Proof of Theorem colmid
Step | Hyp | Ref
| Expression |
1 | | animorr 976 |
. 2
⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐵 = (𝑀‘𝐴) ∨ 𝐴 = 𝐵)) |
2 | | mirval.p |
. . . . 5
⊢ 𝑃 = (Base‘𝐺) |
3 | | mirval.d |
. . . . 5
⊢ − =
(dist‘𝐺) |
4 | | mirval.i |
. . . . 5
⊢ 𝐼 = (Itv‘𝐺) |
5 | | mirval.l |
. . . . 5
⊢ 𝐿 = (LineG‘𝐺) |
6 | | mirval.s |
. . . . 5
⊢ 𝑆 = (pInvG‘𝐺) |
7 | | mirval.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
8 | 7 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝐺 ∈ TarskiG) |
9 | | colmid.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑃) |
10 | 9 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝑋 ∈ 𝑃) |
11 | | colmid.m |
. . . . 5
⊢ 𝑀 = (𝑆‘𝑋) |
12 | | colmid.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
13 | 12 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝐴 ∈ 𝑃) |
14 | | colmid.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
15 | 14 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝐵 ∈ 𝑃) |
16 | | colmid.d |
. . . . . . 7
⊢ (𝜑 → (𝑋 − 𝐴) = (𝑋 − 𝐵)) |
17 | 16 | ad2antrr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → (𝑋 − 𝐴) = (𝑋 − 𝐵)) |
18 | 17 | eqcomd 2744 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → (𝑋 − 𝐵) = (𝑋 − 𝐴)) |
19 | | simpr 485 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝑋 ∈ (𝐴𝐼𝐵)) |
20 | 2, 3, 4, 8, 13, 10, 15, 19 | tgbtwncom 26849 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝑋 ∈ (𝐵𝐼𝐴)) |
21 | 2, 3, 4, 5, 6, 8, 10, 11, 13, 15, 18, 20 | ismir 27020 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝐵 = (𝑀‘𝐴)) |
22 | 21 | orcd 870 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → (𝐵 = (𝑀‘𝐴) ∨ 𝐴 = 𝐵)) |
23 | 7 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → 𝐺 ∈ TarskiG) |
24 | 14 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → 𝐵 ∈ 𝑃) |
25 | 12 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 ∈ 𝑃) |
26 | 9 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → 𝑋 ∈ 𝑃) |
27 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 ∈ (𝑋𝐼𝐵)) |
28 | 2, 3, 4, 23, 26, 25, 24, 27 | tgbtwncom 26849 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 ∈ (𝐵𝐼𝑋)) |
29 | 2, 3, 4, 23, 25, 26 | tgbtwntriv1 26852 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 ∈ (𝐴𝐼𝑋)) |
30 | 2, 3, 4, 7, 9, 12,
9, 14, 16 | tgcgrcomlr 26841 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 − 𝑋) = (𝐵 − 𝑋)) |
31 | 30 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → (𝐴 − 𝑋) = (𝐵 − 𝑋)) |
32 | 31 | eqcomd 2744 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → (𝐵 − 𝑋) = (𝐴 − 𝑋)) |
33 | | eqidd 2739 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → (𝐴 − 𝑋) = (𝐴 − 𝑋)) |
34 | 2, 3, 4, 23, 24, 25, 26, 25, 25, 26, 28, 29, 32, 33 | tgcgrsub 26870 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → (𝐵 − 𝐴) = (𝐴 − 𝐴)) |
35 | 2, 3, 4, 23, 24, 25, 25, 34 | axtgcgrid 26824 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → 𝐵 = 𝐴) |
36 | 35 | eqcomd 2744 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 = 𝐵) |
37 | 36 | adantlr 712 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 = 𝐵) |
38 | 37 | olcd 871 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → (𝐵 = (𝑀‘𝐴) ∨ 𝐴 = 𝐵)) |
39 | 7 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → 𝐺 ∈ TarskiG) |
40 | 12 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → 𝐴 ∈ 𝑃) |
41 | 14 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → 𝐵 ∈ 𝑃) |
42 | 9 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → 𝑋 ∈ 𝑃) |
43 | | simpr 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → 𝐵 ∈ (𝐴𝐼𝑋)) |
44 | 2, 3, 4, 39, 41, 42 | tgbtwntriv1 26852 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → 𝐵 ∈ (𝐵𝐼𝑋)) |
45 | 30 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → (𝐴 − 𝑋) = (𝐵 − 𝑋)) |
46 | | eqidd 2739 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → (𝐵 − 𝑋) = (𝐵 − 𝑋)) |
47 | 2, 3, 4, 39, 40, 41, 42, 41, 41, 42, 43, 44, 45, 46 | tgcgrsub 26870 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → (𝐴 − 𝐵) = (𝐵 − 𝐵)) |
48 | 2, 3, 4, 39, 40, 41, 41, 47 | axtgcgrid 26824 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → 𝐴 = 𝐵) |
49 | 48 | adantlr 712 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → 𝐴 = 𝐵) |
50 | 49 | olcd 871 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → (𝐵 = (𝑀‘𝐴) ∨ 𝐴 = 𝐵)) |
51 | | df-ne 2944 |
. . . . 5
⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) |
52 | | colmid.c |
. . . . . . 7
⊢ (𝜑 → (𝑋 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
53 | 52 | orcomd 868 |
. . . . . 6
⊢ (𝜑 → (𝐴 = 𝐵 ∨ 𝑋 ∈ (𝐴𝐿𝐵))) |
54 | 53 | orcanai 1000 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝑋 ∈ (𝐴𝐿𝐵)) |
55 | 51, 54 | sylan2b 594 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝑋 ∈ (𝐴𝐿𝐵)) |
56 | 7 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐺 ∈ TarskiG) |
57 | 12 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ 𝑃) |
58 | 14 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝑃) |
59 | | simpr 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐴 ≠ 𝐵) |
60 | 9 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝑋 ∈ 𝑃) |
61 | 2, 5, 4, 56, 57, 58, 59, 60 | tgellng 26914 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → (𝑋 ∈ (𝐴𝐿𝐵) ↔ (𝑋 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝑋𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝑋)))) |
62 | 55, 61 | mpbid 231 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → (𝑋 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝑋𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝑋))) |
63 | 22, 38, 50, 62 | mpjao3dan 1430 |
. 2
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → (𝐵 = (𝑀‘𝐴) ∨ 𝐴 = 𝐵)) |
64 | 1, 63 | pm2.61dane 3032 |
1
⊢ (𝜑 → (𝐵 = (𝑀‘𝐴) ∨ 𝐴 = 𝐵)) |