| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelpr2 | Structured version Visualization version GIF version | ||
| Description: If a class is not an element of an unordered pair, it is not the second listed element. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| nelpr2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| nelpr2.n | ⊢ (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
| Ref | Expression |
|---|---|
| nelpr2 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelpr2.n | . . 3 ⊢ (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶}) | |
| 2 | animorr 980 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
| 3 | nelpr2.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | elprg 4596 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
| 7 | 2, 6 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 ∈ {𝐵, 𝐶}) |
| 8 | 1, 7 | mtand 815 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐶) |
| 9 | 8 | neqned 2935 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {cpr 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-un 3902 df-sn 4574 df-pr 4576 |
| This theorem is referenced by: chnccat 18532 ovnsubadd2lem 46691 |
| Copyright terms: Public domain | W3C validator |