|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nelpr2 | Structured version Visualization version GIF version | ||
| Description: If a class is not an element of an unordered pair, it is not the second listed element. (Contributed by Glauco Siliprandi, 3-Mar-2021.) | 
| Ref | Expression | 
|---|---|
| nelpr2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| nelpr2.n | ⊢ (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶}) | 
| Ref | Expression | 
|---|---|
| nelpr2 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nelpr2.n | . . 3 ⊢ (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶}) | |
| 2 | animorr 981 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
| 3 | nelpr2.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | elprg 4648 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | 
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | 
| 7 | 2, 6 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 ∈ {𝐵, 𝐶}) | 
| 8 | 1, 7 | mtand 816 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐶) | 
| 9 | 8 | neqned 2947 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 {cpr 4628 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-v 3482 df-un 3956 df-sn 4627 df-pr 4629 | 
| This theorem is referenced by: ovnsubadd2lem 46660 | 
| Copyright terms: Public domain | W3C validator |