Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nelpr2 | Structured version Visualization version GIF version |
Description: If a class is not an element of an unordered pair, it is not the second listed element. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
nelpr2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
nelpr2.n | ⊢ (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
Ref | Expression |
---|---|
nelpr2 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelpr2.n | . . 3 ⊢ (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶}) | |
2 | animorr 976 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
3 | nelpr2.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | elprg 4582 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
6 | 5 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
7 | 2, 6 | mpbird 256 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 ∈ {𝐵, 𝐶}) |
8 | 1, 7 | mtand 813 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐶) |
9 | 8 | neqned 2950 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 {cpr 4563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-v 3434 df-un 3892 df-sn 4562 df-pr 4564 |
This theorem is referenced by: ovnsubadd2lem 44183 |
Copyright terms: Public domain | W3C validator |