = (Base‘𝑅)
gsummonply1.m = ( ·𝑠𝑃)
gsummonply1.0 0 = (0g𝑅)
gsummonply1.a (𝜑 → ∀𝑘 ∈ ℕ0 𝐴𝐾)
gsummonply1.f (𝜑 → (𝑘 ∈ ℕ0𝐴) finSupp 0 )
gsummonply1.l (𝜑𝐿 ∈ ℕ0)
Assertion
Ref Expression
gsummoncoe1 (𝜑 → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))))‘𝐿) = 𝐿 / 𝑘𝐴)
Distinct variable groups:   𝐵,𝑘   𝑘,𝐾   𝜑,𝑘   ,𝑘   𝑘,𝐿   𝑃,𝑘   𝑅,𝑘   0 ,𝑘   ,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝑋(𝑘)

Proof of Theorem gsummoncoe1
Dummy variables 𝑛 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsummonply1.f . . 3 (𝜑 → (𝑘 ∈ ℕ0𝐴) finSupp 0 )
2 gsummonply1.a . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ0 𝐴𝐾)
32r19.21bi 3248 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝐴𝐾)
43fmpttd 7134 . . . . 5 (𝜑 → (𝑘 ∈ ℕ0𝐴):ℕ0𝐾)
5 gsummonply1.k . . . . . . . 8 𝐾 = (Base‘𝑅)
65fvexi 6920 . . . . . . 7 𝐾 ∈ V
76a1i 11 . . . . . 6 (𝜑𝐾 ∈ V)
8 nn0ex 12529 . . . . . 6 0 ∈ V
9 elmapg 8877 . . . . . 6 ((𝐾 ∈ V ∧ ℕ0 ∈ V) → ((𝑘 ∈ ℕ0𝐴) ∈ (𝐾m0) ↔ (𝑘 ∈ ℕ0𝐴):ℕ0𝐾))
107, 8, 9sylancl 586 . . . . 5 (𝜑 → ((𝑘 ∈ ℕ0𝐴) ∈ (𝐾m0) ↔ (𝑘 ∈ ℕ0𝐴):ℕ0𝐾))
114, 10mpbird 257 . . . 4 (𝜑 → (𝑘 ∈ ℕ0𝐴) ∈ (𝐾m0))
12 gsummonply1.0 . . . . 5 0 = (0g𝑅)
1312fvexi 6920 . . . 4 0 ∈ V
14 fsuppmapnn0ub 14032 . . . 4 (((𝑘 ∈ ℕ0𝐴) ∈ (𝐾m0) ∧ 0 ∈ V) → ((𝑘 ∈ ℕ0𝐴) finSupp 0 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑘 ∈ ℕ0𝐴)‘𝑥) = 0 )))
1511, 13, 14sylancl 586 . . 3 (𝜑 → ((𝑘 ∈ ℕ0𝐴) finSupp 0 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑘 ∈ ℕ0𝐴)‘𝑥) = 0 )))
161, 15mpd 15 . 2 (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑘 ∈ ℕ0𝐴)‘𝑥) = 0 ))
17 simpr 484 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
182ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 𝐴𝐾)
19 rspcsbela 4443 . . . . . . . . . 10 ((𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐴𝐾) → 𝑥 / 𝑘𝐴𝐾)
2017, 18, 19syl2anc 584 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑥 / 𝑘𝐴𝐾)
21 eqid 2734 . . . . . . . . . 10 (𝑘 ∈ ℕ0𝐴) = (𝑘 ∈ ℕ0𝐴)
2221fvmpts 7018 . . . . . . . . 9 ((𝑥 ∈ ℕ0𝑥 / 𝑘𝐴𝐾) → ((𝑘 ∈ ℕ0𝐴)‘𝑥) = 𝑥 / 𝑘𝐴)
2317, 20, 22syl2anc 584 . . . . . . . 8 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑘 ∈ ℕ0𝐴)‘𝑥) = 𝑥 / 𝑘𝐴)
2423eqeq1d 2736 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (((𝑘 ∈ ℕ0𝐴)‘𝑥) = 0𝑥 / 𝑘𝐴 = 0 ))
2524imbi2d 340 . . . . . 6 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ((𝑘 ∈ ℕ0𝐴)‘𝑥) = 0 ) ↔ (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )))
2625biimpd 229 . . . . 5 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ((𝑘 ∈ ℕ0𝐴)‘𝑥) = 0 ) → (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )))
2726ralimdva 3164 . . . 4 ((𝜑𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑘 ∈ ℕ0𝐴)‘𝑥) = 0 ) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )))
28 gsummonply1.b . . . . . . . . 9 𝐵 = (Base‘𝑃)
29 eqid 2734 . . . . . . . . 9 (0g𝑃) = (0g𝑃)
30 gsummonply1.r . . . . . . . . . . 11 (𝜑𝑅 ∈ Ring)
31 gsummonply1.p . . . . . . . . . . . 12 𝑃 = (Poly1𝑅)
3231ply1ring 22264 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
33 ringcmn 20295 . . . . . . . . . . 11 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
3430, 32, 333syl 18 . . . . . . . . . 10 (𝜑𝑃 ∈ CMnd)
3534ad2antrr 726 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → 𝑃 ∈ CMnd)
36303ad2ant1 1132 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0𝐴𝐾) → 𝑅 ∈ Ring)
37 simp3 1137 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0𝐴𝐾) → 𝐴𝐾)
38 simp2 1136 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0𝐴𝐾) → 𝑘 ∈ ℕ0)
39 gsummonply1.x . . . . . . . . . . . . . . 15 𝑋 = (var1𝑅)
40 gsummonply1.m . . . . . . . . . . . . . . 15 = ( ·𝑠𝑃)
41 eqid 2734 . . . . . . . . . . . . . . 15 (mulGrp‘𝑃) = (mulGrp‘𝑃)
42 gsummonply1.e . . . . . . . . . . . . . . 15 = (.g‘(mulGrp‘𝑃))
435, 31, 39, 40, 41, 42, 28ply1tmcl 22290 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝐴𝐾𝑘 ∈ ℕ0) → (𝐴 (𝑘 𝑋)) ∈ 𝐵)
4436, 37, 38, 43syl3anc 1370 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0𝐴𝐾) → (𝐴 (𝑘 𝑋)) ∈ 𝐵)
45443expia 1120 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝐾 → (𝐴 (𝑘 𝑋)) ∈ 𝐵))
4645ralimdva 3164 . . . . . . . . . . 11 (𝜑 → (∀𝑘 ∈ ℕ0 𝐴𝐾 → ∀𝑘 ∈ ℕ0 (𝐴 (𝑘 𝑋)) ∈ 𝐵))
472, 46mpd 15 . . . . . . . . . 10 (𝜑 → ∀𝑘 ∈ ℕ0 (𝐴 (𝑘 𝑋)) ∈ 𝐵)
4847ad2antrr 726 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → ∀𝑘 ∈ ℕ0 (𝐴 (𝑘 𝑋)) ∈ 𝐵)
49 simplr 769 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → 𝑠 ∈ ℕ0)
50 nfv 1911 . . . . . . . . . . . . 13 𝑘 𝑠 < 𝑥
51 nfcsb1v 3932 . . . . . . . . . . . . . 14 𝑘𝑥 / 𝑘𝐴
5251nfeq1 2918 . . . . . . . . . . . . 13 𝑘𝑥 / 𝑘𝐴 = 0
5350, 52nfim 1893 . . . . . . . . . . . 12 𝑘(𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )
54 nfv 1911 . . . . . . . . . . . 12 𝑥(𝑠 < 𝑘𝑘 / 𝑘𝐴 = 0 )
55 breq2 5151 . . . . . . . . . . . . 13 (𝑥 = 𝑘 → (𝑠 < 𝑥𝑠 < 𝑘))
56 csbeq1 3910 . . . . . . . . . . . . . 14 (𝑥 = 𝑘𝑥 / 𝑘𝐴 = 𝑘 / 𝑘𝐴)
5756eqeq1d 2736 . . . . . . . . . . . . 13 (𝑥 = 𝑘 → (𝑥 / 𝑘𝐴 = 0𝑘 / 𝑘𝐴 = 0 ))
5855, 57imbi12d 344 . . . . . . . . . . . 12 (𝑥 = 𝑘 → ((𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 ) ↔ (𝑠 < 𝑘𝑘 / 𝑘𝐴 = 0 )))
5953, 54, 58cbvralw 3303 . . . . . . . . . . 11 (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 ) ↔ ∀𝑘 ∈ ℕ0 (𝑠 < 𝑘𝑘 / 𝑘𝐴 = 0 ))
60 csbid 3920 . . . . . . . . . . . . . . 15 𝑘 / 𝑘𝐴 = 𝐴
6160eqeq1i 2739 . . . . . . . . . . . . . 14 (𝑘 / 𝑘𝐴 = 0𝐴 = 0 )
62 oveq1 7437 . . . . . . . . . . . . . . . 16 (𝐴 = 0 → (𝐴 (𝑘 𝑋)) = ( 0 (𝑘 𝑋)))
6331ply1sca 22269 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
6430, 63syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑅 = (Scalar‘𝑃))
6564fveq2d 6910 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (0g𝑅) = (0g‘(Scalar‘𝑃)))
6612, 65eqtrid 2786 . . . . . . . . . . . . . . . . . . 19 (𝜑0 = (0g‘(Scalar‘𝑃)))
6766ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 0 = (0g‘(Scalar‘𝑃)))
6867oveq1d 7445 . . . . . . . . . . . . . . . . 17 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ( 0 (𝑘 𝑋)) = ((0g‘(Scalar‘𝑃)) (𝑘 𝑋)))
6931ply1lmod 22268 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
7030, 69syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ LMod)
7170ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑃 ∈ LMod)
72 eqid 2734 . . . . . . . . . . . . . . . . . . . 20 (Base‘𝑃) = (Base‘𝑃)
7341, 72mgpbas 20157 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
7441ringmgp 20256 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
7530, 32, 743syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (mulGrp‘𝑃) ∈ Mnd)
7675ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (mulGrp‘𝑃) ∈ Mnd)
77 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
7839, 31, 72vr1cl 22234 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
7930, 78syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑋 ∈ (Base‘𝑃))
8079ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑋 ∈ (Base‘𝑃))
8173, 42, 76, 77, 80mulgnn0cld 19125 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ (Base‘𝑃))
82 eqid 2734 . . . . . . . . . . . . . . . . . . 19 (Scalar‘𝑃) = (Scalar‘𝑃)
83 eqid 2734 . . . . . . . . . . . . . . . . . . 19 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝑃))
8472, 82, 40, 83, 29lmod0vs 20909 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ LMod ∧ (𝑘 𝑋) ∈ (Base‘𝑃)) → ((0g‘(Scalar‘𝑃)) (𝑘 𝑋)) = (0g𝑃))
8571, 81, 84syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((0g‘(Scalar‘𝑃)) (𝑘 𝑋)) = (0g𝑃))
8668, 85eqtrd 2774 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ( 0 (𝑘 𝑋)) = (0g𝑃))
8762, 86sylan9eqr 2796 . . . . . . . . . . . . . . 15 ((((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) ∧ 𝐴 = 0 ) → (𝐴 (𝑘 𝑋)) = (0g𝑃))
8887ex 412 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐴 = 0 → (𝐴 (𝑘 𝑋)) = (0g𝑃)))
8961, 88biimtrid 242 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 / 𝑘𝐴 = 0 → (𝐴 (𝑘 𝑋)) = (0g𝑃)))
9089imim2d 57 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑠 < 𝑘𝑘 / 𝑘𝐴 = 0 ) → (𝑠 < 𝑘 → (𝐴 (𝑘 𝑋)) = (0g𝑃))))
9190ralimdva 3164 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ℕ0) → (∀𝑘 ∈ ℕ0 (𝑠 < 𝑘𝑘 / 𝑘𝐴 = 0 ) → ∀𝑘 ∈ ℕ0 (𝑠 < 𝑘 → (𝐴 (𝑘 𝑋)) = (0g𝑃))))
9259, 91biimtrid 242 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 ) → ∀𝑘 ∈ ℕ0 (𝑠 < 𝑘 → (𝐴 (𝑘 𝑋)) = (0g𝑃))))
9392imp 406 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → ∀𝑘 ∈ ℕ0 (𝑠 < 𝑘 → (𝐴 (𝑘 𝑋)) = (0g𝑃)))
9428, 29, 35, 48, 49, 93gsummptnn0fz 20018 . . . . . . . 8 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))) = (𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ (𝐴 (𝑘 𝑋)))))
9594fveq2d 6910 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋))))) = (coe1‘(𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ (𝐴 (𝑘 𝑋))))))
9695fveq1d 6908 . . . . . 6 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))))‘𝐿) = ((coe1‘(𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ (𝐴 (𝑘 𝑋)))))‘𝐿))
9730ad2antrr 726 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → 𝑅 ∈ Ring)
98 gsummonply1.l . . . . . . . 8 (𝜑𝐿 ∈ ℕ0)
9998ad2antrr 726 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → 𝐿 ∈ ℕ0)
100 elfznn0 13656 . . . . . . . . . . 11 (𝑘 ∈ (0...𝑠) → 𝑘 ∈ ℕ0)
101 simpll 767 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝜑)
1023adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐴𝐾)
103101, 77, 1023jca 1127 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝜑𝑘 ∈ ℕ0𝐴𝐾))
104100, 103sylan2 593 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑠)) → (𝜑𝑘 ∈ ℕ0𝐴𝐾))
105104, 44syl 17 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑠)) → (𝐴 (𝑘 𝑋)) ∈ 𝐵)
106105ralrimiva 3143 . . . . . . . 8 ((𝜑𝑠 ∈ ℕ0) → ∀𝑘 ∈ (0...𝑠)(𝐴 (𝑘 𝑋)) ∈ 𝐵)
107106adantr 480 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → ∀𝑘 ∈ (0...𝑠)(𝐴 (𝑘 𝑋)) ∈ 𝐵)
108 fzfid 14010 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (0...𝑠) ∈ Fin)
10931, 28, 97, 99, 107, 108coe1fzgsumd 22323 . . . . . 6 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → ((coe1‘(𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ (𝐴 (𝑘 𝑋)))))‘𝐿) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘(𝐴 (𝑘 𝑋)))‘𝐿))))
110 nfv 1911 . . . . . . . . . 10 𝑘(𝜑𝑠 ∈ ℕ0)
111 nfcv 2902 . . . . . . . . . . 11 𝑘0
112111, 53nfralw 3308 . . . . . . . . . 10 𝑘𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )
113110, 112nfan 1896 . . . . . . . . 9 𝑘((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 ))
11430ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → 𝑅 ∈ Ring)
1153expcom 413 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (𝜑𝐴𝐾))
116115, 100syl11 33 . . . . . . . . . . . . 13 (𝜑 → (𝑘 ∈ (0...𝑠) → 𝐴𝐾))
117116ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑘 ∈ (0...𝑠) → 𝐴𝐾))
118117imp 406 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → 𝐴𝐾)
119100adantl 481 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → 𝑘 ∈ ℕ0)
12012, 5, 31, 39, 40, 41, 42coe1tm 22291 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐴𝐾𝑘 ∈ ℕ0) → (coe1‘(𝐴 (𝑘 𝑋))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑘, 𝐴, 0 )))
121114, 118, 119, 120syl3anc 1370 . . . . . . . . . 10 ((((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → (coe1‘(𝐴 (𝑘 𝑋))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 𝑘, 𝐴, 0 )))
122 eqeq1 2738 . . . . . . . . . . . 12 (𝑛 = 𝐿 → (𝑛 = 𝑘𝐿 = 𝑘))
123122ifbid 4553 . . . . . . . . . . 11 (𝑛 = 𝐿 → if(𝑛 = 𝑘, 𝐴, 0 ) = if(𝐿 = 𝑘, 𝐴, 0 ))
124123adantl 481 . . . . . . . . . 10 (((((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) ∧ 𝑛 = 𝐿) → if(𝑛 = 𝑘, 𝐴, 0 ) = if(𝐿 = 𝑘, 𝐴, 0 ))
12598ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → 𝐿 ∈ ℕ0)
1265, 12ring0cl 20280 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 0𝐾)
12730, 126syl 17 . . . . . . . . . . . 12 (𝜑0𝐾)
128127ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → 0𝐾)
129118, 128ifcld 4576 . . . . . . . . . 10 ((((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → if(𝐿 = 𝑘, 𝐴, 0 ) ∈ 𝐾)
130121, 124, 125, 129fvmptd 7022 . . . . . . . . 9 ((((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) ∧ 𝑘 ∈ (0...𝑠)) → ((coe1‘(𝐴 (𝑘 𝑋)))‘𝐿) = if(𝐿 = 𝑘, 𝐴, 0 ))
131113, 130mpteq2da 5245 . . . . . . . 8 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑘 ∈ (0...𝑠) ↦ ((coe1‘(𝐴 (𝑘 𝑋)))‘𝐿)) = (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 )))
132131oveq2d 7446 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘(𝐴 (𝑘 𝑋)))‘𝐿))) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))))
133 breq2 5151 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐿 → (𝑠 < 𝑥𝑠 < 𝐿))
134 csbeq1 3910 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐿𝑥 / 𝑘𝐴 = 𝐿 / 𝑘𝐴)
135134eqeq1d 2736 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐿 → (𝑥 / 𝑘𝐴 = 0𝐿 / 𝑘𝐴 = 0 ))
136133, 135imbi12d 344 . . . . . . . . . . . . . . 15 (𝑥 = 𝐿 → ((𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 ) ↔ (𝑠 < 𝐿𝐿 / 𝑘𝐴 = 0 )))
137136rspcva 3619 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑠 < 𝐿𝐿 / 𝑘𝐴 = 0 ))
138 nfv 1911 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘(𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿))
139 nfcsb1v 3932 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘𝐿 / 𝑘𝐴
140139nfeq1 2918 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘𝐿 / 𝑘𝐴 = 0
141138, 140nfan 1896 . . . . . . . . . . . . . . . . . . . . . 22 𝑘((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) ∧ 𝐿 / 𝑘𝐴 = 0 )
142 elfz2nn0 13654 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 ∈ (0...𝑠) ↔ (𝑘 ∈ ℕ0𝑠 ∈ ℕ0𝑘𝑠))
143 nn0re 12532 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
144143ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → 𝑘 ∈ ℝ)
145 nn0re 12532 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑠 ∈ ℕ0𝑠 ∈ ℝ)
146145adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) → 𝑠 ∈ ℝ)
147146adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → 𝑠 ∈ ℝ)
148 nn0re 12532 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
149148adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → 𝐿 ∈ ℝ)
150 lelttr 11348 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑘 ∈ ℝ ∧ 𝑠 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝑘𝑠𝑠 < 𝐿) → 𝑘 < 𝐿))
151144, 147, 149, 150syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → ((𝑘𝑠𝑠 < 𝐿) → 𝑘 < 𝐿))
152 animorr 980 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) ∧ 𝑘 < 𝐿) → (𝐿 < 𝑘𝑘 < 𝐿))
153 df-ne 2938 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐿𝑘 ↔ ¬ 𝐿 = 𝑘)
154143adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) → 𝑘 ∈ ℝ)
155 lttri2 11340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝐿 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐿𝑘 ↔ (𝐿 < 𝑘𝑘 < 𝐿)))
156148, 154, 155syl2anr 597 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → (𝐿𝑘 ↔ (𝐿 < 𝑘𝑘 < 𝐿)))
157156adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) ∧ 𝑘 < 𝐿) → (𝐿𝑘 ↔ (𝐿 < 𝑘𝑘 < 𝐿)))
158153, 157bitr3id 285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) ∧ 𝑘 < 𝐿) → (¬ 𝐿 = 𝑘 ↔ (𝐿 < 𝑘𝑘 < 𝐿)))
159152, 158mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) ∧ 𝑘 < 𝐿) → ¬ 𝐿 = 𝑘)
160159ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → (𝑘 < 𝐿 → ¬ 𝐿 = 𝑘))
161151, 160syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐿 ∈ ℕ0) → ((𝑘𝑠𝑠 < 𝐿) → ¬ 𝐿 = 𝑘))
162161exp4b 430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) → (𝐿 ∈ ℕ0 → (𝑘𝑠 → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘))))
163162expimpd 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑘 ∈ ℕ0 → ((𝑠 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑘𝑠 → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘))))
164163com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑘 ∈ ℕ0 → (𝑘𝑠 → ((𝑠 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘))))
165164imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑘 ∈ ℕ0𝑘𝑠) → ((𝑠 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘)))
1661653adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0𝑘𝑠) → ((𝑠 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘)))
167142, 166sylbi 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 ∈ (0...𝑠) → ((𝑠 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘)))
168167expd 415 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 ∈ (0...𝑠) → (𝑠 ∈ ℕ0 → (𝐿 ∈ ℕ0 → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘))))
16998, 168syl7 74 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 ∈ (0...𝑠) → (𝑠 ∈ ℕ0 → (𝜑 → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘))))
170169com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑠 ∈ ℕ0 → (𝑘 ∈ (0...𝑠) → (𝜑 → (𝑠 < 𝐿 → ¬ 𝐿 = 𝑘))))
171170com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 ∈ ℕ0 → (𝑠 < 𝐿 → (𝜑 → (𝑘 ∈ (0...𝑠) → ¬ 𝐿 = 𝑘))))
172171imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑠 ∈ ℕ0𝑠 < 𝐿) → (𝜑 → (𝑘 ∈ (0...𝑠) → ¬ 𝐿 = 𝑘)))
173172impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) → (𝑘 ∈ (0...𝑠) → ¬ 𝐿 = 𝑘))
174173adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) ∧ 𝐿 / 𝑘𝐴 = 0 ) → (𝑘 ∈ (0...𝑠) → ¬ 𝐿 = 𝑘))
175174imp 406 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) ∧ 𝐿 / 𝑘𝐴 = 0 ) ∧ 𝑘 ∈ (0...𝑠)) → ¬ 𝐿 = 𝑘)
176175iffalsed 4541 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) ∧ 𝐿 / 𝑘𝐴 = 0 ) ∧ 𝑘 ∈ (0...𝑠)) → if(𝐿 = 𝑘, 𝐴, 0 ) = 0 )
177141, 176mpteq2da 5245 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) ∧ 𝐿 / 𝑘𝐴 = 0 ) → (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 )) = (𝑘 ∈ (0...𝑠) ↦ 0 ))
178177oveq2d 7446 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) ∧ 𝐿 / 𝑘𝐴 = 0 ) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ 0 )))
179 ringmnd 20260 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
18030, 179syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑅 ∈ Mnd)
181180adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) → 𝑅 ∈ Mnd)
182 ovex 7463 . . . . . . . . . . . . . . . . . . . . . 22 (0...𝑠) ∈ V
18312gsumz 18861 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Mnd ∧ (0...𝑠) ∈ V) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ 0 )) = 0 )
184181, 182, 183sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ 0 )) = 0 )
185184adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) ∧ 𝐿 / 𝑘𝐴 = 0 ) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ 0 )) = 0 )
186 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝐿 / 𝑘𝐴 = 0𝐿 / 𝑘𝐴 = 0 )
187186eqcomd 2740 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 / 𝑘𝐴 = 00 = 𝐿 / 𝑘𝐴)
188187adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) ∧ 𝐿 / 𝑘𝐴 = 0 ) → 0 = 𝐿 / 𝑘𝐴)
189178, 185, 1883eqtrd 2778 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) ∧ 𝐿 / 𝑘𝐴 = 0 ) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴)
190189ex 412 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑠 ∈ ℕ0𝑠 < 𝐿)) → (𝐿 / 𝑘𝐴 = 0 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴))
191190expr 456 . . . . . . . . . . . . . . . . 17 ((𝜑𝑠 ∈ ℕ0) → (𝑠 < 𝐿 → (𝐿 / 𝑘𝐴 = 0 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴)))
192191a2d 29 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ ℕ0) → ((𝑠 < 𝐿𝐿 / 𝑘𝐴 = 0 ) → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴)))
193192ex 412 . . . . . . . . . . . . . . 15 (𝜑 → (𝑠 ∈ ℕ0 → ((𝑠 < 𝐿𝐿 / 𝑘𝐴 = 0 ) → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴))))
194193com13 88 . . . . . . . . . . . . . 14 ((𝑠 < 𝐿𝐿 / 𝑘𝐴 = 0 ) → (𝑠 ∈ ℕ0 → (𝜑 → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴))))
195137, 194syl 17 . . . . . . . . . . . . 13 ((𝐿 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑠 ∈ ℕ0 → (𝜑 → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴))))
196195ex 412 . . . . . . . . . . . 12 (𝐿 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 ) → (𝑠 ∈ ℕ0 → (𝜑 → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴)))))
197196com24 95 . . . . . . . . . . 11 (𝐿 ∈ ℕ0 → (𝜑 → (𝑠 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 ) → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴)))))
19898, 197mpcom 38 . . . . . . . . . 10 (𝜑 → (𝑠 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 ) → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴))))
199198imp31 417 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑠 < 𝐿 → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴))
200199com12 32 . . . . . . . 8 (𝑠 < 𝐿 → (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴))
201 pm3.2 469 . . . . . . . . . 10 ((𝜑𝑠 ∈ ℕ0) → (¬ 𝑠 < 𝐿 → ((𝜑𝑠 ∈ ℕ0) ∧ ¬ 𝑠 < 𝐿)))
202201adantr 480 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (¬ 𝑠 < 𝐿 → ((𝜑𝑠 ∈ ℕ0) ∧ ¬ 𝑠 < 𝐿)))
203180ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℕ0) ∧ ¬ 𝑠 < 𝐿) → 𝑅 ∈ Mnd)
204182a1i 11 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℕ0) ∧ ¬ 𝑠 < 𝐿) → (0...𝑠) ∈ V)
20598nn0red 12585 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ ℝ)
206 lenlt 11336 . . . . . . . . . . . . 13 ((𝐿 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (𝐿𝑠 ↔ ¬ 𝑠 < 𝐿))
207205, 145, 206syl2an 596 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℕ0) → (𝐿𝑠 ↔ ¬ 𝑠 < 𝐿))
20898ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℕ0) ∧ 𝐿𝑠) → 𝐿 ∈ ℕ0)
209 simplr 769 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℕ0) ∧ 𝐿𝑠) → 𝑠 ∈ ℕ0)
210 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ ℕ0) ∧ 𝐿𝑠) → 𝐿𝑠)
211 elfz2nn0 13654 . . . . . . . . . . . . . 14 (𝐿 ∈ (0...𝑠) ↔ (𝐿 ∈ ℕ0𝑠 ∈ ℕ0𝐿𝑠))
212208, 209, 210, 211syl3anbrc 1342 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ ℕ0) ∧ 𝐿𝑠) → 𝐿 ∈ (0...𝑠))
213212ex 412 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℕ0) → (𝐿𝑠𝐿 ∈ (0...𝑠)))
214207, 213sylbird 260 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ℕ0) → (¬ 𝑠 < 𝐿𝐿 ∈ (0...𝑠)))
215214imp 406 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℕ0) ∧ ¬ 𝑠 < 𝐿) → 𝐿 ∈ (0...𝑠))
216 eqcom 2741 . . . . . . . . . . . 12 (𝐿 = 𝑘𝑘 = 𝐿)
217 ifbi 4552 . . . . . . . . . . . 12 ((𝐿 = 𝑘𝑘 = 𝐿) → if(𝐿 = 𝑘, 𝐴, 0 ) = if(𝑘 = 𝐿, 𝐴, 0 ))
218216, 217ax-mp 5 . . . . . . . . . . 11 if(𝐿 = 𝑘, 𝐴, 0 ) = if(𝑘 = 𝐿, 𝐴, 0 )
219218mpteq2i 5252 . . . . . . . . . 10 (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 )) = (𝑘 ∈ (0...𝑠) ↦ if(𝑘 = 𝐿, 𝐴, 0 ))
2203, 5eleqtrdi 2848 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ0) → 𝐴 ∈ (Base‘𝑅))
221220ex 412 . . . . . . . . . . . . . 14 (𝜑 → (𝑘 ∈ ℕ0𝐴 ∈ (Base‘𝑅)))
222221adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ ℕ0) → (𝑘 ∈ ℕ0𝐴 ∈ (Base‘𝑅)))
223222, 100impel 505 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑠)) → 𝐴 ∈ (Base‘𝑅))
224223ralrimiva 3143 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ℕ0) → ∀𝑘 ∈ (0...𝑠)𝐴 ∈ (Base‘𝑅))
225224adantr 480 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℕ0) ∧ ¬ 𝑠 < 𝐿) → ∀𝑘 ∈ (0...𝑠)𝐴 ∈ (Base‘𝑅))
22612, 203, 204, 215, 219, 225gsummpt1n0 19997 . . . . . . . . 9 (((𝜑𝑠 ∈ ℕ0) ∧ ¬ 𝑠 < 𝐿) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴)
227202, 226syl6com 37 . . . . . . . 8 𝑠 < 𝐿 → (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴))
228200, 227pm2.61i 182 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐿 = 𝑘, 𝐴, 0 ))) = 𝐿 / 𝑘𝐴)
229132, 228eqtrd 2774 . . . . . 6 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘(𝐴 (𝑘 𝑋)))‘𝐿))) = 𝐿 / 𝑘𝐴)
23096, 109, 2293eqtrd 2778 . . . . 5 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 )) → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))))‘𝐿) = 𝐿 / 𝑘𝐴)
231230ex 412 . . . 4 ((𝜑𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘𝐴 = 0 ) → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))))‘𝐿) = 𝐿 / 𝑘𝐴))
23227, 231syld 47 . . 3 ((𝜑𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑘 ∈ ℕ0𝐴)‘𝑥) = 0 ) → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))))‘𝐿) = 𝐿 / 𝑘𝐴))
233232rexlimdva 3152 . 2 (𝜑 → (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑘 ∈ ℕ0𝐴)‘𝑥) = 0 ) → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))))‘𝐿) = 𝐿 / 𝑘𝐴))
23416, 233mpd 15 1 (𝜑 → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 (𝑘 𝑋)))))‘𝐿) = 𝐿 / 𝑘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  Vcvv 3477  csb 3907  ifcif 4530   class class class wbr 5147  cmpt 5230  wf 6558  cfv 6562  (class class class)co 7430  m cmap 8864   finSupp cfsupp 9398  cr 11151  0cc0 11152   < clt 11292  cle 11293  0cn0 12523  ...cfz 13543  Basecbs 17244  Scalarcsca 17300   ·𝑠 cvsca 17301  0gc0g 17485   Σg cgsu 17486  Mndcmnd 18759  .gcmg 19097  CMndccmn 19812  mulGrpcmgp 20151  Ringcrg 20250  LModclmod 20874  var1cv1 22192  Poly1cpl1 22193  coe1cco1 22194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-ofr 7697  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-sup 9479  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-fzo 13691  df-seq 14039  df-hash 14366  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-submnd 18809  df-grp 18966  df-minusg 18967  df-sbg 18968  df-mulg 19098  df-subg 19153  df-ghm 19243  df-cntz 19347  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-subrng 20562  df-subrg 20586  df-lmod 20876  df-lss 20947  df-psr 21946  df-mvr 21947  df-mpl 21948  df-opsr 21950  df-psr1 22196  df-vr1 22197  df-ply1 22198  df-coe1 22199
This theorem is referenced by:  gsumply1eq  22328  pm2mpf1lem  22815  pm2mpcoe1  22821  pm2mpmhmlem2  22840  cayleyhamilton1  22913  gsummoncoe1fzo  33597  ply1mulgsum  48235
  Copyright terms: Public domain W3C validator