MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colmid Structured version   Visualization version   GIF version

Theorem colmid 28622
Description: Colinearity and equidistance implies midpoint. Theorem 7.20 of [Schwabhauser] p. 52. (Contributed by Thierry Arnoux, 30-Jul-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
colmid.m 𝑀 = (𝑆𝑋)
colmid.a (𝜑𝐴𝑃)
colmid.b (𝜑𝐵𝑃)
colmid.x (𝜑𝑋𝑃)
colmid.c (𝜑 → (𝑋 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
colmid.d (𝜑 → (𝑋 𝐴) = (𝑋 𝐵))
Assertion
Ref Expression
colmid (𝜑 → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))

Proof of Theorem colmid
StepHypRef Expression
1 animorr 980 . 2 ((𝜑𝐴 = 𝐵) → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))
2 mirval.p . . . . 5 𝑃 = (Base‘𝐺)
3 mirval.d . . . . 5 = (dist‘𝐺)
4 mirval.i . . . . 5 𝐼 = (Itv‘𝐺)
5 mirval.l . . . . 5 𝐿 = (LineG‘𝐺)
6 mirval.s . . . . 5 𝑆 = (pInvG‘𝐺)
7 mirval.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
87ad2antrr 726 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝐺 ∈ TarskiG)
9 colmid.x . . . . . 6 (𝜑𝑋𝑃)
109ad2antrr 726 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝑋𝑃)
11 colmid.m . . . . 5 𝑀 = (𝑆𝑋)
12 colmid.a . . . . . 6 (𝜑𝐴𝑃)
1312ad2antrr 726 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝐴𝑃)
14 colmid.b . . . . . 6 (𝜑𝐵𝑃)
1514ad2antrr 726 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝐵𝑃)
16 colmid.d . . . . . . 7 (𝜑 → (𝑋 𝐴) = (𝑋 𝐵))
1716ad2antrr 726 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → (𝑋 𝐴) = (𝑋 𝐵))
1817eqcomd 2736 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → (𝑋 𝐵) = (𝑋 𝐴))
19 simpr 484 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝑋 ∈ (𝐴𝐼𝐵))
202, 3, 4, 8, 13, 10, 15, 19tgbtwncom 28422 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝑋 ∈ (𝐵𝐼𝐴))
212, 3, 4, 5, 6, 8, 10, 11, 13, 15, 18, 20ismir 28593 . . . 4 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝐵 = (𝑀𝐴))
2221orcd 873 . . 3 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))
237adantr 480 . . . . . . 7 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐺 ∈ TarskiG)
2414adantr 480 . . . . . . 7 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐵𝑃)
2512adantr 480 . . . . . . 7 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴𝑃)
269adantr 480 . . . . . . . 8 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝑋𝑃)
27 simpr 484 . . . . . . . . 9 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 ∈ (𝑋𝐼𝐵))
282, 3, 4, 23, 26, 25, 24, 27tgbtwncom 28422 . . . . . . . 8 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 ∈ (𝐵𝐼𝑋))
292, 3, 4, 23, 25, 26tgbtwntriv1 28425 . . . . . . . 8 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 ∈ (𝐴𝐼𝑋))
302, 3, 4, 7, 9, 12, 9, 14, 16tgcgrcomlr 28414 . . . . . . . . . 10 (𝜑 → (𝐴 𝑋) = (𝐵 𝑋))
3130adantr 480 . . . . . . . . 9 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → (𝐴 𝑋) = (𝐵 𝑋))
3231eqcomd 2736 . . . . . . . 8 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → (𝐵 𝑋) = (𝐴 𝑋))
33 eqidd 2731 . . . . . . . 8 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → (𝐴 𝑋) = (𝐴 𝑋))
342, 3, 4, 23, 24, 25, 26, 25, 25, 26, 28, 29, 32, 33tgcgrsub 28443 . . . . . . 7 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → (𝐵 𝐴) = (𝐴 𝐴))
352, 3, 4, 23, 24, 25, 25, 34axtgcgrid 28397 . . . . . 6 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐵 = 𝐴)
3635eqcomd 2736 . . . . 5 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 = 𝐵)
3736adantlr 715 . . . 4 (((𝜑𝐴𝐵) ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 = 𝐵)
3837olcd 874 . . 3 (((𝜑𝐴𝐵) ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))
397adantr 480 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝐺 ∈ TarskiG)
4012adantr 480 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝐴𝑃)
4114adantr 480 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝐵𝑃)
429adantr 480 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝑋𝑃)
43 simpr 484 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝐵 ∈ (𝐴𝐼𝑋))
442, 3, 4, 39, 41, 42tgbtwntriv1 28425 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝐵 ∈ (𝐵𝐼𝑋))
4530adantr 480 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → (𝐴 𝑋) = (𝐵 𝑋))
46 eqidd 2731 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → (𝐵 𝑋) = (𝐵 𝑋))
472, 3, 4, 39, 40, 41, 42, 41, 41, 42, 43, 44, 45, 46tgcgrsub 28443 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → (𝐴 𝐵) = (𝐵 𝐵))
482, 3, 4, 39, 40, 41, 41, 47axtgcgrid 28397 . . . . 5 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝐴 = 𝐵)
4948adantlr 715 . . . 4 (((𝜑𝐴𝐵) ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → 𝐴 = 𝐵)
5049olcd 874 . . 3 (((𝜑𝐴𝐵) ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))
51 df-ne 2927 . . . . 5 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
52 colmid.c . . . . . . 7 (𝜑 → (𝑋 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
5352orcomd 871 . . . . . 6 (𝜑 → (𝐴 = 𝐵𝑋 ∈ (𝐴𝐿𝐵)))
5453orcanai 1004 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝑋 ∈ (𝐴𝐿𝐵))
5551, 54sylan2b 594 . . . 4 ((𝜑𝐴𝐵) → 𝑋 ∈ (𝐴𝐿𝐵))
567adantr 480 . . . . 5 ((𝜑𝐴𝐵) → 𝐺 ∈ TarskiG)
5712adantr 480 . . . . 5 ((𝜑𝐴𝐵) → 𝐴𝑃)
5814adantr 480 . . . . 5 ((𝜑𝐴𝐵) → 𝐵𝑃)
59 simpr 484 . . . . 5 ((𝜑𝐴𝐵) → 𝐴𝐵)
609adantr 480 . . . . 5 ((𝜑𝐴𝐵) → 𝑋𝑃)
612, 5, 4, 56, 57, 58, 59, 60tgellng 28487 . . . 4 ((𝜑𝐴𝐵) → (𝑋 ∈ (𝐴𝐿𝐵) ↔ (𝑋 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝑋𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝑋))))
6255, 61mpbid 232 . . 3 ((𝜑𝐴𝐵) → (𝑋 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝑋𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝑋)))
6322, 38, 50, 62mpjao3dan 1434 . 2 ((𝜑𝐴𝐵) → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))
641, 63pm2.61dane 3013 1 (𝜑 → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109  wne 2926  cfv 6514  (class class class)co 7390  Basecbs 17186  distcds 17236  TarskiGcstrkg 28361  Itvcitv 28367  LineGclng 28368  pInvGcmir 28586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303  df-trkgc 28382  df-trkgb 28383  df-trkgcb 28384  df-trkg 28387  df-mir 28587
This theorem is referenced by:  symquadlem  28623  midexlem  28626
  Copyright terms: Public domain W3C validator