MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colmid Structured version   Visualization version   GIF version

Theorem colmid 26468
Description: Colinearity and equidistance implies midpoint. Theorem 7.20 of [Schwabhauser] p. 52. (Contributed by Thierry Arnoux, 30-Jul-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
colmid.m 𝑀 = (𝑆𝑋)
colmid.a (𝜑𝐴𝑃)
colmid.b (𝜑𝐵𝑃)
colmid.x (𝜑𝑋𝑃)
colmid.c (𝜑 → (𝑋 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
colmid.d (𝜑 → (𝑋 𝐴) = (𝑋 𝐵))
Assertion
Ref Expression
colmid (𝜑 → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))

Proof of Theorem colmid
StepHypRef Expression
1 animorr 975 . 2 ((𝜑𝐴 = 𝐵) → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))
2 mirval.p . . . . 5 𝑃 = (Base‘𝐺)
3 mirval.d . . . . 5 = (dist‘𝐺)
4 mirval.i . . . . 5 𝐼 = (Itv‘𝐺)
5 mirval.l . . . . 5 𝐿 = (LineG‘𝐺)
6 mirval.s . . . . 5 𝑆 = (pInvG‘𝐺)
7 mirval.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
87ad2antrr 724 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝐺 ∈ TarskiG)
9 colmid.x . . . . . 6 (𝜑𝑋𝑃)
109ad2antrr 724 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝑋𝑃)
11 colmid.m . . . . 5 𝑀 = (𝑆𝑋)
12 colmid.a . . . . . 6 (𝜑𝐴𝑃)
1312ad2antrr 724 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝐴𝑃)
14 colmid.b . . . . . 6 (𝜑𝐵𝑃)
1514ad2antrr 724 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝐵𝑃)
16 colmid.d . . . . . . 7 (𝜑 → (𝑋 𝐴) = (𝑋 𝐵))
1716ad2antrr 724 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → (𝑋 𝐴) = (𝑋 𝐵))
1817eqcomd 2827 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → (𝑋 𝐵) = (𝑋 𝐴))
19 simpr 487 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝑋 ∈ (𝐴𝐼𝐵))
202, 3, 4, 8, 13, 10, 15, 19tgbtwncom 26268 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝑋 ∈ (𝐵𝐼𝐴))
212, 3, 4, 5, 6, 8, 10, 11, 13, 15, 18, 20ismir 26439 . . . 4 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝐵 = (𝑀𝐴))
2221orcd 869 . . 3 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))
237adantr 483 . . . . . . 7 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐺 ∈ TarskiG)
2414adantr 483 . . . . . . 7 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐵𝑃)
2512adantr 483 . . . . . . 7 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴𝑃)
269adantr 483 . . . . . . . 8 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝑋𝑃)
27 simpr 487 . . . . . . . . 9 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 ∈ (𝑋𝐼𝐵))
282, 3, 4, 23, 26, 25, 24, 27tgbtwncom 26268 . . . . . . . 8 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 ∈ (𝐵𝐼𝑋))
292, 3, 4, 23, 25, 26tgbtwntriv1 26271 . . . . . . . 8 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 ∈ (𝐴𝐼𝑋))
302, 3, 4, 7, 9, 12, 9, 14, 16tgcgrcomlr 26260 . . . . . . . . . 10 (𝜑 → (𝐴 𝑋) = (𝐵 𝑋))
3130adantr 483 . . . . . . . . 9 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → (𝐴 𝑋) = (𝐵 𝑋))
3231eqcomd 2827 . . . . . . . 8 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → (𝐵 𝑋) = (𝐴 𝑋))
33 eqidd 2822 . . . . . . . 8 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → (𝐴 𝑋) = (𝐴 𝑋))
342, 3, 4, 23, 24, 25, 26, 25, 25, 26, 28, 29, 32, 33tgcgrsub 26289 . . . . . . 7 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → (𝐵 𝐴) = (𝐴 𝐴))
352, 3, 4, 23, 24, 25, 25, 34axtgcgrid 26243 . . . . . 6 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐵 = 𝐴)
3635eqcomd 2827 . . . . 5 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 = 𝐵)
3736adantlr 713 . . . 4 (((𝜑𝐴𝐵) ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 = 𝐵)
3837olcd 870 . . 3 (((𝜑𝐴𝐵) ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))
397adantr 483 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝐺 ∈ TarskiG)
4012adantr 483 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝐴𝑃)
4114adantr 483 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝐵𝑃)
429adantr 483 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝑋𝑃)
43 simpr 487 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝐵 ∈ (𝐴𝐼𝑋))
442, 3, 4, 39, 41, 42tgbtwntriv1 26271 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝐵 ∈ (𝐵𝐼𝑋))
4530adantr 483 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → (𝐴 𝑋) = (𝐵 𝑋))
46 eqidd 2822 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → (𝐵 𝑋) = (𝐵 𝑋))
472, 3, 4, 39, 40, 41, 42, 41, 41, 42, 43, 44, 45, 46tgcgrsub 26289 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → (𝐴 𝐵) = (𝐵 𝐵))
482, 3, 4, 39, 40, 41, 41, 47axtgcgrid 26243 . . . . 5 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝐴 = 𝐵)
4948adantlr 713 . . . 4 (((𝜑𝐴𝐵) ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → 𝐴 = 𝐵)
5049olcd 870 . . 3 (((𝜑𝐴𝐵) ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))
51 df-ne 3017 . . . . 5 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
52 colmid.c . . . . . . 7 (𝜑 → (𝑋 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
5352orcomd 867 . . . . . 6 (𝜑 → (𝐴 = 𝐵𝑋 ∈ (𝐴𝐿𝐵)))
5453orcanai 999 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝑋 ∈ (𝐴𝐿𝐵))
5551, 54sylan2b 595 . . . 4 ((𝜑𝐴𝐵) → 𝑋 ∈ (𝐴𝐿𝐵))
567adantr 483 . . . . 5 ((𝜑𝐴𝐵) → 𝐺 ∈ TarskiG)
5712adantr 483 . . . . 5 ((𝜑𝐴𝐵) → 𝐴𝑃)
5814adantr 483 . . . . 5 ((𝜑𝐴𝐵) → 𝐵𝑃)
59 simpr 487 . . . . 5 ((𝜑𝐴𝐵) → 𝐴𝐵)
609adantr 483 . . . . 5 ((𝜑𝐴𝐵) → 𝑋𝑃)
612, 5, 4, 56, 57, 58, 59, 60tgellng 26333 . . . 4 ((𝜑𝐴𝐵) → (𝑋 ∈ (𝐴𝐿𝐵) ↔ (𝑋 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝑋𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝑋))))
6255, 61mpbid 234 . . 3 ((𝜑𝐴𝐵) → (𝑋 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝑋𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝑋)))
6322, 38, 50, 62mpjao3dan 1427 . 2 ((𝜑𝐴𝐵) → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))
641, 63pm2.61dane 3104 1 (𝜑 → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843  w3o 1082   = wceq 1533  wcel 2110  wne 3016  cfv 6350  (class class class)co 7150  Basecbs 16477  distcds 16568  TarskiGcstrkg 26210  Itvcitv 26216  LineGclng 26217  pInvGcmir 26432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-fz 12887  df-hash 13685  df-trkgc 26228  df-trkgb 26229  df-trkgcb 26230  df-trkg 26233  df-mir 26433
This theorem is referenced by:  symquadlem  26469  midexlem  26472
  Copyright terms: Public domain W3C validator