MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nelpr2 Structured version   Visualization version   GIF version

Theorem nelpr2 4620
Description: If a class is not an element of an unordered pair, it is not the second listed element. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
nelpr2.a (𝜑𝐴𝑉)
nelpr2.n (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶})
Assertion
Ref Expression
nelpr2 (𝜑𝐴𝐶)

Proof of Theorem nelpr2
StepHypRef Expression
1 nelpr2.n . . 3 (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶})
2 animorr 980 . . . 4 ((𝜑𝐴 = 𝐶) → (𝐴 = 𝐵𝐴 = 𝐶))
3 nelpr2.a . . . . . 6 (𝜑𝐴𝑉)
4 elprg 4615 . . . . . 6 (𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶)))
53, 4syl 17 . . . . 5 (𝜑 → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶)))
65adantr 480 . . . 4 ((𝜑𝐴 = 𝐶) → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵𝐴 = 𝐶)))
72, 6mpbird 257 . . 3 ((𝜑𝐴 = 𝐶) → 𝐴 ∈ {𝐵, 𝐶})
81, 7mtand 815 . 2 (𝜑 → ¬ 𝐴 = 𝐶)
98neqned 2933 1 (𝜑𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  {cpr 4594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-v 3452  df-un 3922  df-sn 4593  df-pr 4595
This theorem is referenced by:  ovnsubadd2lem  46650
  Copyright terms: Public domain W3C validator