MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colmid Structured version   Visualization version   GIF version

Theorem colmid 26953
Description: Colinearity and equidistance implies midpoint. Theorem 7.20 of [Schwabhauser] p. 52. (Contributed by Thierry Arnoux, 30-Jul-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
colmid.m 𝑀 = (𝑆𝑋)
colmid.a (𝜑𝐴𝑃)
colmid.b (𝜑𝐵𝑃)
colmid.x (𝜑𝑋𝑃)
colmid.c (𝜑 → (𝑋 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
colmid.d (𝜑 → (𝑋 𝐴) = (𝑋 𝐵))
Assertion
Ref Expression
colmid (𝜑 → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))

Proof of Theorem colmid
StepHypRef Expression
1 animorr 975 . 2 ((𝜑𝐴 = 𝐵) → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))
2 mirval.p . . . . 5 𝑃 = (Base‘𝐺)
3 mirval.d . . . . 5 = (dist‘𝐺)
4 mirval.i . . . . 5 𝐼 = (Itv‘𝐺)
5 mirval.l . . . . 5 𝐿 = (LineG‘𝐺)
6 mirval.s . . . . 5 𝑆 = (pInvG‘𝐺)
7 mirval.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
87ad2antrr 722 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝐺 ∈ TarskiG)
9 colmid.x . . . . . 6 (𝜑𝑋𝑃)
109ad2antrr 722 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝑋𝑃)
11 colmid.m . . . . 5 𝑀 = (𝑆𝑋)
12 colmid.a . . . . . 6 (𝜑𝐴𝑃)
1312ad2antrr 722 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝐴𝑃)
14 colmid.b . . . . . 6 (𝜑𝐵𝑃)
1514ad2antrr 722 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝐵𝑃)
16 colmid.d . . . . . . 7 (𝜑 → (𝑋 𝐴) = (𝑋 𝐵))
1716ad2antrr 722 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → (𝑋 𝐴) = (𝑋 𝐵))
1817eqcomd 2744 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → (𝑋 𝐵) = (𝑋 𝐴))
19 simpr 484 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝑋 ∈ (𝐴𝐼𝐵))
202, 3, 4, 8, 13, 10, 15, 19tgbtwncom 26753 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝑋 ∈ (𝐵𝐼𝐴))
212, 3, 4, 5, 6, 8, 10, 11, 13, 15, 18, 20ismir 26924 . . . 4 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝐵 = (𝑀𝐴))
2221orcd 869 . . 3 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))
237adantr 480 . . . . . . 7 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐺 ∈ TarskiG)
2414adantr 480 . . . . . . 7 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐵𝑃)
2512adantr 480 . . . . . . 7 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴𝑃)
269adantr 480 . . . . . . . 8 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝑋𝑃)
27 simpr 484 . . . . . . . . 9 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 ∈ (𝑋𝐼𝐵))
282, 3, 4, 23, 26, 25, 24, 27tgbtwncom 26753 . . . . . . . 8 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 ∈ (𝐵𝐼𝑋))
292, 3, 4, 23, 25, 26tgbtwntriv1 26756 . . . . . . . 8 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 ∈ (𝐴𝐼𝑋))
302, 3, 4, 7, 9, 12, 9, 14, 16tgcgrcomlr 26745 . . . . . . . . . 10 (𝜑 → (𝐴 𝑋) = (𝐵 𝑋))
3130adantr 480 . . . . . . . . 9 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → (𝐴 𝑋) = (𝐵 𝑋))
3231eqcomd 2744 . . . . . . . 8 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → (𝐵 𝑋) = (𝐴 𝑋))
33 eqidd 2739 . . . . . . . 8 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → (𝐴 𝑋) = (𝐴 𝑋))
342, 3, 4, 23, 24, 25, 26, 25, 25, 26, 28, 29, 32, 33tgcgrsub 26774 . . . . . . 7 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → (𝐵 𝐴) = (𝐴 𝐴))
352, 3, 4, 23, 24, 25, 25, 34axtgcgrid 26728 . . . . . 6 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐵 = 𝐴)
3635eqcomd 2744 . . . . 5 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 = 𝐵)
3736adantlr 711 . . . 4 (((𝜑𝐴𝐵) ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 = 𝐵)
3837olcd 870 . . 3 (((𝜑𝐴𝐵) ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))
397adantr 480 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝐺 ∈ TarskiG)
4012adantr 480 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝐴𝑃)
4114adantr 480 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝐵𝑃)
429adantr 480 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝑋𝑃)
43 simpr 484 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝐵 ∈ (𝐴𝐼𝑋))
442, 3, 4, 39, 41, 42tgbtwntriv1 26756 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝐵 ∈ (𝐵𝐼𝑋))
4530adantr 480 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → (𝐴 𝑋) = (𝐵 𝑋))
46 eqidd 2739 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → (𝐵 𝑋) = (𝐵 𝑋))
472, 3, 4, 39, 40, 41, 42, 41, 41, 42, 43, 44, 45, 46tgcgrsub 26774 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → (𝐴 𝐵) = (𝐵 𝐵))
482, 3, 4, 39, 40, 41, 41, 47axtgcgrid 26728 . . . . 5 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝐴 = 𝐵)
4948adantlr 711 . . . 4 (((𝜑𝐴𝐵) ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → 𝐴 = 𝐵)
5049olcd 870 . . 3 (((𝜑𝐴𝐵) ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))
51 df-ne 2943 . . . . 5 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
52 colmid.c . . . . . . 7 (𝜑 → (𝑋 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
5352orcomd 867 . . . . . 6 (𝜑 → (𝐴 = 𝐵𝑋 ∈ (𝐴𝐿𝐵)))
5453orcanai 999 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝑋 ∈ (𝐴𝐿𝐵))
5551, 54sylan2b 593 . . . 4 ((𝜑𝐴𝐵) → 𝑋 ∈ (𝐴𝐿𝐵))
567adantr 480 . . . . 5 ((𝜑𝐴𝐵) → 𝐺 ∈ TarskiG)
5712adantr 480 . . . . 5 ((𝜑𝐴𝐵) → 𝐴𝑃)
5814adantr 480 . . . . 5 ((𝜑𝐴𝐵) → 𝐵𝑃)
59 simpr 484 . . . . 5 ((𝜑𝐴𝐵) → 𝐴𝐵)
609adantr 480 . . . . 5 ((𝜑𝐴𝐵) → 𝑋𝑃)
612, 5, 4, 56, 57, 58, 59, 60tgellng 26818 . . . 4 ((𝜑𝐴𝐵) → (𝑋 ∈ (𝐴𝐿𝐵) ↔ (𝑋 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝑋𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝑋))))
6255, 61mpbid 231 . . 3 ((𝜑𝐴𝐵) → (𝑋 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝑋𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝑋)))
6322, 38, 50, 62mpjao3dan 1429 . 2 ((𝜑𝐴𝐵) → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))
641, 63pm2.61dane 3031 1 (𝜑 → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  w3o 1084   = wceq 1539  wcel 2108  wne 2942  cfv 6418  (class class class)co 7255  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  Itvcitv 26699  LineGclng 26700  pInvGcmir 26917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-trkgc 26713  df-trkgb 26714  df-trkgcb 26715  df-trkg 26718  df-mir 26918
This theorem is referenced by:  symquadlem  26954  midexlem  26957
  Copyright terms: Public domain W3C validator