MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colmid Structured version   Visualization version   GIF version

Theorem colmid 27182
Description: Colinearity and equidistance implies midpoint. Theorem 7.20 of [Schwabhauser] p. 52. (Contributed by Thierry Arnoux, 30-Jul-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
colmid.m 𝑀 = (𝑆𝑋)
colmid.a (𝜑𝐴𝑃)
colmid.b (𝜑𝐵𝑃)
colmid.x (𝜑𝑋𝑃)
colmid.c (𝜑 → (𝑋 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
colmid.d (𝜑 → (𝑋 𝐴) = (𝑋 𝐵))
Assertion
Ref Expression
colmid (𝜑 → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))

Proof of Theorem colmid
StepHypRef Expression
1 animorr 976 . 2 ((𝜑𝐴 = 𝐵) → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))
2 mirval.p . . . . 5 𝑃 = (Base‘𝐺)
3 mirval.d . . . . 5 = (dist‘𝐺)
4 mirval.i . . . . 5 𝐼 = (Itv‘𝐺)
5 mirval.l . . . . 5 𝐿 = (LineG‘𝐺)
6 mirval.s . . . . 5 𝑆 = (pInvG‘𝐺)
7 mirval.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
87ad2antrr 723 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝐺 ∈ TarskiG)
9 colmid.x . . . . . 6 (𝜑𝑋𝑃)
109ad2antrr 723 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝑋𝑃)
11 colmid.m . . . . 5 𝑀 = (𝑆𝑋)
12 colmid.a . . . . . 6 (𝜑𝐴𝑃)
1312ad2antrr 723 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝐴𝑃)
14 colmid.b . . . . . 6 (𝜑𝐵𝑃)
1514ad2antrr 723 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝐵𝑃)
16 colmid.d . . . . . . 7 (𝜑 → (𝑋 𝐴) = (𝑋 𝐵))
1716ad2antrr 723 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → (𝑋 𝐴) = (𝑋 𝐵))
1817eqcomd 2742 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → (𝑋 𝐵) = (𝑋 𝐴))
19 simpr 485 . . . . . 6 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝑋 ∈ (𝐴𝐼𝐵))
202, 3, 4, 8, 13, 10, 15, 19tgbtwncom 26982 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝑋 ∈ (𝐵𝐼𝐴))
212, 3, 4, 5, 6, 8, 10, 11, 13, 15, 18, 20ismir 27153 . . . 4 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝐵 = (𝑀𝐴))
2221orcd 870 . . 3 (((𝜑𝐴𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))
237adantr 481 . . . . . . 7 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐺 ∈ TarskiG)
2414adantr 481 . . . . . . 7 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐵𝑃)
2512adantr 481 . . . . . . 7 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴𝑃)
269adantr 481 . . . . . . . 8 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝑋𝑃)
27 simpr 485 . . . . . . . . 9 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 ∈ (𝑋𝐼𝐵))
282, 3, 4, 23, 26, 25, 24, 27tgbtwncom 26982 . . . . . . . 8 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 ∈ (𝐵𝐼𝑋))
292, 3, 4, 23, 25, 26tgbtwntriv1 26985 . . . . . . . 8 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 ∈ (𝐴𝐼𝑋))
302, 3, 4, 7, 9, 12, 9, 14, 16tgcgrcomlr 26974 . . . . . . . . . 10 (𝜑 → (𝐴 𝑋) = (𝐵 𝑋))
3130adantr 481 . . . . . . . . 9 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → (𝐴 𝑋) = (𝐵 𝑋))
3231eqcomd 2742 . . . . . . . 8 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → (𝐵 𝑋) = (𝐴 𝑋))
33 eqidd 2737 . . . . . . . 8 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → (𝐴 𝑋) = (𝐴 𝑋))
342, 3, 4, 23, 24, 25, 26, 25, 25, 26, 28, 29, 32, 33tgcgrsub 27003 . . . . . . 7 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → (𝐵 𝐴) = (𝐴 𝐴))
352, 3, 4, 23, 24, 25, 25, 34axtgcgrid 26957 . . . . . 6 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐵 = 𝐴)
3635eqcomd 2742 . . . . 5 ((𝜑𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 = 𝐵)
3736adantlr 712 . . . 4 (((𝜑𝐴𝐵) ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 = 𝐵)
3837olcd 871 . . 3 (((𝜑𝐴𝐵) ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))
397adantr 481 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝐺 ∈ TarskiG)
4012adantr 481 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝐴𝑃)
4114adantr 481 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝐵𝑃)
429adantr 481 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝑋𝑃)
43 simpr 485 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝐵 ∈ (𝐴𝐼𝑋))
442, 3, 4, 39, 41, 42tgbtwntriv1 26985 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝐵 ∈ (𝐵𝐼𝑋))
4530adantr 481 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → (𝐴 𝑋) = (𝐵 𝑋))
46 eqidd 2737 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → (𝐵 𝑋) = (𝐵 𝑋))
472, 3, 4, 39, 40, 41, 42, 41, 41, 42, 43, 44, 45, 46tgcgrsub 27003 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → (𝐴 𝐵) = (𝐵 𝐵))
482, 3, 4, 39, 40, 41, 41, 47axtgcgrid 26957 . . . . 5 ((𝜑𝐵 ∈ (𝐴𝐼𝑋)) → 𝐴 = 𝐵)
4948adantlr 712 . . . 4 (((𝜑𝐴𝐵) ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → 𝐴 = 𝐵)
5049olcd 871 . . 3 (((𝜑𝐴𝐵) ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))
51 df-ne 2941 . . . . 5 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
52 colmid.c . . . . . . 7 (𝜑 → (𝑋 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
5352orcomd 868 . . . . . 6 (𝜑 → (𝐴 = 𝐵𝑋 ∈ (𝐴𝐿𝐵)))
5453orcanai 1000 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝑋 ∈ (𝐴𝐿𝐵))
5551, 54sylan2b 594 . . . 4 ((𝜑𝐴𝐵) → 𝑋 ∈ (𝐴𝐿𝐵))
567adantr 481 . . . . 5 ((𝜑𝐴𝐵) → 𝐺 ∈ TarskiG)
5712adantr 481 . . . . 5 ((𝜑𝐴𝐵) → 𝐴𝑃)
5814adantr 481 . . . . 5 ((𝜑𝐴𝐵) → 𝐵𝑃)
59 simpr 485 . . . . 5 ((𝜑𝐴𝐵) → 𝐴𝐵)
609adantr 481 . . . . 5 ((𝜑𝐴𝐵) → 𝑋𝑃)
612, 5, 4, 56, 57, 58, 59, 60tgellng 27047 . . . 4 ((𝜑𝐴𝐵) → (𝑋 ∈ (𝐴𝐿𝐵) ↔ (𝑋 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝑋𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝑋))))
6255, 61mpbid 231 . . 3 ((𝜑𝐴𝐵) → (𝑋 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝑋𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝑋)))
6322, 38, 50, 62mpjao3dan 1430 . 2 ((𝜑𝐴𝐵) → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))
641, 63pm2.61dane 3029 1 (𝜑 → (𝐵 = (𝑀𝐴) ∨ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  w3o 1085   = wceq 1540  wcel 2105  wne 2940  cfv 6465  (class class class)co 7316  Basecbs 16986  distcds 17045  TarskiGcstrkg 26921  Itvcitv 26927  LineGclng 26928  pInvGcmir 27146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-int 4892  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-om 7759  df-1st 7877  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-1o 8345  df-oadd 8349  df-er 8547  df-en 8783  df-dom 8784  df-sdom 8785  df-fin 8786  df-dju 9736  df-card 9774  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-nn 12053  df-2 12115  df-n0 12313  df-xnn0 12385  df-z 12399  df-uz 12662  df-fz 13319  df-hash 14124  df-trkgc 26942  df-trkgb 26943  df-trkgcb 26944  df-trkg 26947  df-mir 27147
This theorem is referenced by:  symquadlem  27183  midexlem  27186
  Copyright terms: Public domain W3C validator