Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp2pm2mplem4 Structured version   Visualization version   GIF version

Theorem mp2pm2mplem4 21333
 Description: Lemma 4 for mp2pm2mp 21335. (Contributed by AV, 12-Oct-2019.) (Revised by AV, 5-Dec-2019.)
Hypotheses
Ref Expression
mp2pm2mp.a 𝐴 = (𝑁 Mat 𝑅)
mp2pm2mp.q 𝑄 = (Poly1𝐴)
mp2pm2mp.l 𝐿 = (Base‘𝑄)
mp2pm2mp.m · = ( ·𝑠𝑃)
mp2pm2mp.e 𝐸 = (.g‘(mulGrp‘𝑃))
mp2pm2mp.y 𝑌 = (var1𝑅)
mp2pm2mp.i 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
mp2pm2mplem2.p 𝑃 = (Poly1𝑅)
Assertion
Ref Expression
mp2pm2mplem4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝐾) = ((coe1𝑂)‘𝐾))
Distinct variable groups:   𝐸,𝑝   𝐿,𝑝   𝑖,𝑁,𝑗,𝑝   𝑖,𝑂,𝑗,𝑝,𝑘   𝑃,𝑝   𝑅,𝑝   𝑌,𝑝   · ,𝑝   𝑘,𝐿   𝑃,𝑖,𝑗,𝑘   𝑅,𝑘   · ,𝑘   𝑖,𝐸,𝑗   𝑖,𝐾,𝑗   𝑖,𝐿,𝑗   𝑘,𝑁   𝑅,𝑖,𝑗   𝑖,𝑌,𝑗   · ,𝑖,𝑗   𝐴,𝑖,𝑗,𝑘   𝑘,𝐸   𝑘,𝐾   𝑘,𝑌
Allowed substitution hints:   𝐴(𝑝)   𝑄(𝑖,𝑗,𝑘,𝑝)   𝐼(𝑖,𝑗,𝑘,𝑝)   𝐾(𝑝)

Proof of Theorem mp2pm2mplem4
Dummy variables 𝑎 𝑏 𝑠 𝑥 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mp2pm2mp.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 mp2pm2mp.q . . 3 𝑄 = (Poly1𝐴)
3 mp2pm2mp.l . . 3 𝐿 = (Base‘𝑄)
4 mp2pm2mp.m . . 3 · = ( ·𝑠𝑃)
5 mp2pm2mp.e . . 3 𝐸 = (.g‘(mulGrp‘𝑃))
6 mp2pm2mp.y . . 3 𝑌 = (var1𝑅)
7 mp2pm2mp.i . . 3 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
8 mp2pm2mplem2.p . . 3 𝑃 = (Poly1𝑅)
91, 2, 3, 4, 5, 6, 7, 8mp2pm2mplem3 21332 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾)))
10 eqid 2825 . . . . . . . . 9 (Base‘𝑃) = (Base‘𝑃)
11 eqid 2825 . . . . . . . . 9 (0g𝑃) = (0g𝑃)
128ply1ring 20333 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
13123ad2ant2 1128 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑃 ∈ Ring)
14 ringcmn 19253 . . . . . . . . . . . 12 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
1513, 14syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑃 ∈ CMnd)
1615ad3antrrr 726 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → 𝑃 ∈ CMnd)
17163ad2ant1 1127 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → 𝑃 ∈ CMnd)
18 simpl2 1186 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → 𝑅 ∈ Ring)
1918ad2antrr 722 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → 𝑅 ∈ Ring)
20193ad2ant1 1127 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
2120adantr 481 . . . . . . . . . . 11 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
22 eqid 2825 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
23 eqid 2825 . . . . . . . . . . . 12 (Base‘𝐴) = (Base‘𝐴)
24 simpl2 1186 . . . . . . . . . . . 12 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑖𝑁)
25 simpl3 1187 . . . . . . . . . . . 12 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑗𝑁)
26 simpl3 1187 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → 𝑂𝐿)
2726ad2antrr 722 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → 𝑂𝐿)
28273ad2ant1 1127 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → 𝑂𝐿)
29 eqid 2825 . . . . . . . . . . . . . 14 (coe1𝑂) = (coe1𝑂)
3029, 3, 2, 23coe1fvalcl 20297 . . . . . . . . . . . . 13 ((𝑂𝐿𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
3128, 30sylan 580 . . . . . . . . . . . 12 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
321, 22, 23, 24, 25, 31matecld 20951 . . . . . . . . . . 11 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
33 simpr 485 . . . . . . . . . . 11 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
34 eqid 2825 . . . . . . . . . . . 12 (mulGrp‘𝑃) = (mulGrp‘𝑃)
3522, 8, 6, 4, 34, 5, 10ply1tmcl 20357 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅) ∧ 𝑘 ∈ ℕ0) → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃))
3621, 32, 33, 35syl3anc 1365 . . . . . . . . . 10 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃))
3736ralrimiva 3186 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ∀𝑘 ∈ ℕ0 ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃))
38 simp1lr 1231 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → 𝑠 ∈ ℕ0)
39 oveq 7157 . . . . . . . . . . . . . . . . 17 (((coe1𝑂)‘𝑥) = (0g𝐴) → (𝑖((coe1𝑂)‘𝑥)𝑗) = (𝑖(0g𝐴)𝑗))
4039oveq1d 7166 . . . . . . . . . . . . . . . 16 (((coe1𝑂)‘𝑥) = (0g𝐴) → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = ((𝑖(0g𝐴)𝑗) · (𝑥𝐸𝑌)))
41 3simpa 1142 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
4241ad3antrrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
43 eqid 2825 . . . . . . . . . . . . . . . . . . . . . . 23 (0g𝑅) = (0g𝑅)
441, 43mat0op 20944 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑎𝑁, 𝑏𝑁 ↦ (0g𝑅)))
4542, 44syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (0g𝐴) = (𝑎𝑁, 𝑏𝑁 ↦ (0g𝑅)))
46 eqidd 2826 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 = 𝑖𝑏 = 𝑗)) → (0g𝑅) = (0g𝑅))
47 simprl 767 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
48 simprr 769 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
49 fvexd 6681 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (0g𝑅) ∈ V)
5045, 46, 47, 48, 49ovmpod 7295 . . . . . . . . . . . . . . . . . . . 20 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(0g𝐴)𝑗) = (0g𝑅))
5150adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → (𝑖(0g𝐴)𝑗) = (0g𝑅))
5251oveq1d 7166 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → ((𝑖(0g𝐴)𝑗) · (𝑥𝐸𝑌)) = ((0g𝑅) · (𝑥𝐸𝑌)))
5318ad3antrrr 726 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → 𝑅 ∈ Ring)
548ply1sca 20338 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
5553, 54syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → 𝑅 = (Scalar‘𝑃))
5655fveq2d 6670 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
5756oveq1d 7166 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → ((0g𝑅) · (𝑥𝐸𝑌)) = ((0g‘(Scalar‘𝑃)) · (𝑥𝐸𝑌)))
588ply1lmod 20337 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
59583ad2ant2 1128 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑃 ∈ LMod)
6059ad4antr 728 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → 𝑃 ∈ LMod)
61 simpr 485 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
628, 6, 34, 5, 10ply1moncl 20356 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ 𝑥 ∈ ℕ0) → (𝑥𝐸𝑌) ∈ (Base‘𝑃))
6353, 61, 62syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → (𝑥𝐸𝑌) ∈ (Base‘𝑃))
64 eqid 2825 . . . . . . . . . . . . . . . . . . . 20 (Scalar‘𝑃) = (Scalar‘𝑃)
65 eqid 2825 . . . . . . . . . . . . . . . . . . . 20 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝑃))
6610, 64, 4, 65, 11lmod0vs 19589 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ LMod ∧ (𝑥𝐸𝑌) ∈ (Base‘𝑃)) → ((0g‘(Scalar‘𝑃)) · (𝑥𝐸𝑌)) = (0g𝑃))
6760, 63, 66syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → ((0g‘(Scalar‘𝑃)) · (𝑥𝐸𝑌)) = (0g𝑃))
6852, 57, 673eqtrd 2864 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → ((𝑖(0g𝐴)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))
6968adantr 481 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) → ((𝑖(0g𝐴)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))
7040, 69sylan9eqr 2882 . . . . . . . . . . . . . . 15 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑂)‘𝑥) = (0g𝐴)) → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))
7170exp31 420 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥 → (((coe1𝑂)‘𝑥) = (0g𝐴) → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))))
7271a2d 29 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝑠 < 𝑥 → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))))
7372ralimdva 3181 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))))
7473impancom 452 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → ((𝑖𝑁𝑗𝑁) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))))
75743impib 1110 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃)))
76 breq2 5066 . . . . . . . . . . . 12 (𝑘 = 𝑥 → (𝑠 < 𝑘𝑠 < 𝑥))
77 fveq2 6666 . . . . . . . . . . . . . . 15 (𝑘 = 𝑥 → ((coe1𝑂)‘𝑘) = ((coe1𝑂)‘𝑥))
7877oveqd 7168 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → (𝑖((coe1𝑂)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝑥)𝑗))
79 oveq1 7158 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → (𝑘𝐸𝑌) = (𝑥𝐸𝑌))
8078, 79oveq12d 7169 . . . . . . . . . . . . 13 (𝑘 = 𝑥 → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)))
8180eqeq1d 2827 . . . . . . . . . . . 12 (𝑘 = 𝑥 → (((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = (0g𝑃) ↔ ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃)))
8276, 81imbi12d 346 . . . . . . . . . . 11 (𝑘 = 𝑥 → ((𝑠 < 𝑘 → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = (0g𝑃)) ↔ (𝑠 < 𝑥 → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))))
8382cbvralvw 3454 . . . . . . . . . 10 (∀𝑘 ∈ ℕ0 (𝑠 < 𝑘 → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = (0g𝑃)) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃)))
8475, 83sylibr 235 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ∀𝑘 ∈ ℕ0 (𝑠 < 𝑘 → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = (0g𝑃)))
8510, 11, 17, 37, 38, 84gsummptnn0fz 19028 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))
8685fveq2d 6670 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → (coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) = (coe1‘(𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
8786fveq1d 6668 . . . . . 6 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾) = ((coe1‘(𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾))
88 simpllr 772 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → 𝐾 ∈ ℕ0)
89883ad2ant1 1127 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → 𝐾 ∈ ℕ0)
9036expcom 414 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃)))
91 elfznn0 12993 . . . . . . . . 9 (𝑘 ∈ (0...𝑠) → 𝑘 ∈ ℕ0)
9290, 91syl11 33 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → (𝑘 ∈ (0...𝑠) → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃)))
9392ralrimiv 3185 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ∀𝑘 ∈ (0...𝑠)((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃))
94 fzfid 13334 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → (0...𝑠) ∈ Fin)
958, 10, 20, 89, 93, 94coe1fzgsumd 20387 . . . . . 6 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾))))
9687, 95eqtrd 2860 . . . . 5 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾))))
9796mpoeq3dva 7226 . . . 4 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾)) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾)))))
98183ad2ant1 1127 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
9998adantr 481 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → 𝑅 ∈ Ring)
100 simpl2 1186 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → 𝑖𝑁)
101 simpl3 1187 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → 𝑗𝑁)
102263ad2ant1 1127 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑂𝐿)
103102, 91, 30syl2an 595 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
1041, 22, 23, 100, 101, 103matecld 20951 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
10591adantl 482 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → 𝑘 ∈ ℕ0)
10643, 22, 8, 6, 4, 34, 5coe1tm 20358 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅) ∧ 𝑘 ∈ ℕ0) → (coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))
10799, 104, 105, 106syl3anc 1365 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → (coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))
108 eqeq1 2829 . . . . . . . . . . 11 (𝑙 = 𝐾 → (𝑙 = 𝑘𝐾 = 𝑘))
109108ifbid 4491 . . . . . . . . . 10 (𝑙 = 𝐾 → if(𝑙 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) = if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))
110109adantl 482 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) ∧ 𝑙 = 𝐾) → if(𝑙 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) = if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))
111 simpl1r 1219 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → 𝐾 ∈ ℕ0)
112 ovex 7184 . . . . . . . . . . 11 (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ V
113 fvex 6679 . . . . . . . . . . 11 (0g𝑅) ∈ V
114112, 113ifex 4517 . . . . . . . . . 10 if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) ∈ V
115114a1i 11 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) ∈ V)
116107, 110, 111, 115fvmptd 6770 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾) = if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))
117116mpteq2dva 5157 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾)) = (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))
118117oveq2d 7167 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾))) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))))
119118mpoeq3dva 7226 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾)))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))))
120119ad2antrr 722 . . . 4 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾)))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))))
121 breq2 5066 . . . . . . . . . . . . . 14 (𝑥 = 𝐾 → (𝑠 < 𝑥𝑠 < 𝐾))
122 fveqeq2 6675 . . . . . . . . . . . . . 14 (𝑥 = 𝐾 → (((coe1𝑂)‘𝑥) = (0g𝐴) ↔ ((coe1𝑂)‘𝐾) = (0g𝐴)))
123121, 122imbi12d 346 . . . . . . . . . . . . 13 (𝑥 = 𝐾 → ((𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) ↔ (𝑠 < 𝐾 → ((coe1𝑂)‘𝐾) = (0g𝐴))))
124123rspcva 3624 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑠 < 𝐾 → ((coe1𝑂)‘𝐾) = (0g𝐴)))
1251, 43mat0op 20944 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
126125eqcomd 2831 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)) = (0g𝐴))
1271263adant3 1126 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)) = (0g𝐴))
128127ad3antlr 727 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)) = (0g𝐴))
129 elfz2nn0 12991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 ∈ (0...𝑠) ↔ (𝑘 ∈ ℕ0𝑠 ∈ ℕ0𝑘𝑠))
130 nn0re 11898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
131130ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → 𝑘 ∈ ℝ)
132 nn0re 11898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑠 ∈ ℕ0𝑠 ∈ ℝ)
133132ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → 𝑠 ∈ ℝ)
134 nn0re 11898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
135134adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℝ)
136 lelttr 10723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑘 ∈ ℝ ∧ 𝑠 ∈ ℝ ∧ 𝐾 ∈ ℝ) → ((𝑘𝑠𝑠 < 𝐾) → 𝑘 < 𝐾))
137131, 133, 135, 136syl3anc 1365 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → ((𝑘𝑠𝑠 < 𝐾) → 𝑘 < 𝐾))
138 animorr 974 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 < 𝐾) → (𝐾 < 𝑘𝑘 < 𝐾))
139 df-ne 3021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐾𝑘 ↔ ¬ 𝐾 = 𝑘)
140130adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) → 𝑘 ∈ ℝ)
141 lttri2 10715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐾 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐾𝑘 ↔ (𝐾 < 𝑘𝑘 < 𝐾)))
142134, 140, 141syl2anr 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → (𝐾𝑘 ↔ (𝐾 < 𝑘𝑘 < 𝐾)))
143142adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 < 𝐾) → (𝐾𝑘 ↔ (𝐾 < 𝑘𝑘 < 𝐾)))
144139, 143syl5bbr 286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 < 𝐾) → (¬ 𝐾 = 𝑘 ↔ (𝐾 < 𝑘𝑘 < 𝐾)))
145138, 144mpbird 258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 < 𝐾) → ¬ 𝐾 = 𝑘)
146145ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → (𝑘 < 𝐾 → ¬ 𝐾 = 𝑘))
147137, 146syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → ((𝑘𝑠𝑠 < 𝐾) → ¬ 𝐾 = 𝑘))
148147exp4b 431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) → (𝐾 ∈ ℕ0 → (𝑘𝑠 → (𝑠 < 𝐾 → ¬ 𝐾 = 𝑘))))
149148com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) → (𝑠 < 𝐾 → (𝑘𝑠 → (𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘))))
150149expimpd 454 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑘 ∈ ℕ0 → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝑘𝑠 → (𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘))))
151150com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 ∈ ℕ0 → (𝑘𝑠 → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘))))
152151imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑘 ∈ ℕ0𝑘𝑠) → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘)))
1531523adant2 1125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0𝑘𝑠) → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘)))
154129, 153sylbi 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 ∈ (0...𝑠) → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘)))
155154com13 88 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐾 ∈ ℕ0 → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝑘 ∈ (0...𝑠) → ¬ 𝐾 = 𝑘)))
156155adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝑘 ∈ (0...𝑠) → ¬ 𝐾 = 𝑘)))
157156imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) → (𝑘 ∈ (0...𝑠) → ¬ 𝐾 = 𝑘))
158157adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑘 ∈ (0...𝑠) → ¬ 𝐾 = 𝑘))
1591583ad2ant1 1127 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) → (𝑘 ∈ (0...𝑠) → ¬ 𝐾 = 𝑘))
160159imp 407 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → ¬ 𝐾 = 𝑘)
161160iffalsed 4480 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) = (0g𝑅))
162161mpteq2dva 5157 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) → (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))) = (𝑘 ∈ (0...𝑠) ↦ (0g𝑅)))
163162oveq2d 7167 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (0g𝑅))))
164 ringmnd 19228 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
1651643ad2ant2 1128 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑅 ∈ Mnd)
166 ovex 7184 . . . . . . . . . . . . . . . . . . . . . . 23 (0...𝑠) ∈ V
16743gsumz 17985 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ Mnd ∧ (0...𝑠) ∈ V) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (0g𝑅))) = (0g𝑅))
168165, 166, 167sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (0g𝑅))) = (0g𝑅))
169168ad3antlr 727 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (0g𝑅))) = (0g𝑅))
1701693ad2ant1 1127 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (0g𝑅))) = (0g𝑅))
171163, 170eqtrd 2860 . . . . . . . . . . . . . . . . . . 19 (((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))) = (0g𝑅))
172171mpoeq3dva 7226 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
173 simpr 485 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) → ((coe1𝑂)‘𝐾) = (0g𝐴))
174128, 172, 1733eqtr4d 2870 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))
175174ex 413 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) → (((coe1𝑂)‘𝐾) = (0g𝐴) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))
176175expr 457 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ 𝑠 ∈ ℕ0) → (𝑠 < 𝐾 → (((coe1𝑂)‘𝐾) = (0g𝐴) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))))
177176a2d 29 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ 𝑠 ∈ ℕ0) → ((𝑠 < 𝐾 → ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))))
178177exp31 420 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑠 ∈ ℕ0 → ((𝑠 < 𝐾 → ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))))))
179178com14 96 . . . . . . . . . . . 12 ((𝑠 < 𝐾 → ((coe1𝑂)‘𝐾) = (0g𝐴)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑠 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))))))
180124, 179syl 17 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑠 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))))))
181180ex 413 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑠 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))))))
182181com25 99 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝐾 ∈ ℕ0 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑠 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))))))
183182pm2.43i 52 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑠 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))))))
184183impcom 408 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑠 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))))
185184imp31 418 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))
186185com12 32 . . . . 5 (𝑠 < 𝐾 → (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))
187165ad3antrrr 726 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → 𝑅 ∈ Mnd)
188187adantl 482 . . . . . . . . . 10 ((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) → 𝑅 ∈ Mnd)
1891883ad2ant1 1127 . . . . . . . . 9 (((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Mnd)
190 ovexd 7186 . . . . . . . . 9 (((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) → (0...𝑠) ∈ V)
191 lenlt 10711 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (𝐾𝑠 ↔ ¬ 𝑠 < 𝐾))
192134, 132, 191syl2an 595 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) → (𝐾𝑠 ↔ ¬ 𝑠 < 𝐾))
193 simpll 763 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾𝑠) → 𝐾 ∈ ℕ0)
194 simplr 765 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾𝑠) → 𝑠 ∈ ℕ0)
195 simpr 485 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾𝑠) → 𝐾𝑠)
196 elfz2nn0 12991 . . . . . . . . . . . . . . 15 (𝐾 ∈ (0...𝑠) ↔ (𝐾 ∈ ℕ0𝑠 ∈ ℕ0𝐾𝑠))
197193, 194, 195, 196syl3anbrc 1337 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾𝑠) → 𝐾 ∈ (0...𝑠))
198197ex 413 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) → (𝐾𝑠𝐾 ∈ (0...𝑠)))
199192, 198sylbird 261 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) → (¬ 𝑠 < 𝐾𝐾 ∈ (0...𝑠)))
200199ad4ant23 749 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (¬ 𝑠 < 𝐾𝐾 ∈ (0...𝑠)))
201200impcom 408 . . . . . . . . . 10 ((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) → 𝐾 ∈ (0...𝑠))
2022013ad2ant1 1127 . . . . . . . . 9 (((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) → 𝐾 ∈ (0...𝑠))
203 eqcom 2832 . . . . . . . . . . 11 (𝐾 = 𝑘𝑘 = 𝐾)
204 ifbi 4490 . . . . . . . . . . 11 ((𝐾 = 𝑘𝑘 = 𝐾) → if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) = if(𝑘 = 𝐾, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))
205203, 204ax-mp 5 . . . . . . . . . 10 if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) = if(𝑘 = 𝐾, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))
206205mpteq2i 5154 . . . . . . . . 9 (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))) = (𝑘 ∈ (0...𝑠) ↦ if(𝑘 = 𝐾, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))
207 simpl2 1186 . . . . . . . . . . . 12 ((((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑖𝑁)
208 simpl3 1187 . . . . . . . . . . . 12 ((((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑗𝑁)
20927adantl 482 . . . . . . . . . . . . . 14 ((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) → 𝑂𝐿)
2102093ad2ant1 1127 . . . . . . . . . . . . 13 (((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) → 𝑂𝐿)
211210, 30sylan 580 . . . . . . . . . . . 12 ((((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
2121, 22, 23, 207, 208, 211matecld 20951 . . . . . . . . . . 11 ((((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
21391, 212sylan2 592 . . . . . . . . . 10 ((((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
214213ralrimiva 3186 . . . . . . . . 9 (((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) → ∀𝑘 ∈ (0...𝑠)(𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
21543, 189, 190, 202, 206, 214gsummpt1n0 19007 . . . . . . . 8 (((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))) = 𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗))
216215mpoeq3dva 7226 . . . . . . 7 ((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = (𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)))
217 csbov 7194 . . . . . . . . . . . . . . 15 𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗) = (𝑖𝐾 / 𝑘((coe1𝑂)‘𝑘)𝑗)
218 csbfv 6711 . . . . . . . . . . . . . . . . 17 𝐾 / 𝑘((coe1𝑂)‘𝑘) = ((coe1𝑂)‘𝐾)
219218a1i 11 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℕ0𝐾 / 𝑘((coe1𝑂)‘𝑘) = ((coe1𝑂)‘𝐾))
220219oveqd 7168 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℕ0 → (𝑖𝐾 / 𝑘((coe1𝑂)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝐾)𝑗))
221217, 220syl5eq 2872 . . . . . . . . . . . . . 14 (𝐾 ∈ ℕ0𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝐾)𝑗))
222221ad2antlr 723 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → 𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝐾)𝑗))
223222mpoeq3dv 7228 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → (𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑖((coe1𝑂)‘𝐾)𝑗)))
224 oveq12 7160 . . . . . . . . . . . . 13 ((𝑖 = 𝑎𝑗 = 𝑏) → (𝑖((coe1𝑂)‘𝐾)𝑗) = (𝑎((coe1𝑂)‘𝐾)𝑏))
225224adantl 482 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) ∧ (𝑖 = 𝑎𝑗 = 𝑏)) → (𝑖((coe1𝑂)‘𝐾)𝑗) = (𝑎((coe1𝑂)‘𝐾)𝑏))
226 simprl 767 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → 𝑎𝑁)
227 simprr 769 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → 𝑏𝑁)
228 ovexd 7186 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎((coe1𝑂)‘𝐾)𝑏) ∈ V)
229223, 225, 226, 227, 228ovmpod 7295 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎(𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗))𝑏) = (𝑎((coe1𝑂)‘𝐾)𝑏))
230229ralrimivva 3195 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ∀𝑎𝑁𝑏𝑁 (𝑎(𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗))𝑏) = (𝑎((coe1𝑂)‘𝐾)𝑏))
231 simpl1 1185 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ Fin)
232218oveqi 7164 . . . . . . . . . . . . . 14 (𝑖𝐾 / 𝑘((coe1𝑂)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝐾)𝑗)
233217, 232eqtri 2848 . . . . . . . . . . . . 13 𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝐾)𝑗)
234 simp2 1131 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
235 simp3 1132 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
23629, 3, 2, 23coe1fvalcl 20297 . . . . . . . . . . . . . . . 16 ((𝑂𝐿𝐾 ∈ ℕ0) → ((coe1𝑂)‘𝐾) ∈ (Base‘𝐴))
2372363ad2antl3 1181 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((coe1𝑂)‘𝐾) ∈ (Base‘𝐴))
2382373ad2ant1 1127 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1𝑂)‘𝐾) ∈ (Base‘𝐴))
2391, 22, 23, 234, 235, 238matecld 20951 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖((coe1𝑂)‘𝐾)𝑗) ∈ (Base‘𝑅))
240233, 239eqeltrid 2921 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
2411, 22, 23, 231, 18, 240matbas2d 20948 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) ∈ (Base‘𝐴))
2421, 23eqmat 20949 . . . . . . . . . . 11 (((𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) ∈ (Base‘𝐴) ∧ ((coe1𝑂)‘𝐾) ∈ (Base‘𝐴)) → ((𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) = ((coe1𝑂)‘𝐾) ↔ ∀𝑎𝑁𝑏𝑁 (𝑎(𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗))𝑏) = (𝑎((coe1𝑂)‘𝐾)𝑏)))
243241, 237, 242syl2anc 584 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) = ((coe1𝑂)‘𝐾) ↔ ∀𝑎𝑁𝑏𝑁 (𝑎(𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗))𝑏) = (𝑎((coe1𝑂)‘𝐾)𝑏)))
244230, 243mpbird 258 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) = ((coe1𝑂)‘𝐾))
245244ad2antrr 722 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) = ((coe1𝑂)‘𝐾))
246245adantl 482 . . . . . . 7 ((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) → (𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) = ((coe1𝑂)‘𝐾))
247216, 246eqtrd 2860 . . . . . 6 ((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))
248247ex 413 . . . . 5 𝑠 < 𝐾 → (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))
249186, 248pm2.61i 183 . . . 4 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))
25097, 120, 2493eqtrd 2864 . . 3 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾)) = ((coe1𝑂)‘𝐾))
251 eqid 2825 . . . . . 6 (0g𝐴) = (0g𝐴)
25229, 3, 2, 251coe1sfi 20298 . . . . 5 (𝑂𝐿 → (coe1𝑂) finSupp (0g𝐴))
25326, 252syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (coe1𝑂) finSupp (0g𝐴))
25429, 3, 2, 251, 23coe1fsupp 20299 . . . . . 6 (𝑂𝐿 → (coe1𝑂) ∈ {𝑥 ∈ ((Base‘𝐴) ↑m0) ∣ 𝑥 finSupp (0g𝐴)})
255 elrabi 3678 . . . . . 6 ((coe1𝑂) ∈ {𝑥 ∈ ((Base‘𝐴) ↑m0) ∣ 𝑥 finSupp (0g𝐴)} → (coe1𝑂) ∈ ((Base‘𝐴) ↑m0))
25626, 254, 2553syl 18 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (coe1𝑂) ∈ ((Base‘𝐴) ↑m0))
257 fvex 6679 . . . . 5 (0g𝐴) ∈ V
258 fsuppmapnn0ub 13356 . . . . 5 (((coe1𝑂) ∈ ((Base‘𝐴) ↑m0) ∧ (0g𝐴) ∈ V) → ((coe1𝑂) finSupp (0g𝐴) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))))
259256, 257, 258sylancl 586 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((coe1𝑂) finSupp (0g𝐴) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))))
260253, 259mpd 15 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))
261250, 260r19.29a 3293 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾)) = ((coe1𝑂)‘𝐾))
2629, 261eqtrd 2860 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝐾) = ((coe1𝑂)‘𝐾))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 207   ∧ wa 396   ∨ wo 843   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107   ≠ wne 3020  ∀wral 3142  ∃wrex 3143  {crab 3146  Vcvv 3499  ⦋csb 3886  ifcif 4469   class class class wbr 5062   ↦ cmpt 5142  ‘cfv 6351  (class class class)co 7151   ∈ cmpo 7153   ↑m cmap 8399  Fincfn 8501   finSupp cfsupp 8825  ℝcr 10528  0cc0 10529   < clt 10667   ≤ cle 10668  ℕ0cn0 11889  ...cfz 12885  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705   Σg cgsu 16706  Mndcmnd 17902  .gcmg 18156  CMndccmn 18828  mulGrpcmgp 19161  Ringcrg 19219  LModclmod 19556  var1cv1 20261  Poly1cpl1 20262  coe1cco1 20263   Mat cmat 20932   decompPMat cdecpmat 21286 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-ot 4572  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-ofr 7403  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-map 8401  df-pm 8402  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-sup 8898  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12886  df-fzo 13027  df-seq 13363  df-hash 13684  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-mhm 17946  df-submnd 17947  df-grp 18038  df-minusg 18039  df-sbg 18040  df-mulg 18157  df-subg 18208  df-ghm 18288  df-cntz 18379  df-cmn 18830  df-abl 18831  df-mgp 19162  df-ur 19174  df-ring 19221  df-subrg 19455  df-lmod 19558  df-lss 19626  df-sra 19866  df-rgmod 19867  df-psr 20057  df-mvr 20058  df-mpl 20059  df-opsr 20061  df-psr1 20265  df-vr1 20266  df-ply1 20267  df-coe1 20268  df-dsmm 20792  df-frlm 20807  df-mat 20933  df-decpmat 21287 This theorem is referenced by:  mp2pm2mplem5  21334  mp2pm2mp  21335
 Copyright terms: Public domain W3C validator