MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp2pm2mplem4 Structured version   Visualization version   GIF version

Theorem mp2pm2mplem4 22158
Description: Lemma 4 for mp2pm2mp 22160. (Contributed by AV, 12-Oct-2019.) (Revised by AV, 5-Dec-2019.)
Hypotheses
Ref Expression
mp2pm2mp.a 𝐴 = (𝑁 Mat 𝑅)
mp2pm2mp.q 𝑄 = (Poly1𝐴)
mp2pm2mp.l 𝐿 = (Base‘𝑄)
mp2pm2mp.m · = ( ·𝑠𝑃)
mp2pm2mp.e 𝐸 = (.g‘(mulGrp‘𝑃))
mp2pm2mp.y 𝑌 = (var1𝑅)
mp2pm2mp.i 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
mp2pm2mplem2.p 𝑃 = (Poly1𝑅)
Assertion
Ref Expression
mp2pm2mplem4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝐾) = ((coe1𝑂)‘𝐾))
Distinct variable groups:   𝐸,𝑝   𝐿,𝑝   𝑖,𝑁,𝑗,𝑝   𝑖,𝑂,𝑗,𝑝,𝑘   𝑃,𝑝   𝑅,𝑝   𝑌,𝑝   · ,𝑝   𝑘,𝐿   𝑃,𝑖,𝑗,𝑘   𝑅,𝑘   · ,𝑘   𝑖,𝐸,𝑗   𝑖,𝐾,𝑗   𝑖,𝐿,𝑗   𝑘,𝑁   𝑅,𝑖,𝑗   𝑖,𝑌,𝑗   · ,𝑖,𝑗   𝐴,𝑖,𝑗,𝑘   𝑘,𝐸   𝑘,𝐾   𝑘,𝑌
Allowed substitution hints:   𝐴(𝑝)   𝑄(𝑖,𝑗,𝑘,𝑝)   𝐼(𝑖,𝑗,𝑘,𝑝)   𝐾(𝑝)

Proof of Theorem mp2pm2mplem4
Dummy variables 𝑎 𝑏 𝑠 𝑥 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mp2pm2mp.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 mp2pm2mp.q . . 3 𝑄 = (Poly1𝐴)
3 mp2pm2mp.l . . 3 𝐿 = (Base‘𝑄)
4 mp2pm2mp.m . . 3 · = ( ·𝑠𝑃)
5 mp2pm2mp.e . . 3 𝐸 = (.g‘(mulGrp‘𝑃))
6 mp2pm2mp.y . . 3 𝑌 = (var1𝑅)
7 mp2pm2mp.i . . 3 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
8 mp2pm2mplem2.p . . 3 𝑃 = (Poly1𝑅)
91, 2, 3, 4, 5, 6, 7, 8mp2pm2mplem3 22157 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾)))
10 eqid 2736 . . . . . . . . 9 (Base‘𝑃) = (Base‘𝑃)
11 eqid 2736 . . . . . . . . 9 (0g𝑃) = (0g𝑃)
128ply1ring 21619 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
13123ad2ant2 1134 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑃 ∈ Ring)
14 ringcmn 20003 . . . . . . . . . . . 12 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
1513, 14syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑃 ∈ CMnd)
1615ad3antrrr 728 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → 𝑃 ∈ CMnd)
17163ad2ant1 1133 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → 𝑃 ∈ CMnd)
18 simpl2 1192 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → 𝑅 ∈ Ring)
1918ad2antrr 724 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → 𝑅 ∈ Ring)
20193ad2ant1 1133 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
2120adantr 481 . . . . . . . . . . 11 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
22 eqid 2736 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
23 eqid 2736 . . . . . . . . . . . 12 (Base‘𝐴) = (Base‘𝐴)
24 simpl2 1192 . . . . . . . . . . . 12 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑖𝑁)
25 simpl3 1193 . . . . . . . . . . . 12 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑗𝑁)
26 simpl3 1193 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → 𝑂𝐿)
2726ad2antrr 724 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → 𝑂𝐿)
28273ad2ant1 1133 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → 𝑂𝐿)
29 eqid 2736 . . . . . . . . . . . . . 14 (coe1𝑂) = (coe1𝑂)
3029, 3, 2, 23coe1fvalcl 21583 . . . . . . . . . . . . 13 ((𝑂𝐿𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
3128, 30sylan 580 . . . . . . . . . . . 12 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
321, 22, 23, 24, 25, 31matecld 21775 . . . . . . . . . . 11 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
33 simpr 485 . . . . . . . . . . 11 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
34 eqid 2736 . . . . . . . . . . . 12 (mulGrp‘𝑃) = (mulGrp‘𝑃)
3522, 8, 6, 4, 34, 5, 10ply1tmcl 21643 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅) ∧ 𝑘 ∈ ℕ0) → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃))
3621, 32, 33, 35syl3anc 1371 . . . . . . . . . 10 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃))
3736ralrimiva 3143 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ∀𝑘 ∈ ℕ0 ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃))
38 simp1lr 1237 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → 𝑠 ∈ ℕ0)
39 oveq 7363 . . . . . . . . . . . . . . . . 17 (((coe1𝑂)‘𝑥) = (0g𝐴) → (𝑖((coe1𝑂)‘𝑥)𝑗) = (𝑖(0g𝐴)𝑗))
4039oveq1d 7372 . . . . . . . . . . . . . . . 16 (((coe1𝑂)‘𝑥) = (0g𝐴) → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = ((𝑖(0g𝐴)𝑗) · (𝑥𝐸𝑌)))
41 3simpa 1148 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
4241ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
43 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . 23 (0g𝑅) = (0g𝑅)
441, 43mat0op 21768 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑎𝑁, 𝑏𝑁 ↦ (0g𝑅)))
4542, 44syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (0g𝐴) = (𝑎𝑁, 𝑏𝑁 ↦ (0g𝑅)))
46 eqidd 2737 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 = 𝑖𝑏 = 𝑗)) → (0g𝑅) = (0g𝑅))
47 simprl 769 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
48 simprr 771 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
49 fvexd 6857 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (0g𝑅) ∈ V)
5045, 46, 47, 48, 49ovmpod 7507 . . . . . . . . . . . . . . . . . . . 20 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(0g𝐴)𝑗) = (0g𝑅))
5150adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → (𝑖(0g𝐴)𝑗) = (0g𝑅))
5251oveq1d 7372 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → ((𝑖(0g𝐴)𝑗) · (𝑥𝐸𝑌)) = ((0g𝑅) · (𝑥𝐸𝑌)))
5318ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → 𝑅 ∈ Ring)
548ply1sca 21624 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
5553, 54syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → 𝑅 = (Scalar‘𝑃))
5655fveq2d 6846 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
5756oveq1d 7372 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → ((0g𝑅) · (𝑥𝐸𝑌)) = ((0g‘(Scalar‘𝑃)) · (𝑥𝐸𝑌)))
588ply1lmod 21623 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
59583ad2ant2 1134 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑃 ∈ LMod)
6059ad4antr 730 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → 𝑃 ∈ LMod)
61 simpr 485 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
628, 6, 34, 5, 10ply1moncl 21642 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ 𝑥 ∈ ℕ0) → (𝑥𝐸𝑌) ∈ (Base‘𝑃))
6353, 61, 62syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → (𝑥𝐸𝑌) ∈ (Base‘𝑃))
64 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (Scalar‘𝑃) = (Scalar‘𝑃)
65 eqid 2736 . . . . . . . . . . . . . . . . . . . 20 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝑃))
6610, 64, 4, 65, 11lmod0vs 20355 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ LMod ∧ (𝑥𝐸𝑌) ∈ (Base‘𝑃)) → ((0g‘(Scalar‘𝑃)) · (𝑥𝐸𝑌)) = (0g𝑃))
6760, 63, 66syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → ((0g‘(Scalar‘𝑃)) · (𝑥𝐸𝑌)) = (0g𝑃))
6852, 57, 673eqtrd 2780 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → ((𝑖(0g𝐴)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))
6968adantr 481 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) → ((𝑖(0g𝐴)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))
7040, 69sylan9eqr 2798 . . . . . . . . . . . . . . 15 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑂)‘𝑥) = (0g𝐴)) → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))
7170exp31 420 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥 → (((coe1𝑂)‘𝑥) = (0g𝐴) → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))))
7271a2d 29 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝑠 < 𝑥 → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))))
7372ralimdva 3164 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))))
7473impancom 452 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → ((𝑖𝑁𝑗𝑁) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))))
75743impib 1116 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃)))
76 breq2 5109 . . . . . . . . . . . 12 (𝑘 = 𝑥 → (𝑠 < 𝑘𝑠 < 𝑥))
77 fveq2 6842 . . . . . . . . . . . . . . 15 (𝑘 = 𝑥 → ((coe1𝑂)‘𝑘) = ((coe1𝑂)‘𝑥))
7877oveqd 7374 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → (𝑖((coe1𝑂)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝑥)𝑗))
79 oveq1 7364 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → (𝑘𝐸𝑌) = (𝑥𝐸𝑌))
8078, 79oveq12d 7375 . . . . . . . . . . . . 13 (𝑘 = 𝑥 → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)))
8180eqeq1d 2738 . . . . . . . . . . . 12 (𝑘 = 𝑥 → (((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = (0g𝑃) ↔ ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃)))
8276, 81imbi12d 344 . . . . . . . . . . 11 (𝑘 = 𝑥 → ((𝑠 < 𝑘 → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = (0g𝑃)) ↔ (𝑠 < 𝑥 → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))))
8382cbvralvw 3225 . . . . . . . . . 10 (∀𝑘 ∈ ℕ0 (𝑠 < 𝑘 → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = (0g𝑃)) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃)))
8475, 83sylibr 233 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ∀𝑘 ∈ ℕ0 (𝑠 < 𝑘 → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = (0g𝑃)))
8510, 11, 17, 37, 38, 84gsummptnn0fz 19763 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))
8685fveq2d 6846 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → (coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) = (coe1‘(𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
8786fveq1d 6844 . . . . . 6 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾) = ((coe1‘(𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾))
88 simpllr 774 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → 𝐾 ∈ ℕ0)
89883ad2ant1 1133 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → 𝐾 ∈ ℕ0)
9036expcom 414 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃)))
91 elfznn0 13534 . . . . . . . . 9 (𝑘 ∈ (0...𝑠) → 𝑘 ∈ ℕ0)
9290, 91syl11 33 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → (𝑘 ∈ (0...𝑠) → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃)))
9392ralrimiv 3142 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ∀𝑘 ∈ (0...𝑠)((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃))
94 fzfid 13878 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → (0...𝑠) ∈ Fin)
958, 10, 20, 89, 93, 94coe1fzgsumd 21673 . . . . . 6 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾))))
9687, 95eqtrd 2776 . . . . 5 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾))))
9796mpoeq3dva 7434 . . . 4 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾)) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾)))))
98183ad2ant1 1133 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
9998adantr 481 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → 𝑅 ∈ Ring)
100 simpl2 1192 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → 𝑖𝑁)
101 simpl3 1193 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → 𝑗𝑁)
102263ad2ant1 1133 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑂𝐿)
103102, 91, 30syl2an 596 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
1041, 22, 23, 100, 101, 103matecld 21775 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
10591adantl 482 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → 𝑘 ∈ ℕ0)
10643, 22, 8, 6, 4, 34, 5coe1tm 21644 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅) ∧ 𝑘 ∈ ℕ0) → (coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))
10799, 104, 105, 106syl3anc 1371 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → (coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))
108 eqeq1 2740 . . . . . . . . . . 11 (𝑙 = 𝐾 → (𝑙 = 𝑘𝐾 = 𝑘))
109108ifbid 4509 . . . . . . . . . 10 (𝑙 = 𝐾 → if(𝑙 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) = if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))
110109adantl 482 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) ∧ 𝑙 = 𝐾) → if(𝑙 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) = if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))
111 simpl1r 1225 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → 𝐾 ∈ ℕ0)
112 ovex 7390 . . . . . . . . . . 11 (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ V
113 fvex 6855 . . . . . . . . . . 11 (0g𝑅) ∈ V
114112, 113ifex 4536 . . . . . . . . . 10 if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) ∈ V
115114a1i 11 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) ∈ V)
116107, 110, 111, 115fvmptd 6955 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾) = if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))
117116mpteq2dva 5205 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾)) = (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))
118117oveq2d 7373 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾))) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))))
119118mpoeq3dva 7434 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾)))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))))
120119ad2antrr 724 . . . 4 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾)))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))))
121 breq2 5109 . . . . . . . . . . . . . 14 (𝑥 = 𝐾 → (𝑠 < 𝑥𝑠 < 𝐾))
122 fveqeq2 6851 . . . . . . . . . . . . . 14 (𝑥 = 𝐾 → (((coe1𝑂)‘𝑥) = (0g𝐴) ↔ ((coe1𝑂)‘𝐾) = (0g𝐴)))
123121, 122imbi12d 344 . . . . . . . . . . . . 13 (𝑥 = 𝐾 → ((𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) ↔ (𝑠 < 𝐾 → ((coe1𝑂)‘𝐾) = (0g𝐴))))
124123rspcva 3579 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑠 < 𝐾 → ((coe1𝑂)‘𝐾) = (0g𝐴)))
1251, 43mat0op 21768 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
126125eqcomd 2742 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)) = (0g𝐴))
1271263adant3 1132 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)) = (0g𝐴))
128127ad3antlr 729 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)) = (0g𝐴))
129 elfz2nn0 13532 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 ∈ (0...𝑠) ↔ (𝑘 ∈ ℕ0𝑠 ∈ ℕ0𝑘𝑠))
130 nn0re 12422 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
131130ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → 𝑘 ∈ ℝ)
132 nn0re 12422 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑠 ∈ ℕ0𝑠 ∈ ℝ)
133132ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → 𝑠 ∈ ℝ)
134 nn0re 12422 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
135134adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℝ)
136 lelttr 11245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑘 ∈ ℝ ∧ 𝑠 ∈ ℝ ∧ 𝐾 ∈ ℝ) → ((𝑘𝑠𝑠 < 𝐾) → 𝑘 < 𝐾))
137131, 133, 135, 136syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → ((𝑘𝑠𝑠 < 𝐾) → 𝑘 < 𝐾))
138 animorr 977 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 < 𝐾) → (𝐾 < 𝑘𝑘 < 𝐾))
139 df-ne 2944 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐾𝑘 ↔ ¬ 𝐾 = 𝑘)
140130adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) → 𝑘 ∈ ℝ)
141 lttri2 11237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐾 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐾𝑘 ↔ (𝐾 < 𝑘𝑘 < 𝐾)))
142134, 140, 141syl2anr 597 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → (𝐾𝑘 ↔ (𝐾 < 𝑘𝑘 < 𝐾)))
143142adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 < 𝐾) → (𝐾𝑘 ↔ (𝐾 < 𝑘𝑘 < 𝐾)))
144139, 143bitr3id 284 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 < 𝐾) → (¬ 𝐾 = 𝑘 ↔ (𝐾 < 𝑘𝑘 < 𝐾)))
145138, 144mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 < 𝐾) → ¬ 𝐾 = 𝑘)
146145ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → (𝑘 < 𝐾 → ¬ 𝐾 = 𝑘))
147137, 146syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → ((𝑘𝑠𝑠 < 𝐾) → ¬ 𝐾 = 𝑘))
148147exp4b 431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) → (𝐾 ∈ ℕ0 → (𝑘𝑠 → (𝑠 < 𝐾 → ¬ 𝐾 = 𝑘))))
149148com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) → (𝑠 < 𝐾 → (𝑘𝑠 → (𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘))))
150149expimpd 454 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑘 ∈ ℕ0 → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝑘𝑠 → (𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘))))
151150com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 ∈ ℕ0 → (𝑘𝑠 → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘))))
152151imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑘 ∈ ℕ0𝑘𝑠) → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘)))
1531523adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0𝑘𝑠) → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘)))
154129, 153sylbi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 ∈ (0...𝑠) → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘)))
155154com13 88 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐾 ∈ ℕ0 → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝑘 ∈ (0...𝑠) → ¬ 𝐾 = 𝑘)))
156155adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝑘 ∈ (0...𝑠) → ¬ 𝐾 = 𝑘)))
157156imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) → (𝑘 ∈ (0...𝑠) → ¬ 𝐾 = 𝑘))
158157adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑘 ∈ (0...𝑠) → ¬ 𝐾 = 𝑘))
1591583ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) → (𝑘 ∈ (0...𝑠) → ¬ 𝐾 = 𝑘))
160159imp 407 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → ¬ 𝐾 = 𝑘)
161160iffalsed 4497 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) = (0g𝑅))
162161mpteq2dva 5205 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) → (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))) = (𝑘 ∈ (0...𝑠) ↦ (0g𝑅)))
163162oveq2d 7373 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (0g𝑅))))
164 ringmnd 19974 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
1651643ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑅 ∈ Mnd)
166 ovex 7390 . . . . . . . . . . . . . . . . . . . . . . 23 (0...𝑠) ∈ V
16743gsumz 18646 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ Mnd ∧ (0...𝑠) ∈ V) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (0g𝑅))) = (0g𝑅))
168165, 166, 167sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (0g𝑅))) = (0g𝑅))
169168ad3antlr 729 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (0g𝑅))) = (0g𝑅))
1701693ad2ant1 1133 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (0g𝑅))) = (0g𝑅))
171163, 170eqtrd 2776 . . . . . . . . . . . . . . . . . . 19 (((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))) = (0g𝑅))
172171mpoeq3dva 7434 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
173 simpr 485 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) → ((coe1𝑂)‘𝐾) = (0g𝐴))
174128, 172, 1733eqtr4d 2786 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))
175174ex 413 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) → (((coe1𝑂)‘𝐾) = (0g𝐴) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))
176175expr 457 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ 𝑠 ∈ ℕ0) → (𝑠 < 𝐾 → (((coe1𝑂)‘𝐾) = (0g𝐴) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))))
177176a2d 29 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ 𝑠 ∈ ℕ0) → ((𝑠 < 𝐾 → ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))))
178177exp31 420 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑠 ∈ ℕ0 → ((𝑠 < 𝐾 → ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))))))
179178com14 96 . . . . . . . . . . . 12 ((𝑠 < 𝐾 → ((coe1𝑂)‘𝐾) = (0g𝐴)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑠 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))))))
180124, 179syl 17 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑠 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))))))
181180ex 413 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑠 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))))))
182181com25 99 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝐾 ∈ ℕ0 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑠 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))))))
183182pm2.43i 52 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑠 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))))))
184183impcom 408 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑠 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))))
185184imp31 418 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))
186185com12 32 . . . . 5 (𝑠 < 𝐾 → (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))
187165ad3antrrr 728 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → 𝑅 ∈ Mnd)
188187adantl 482 . . . . . . . . . 10 ((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) → 𝑅 ∈ Mnd)
1891883ad2ant1 1133 . . . . . . . . 9 (((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Mnd)
190 ovexd 7392 . . . . . . . . 9 (((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) → (0...𝑠) ∈ V)
191 lenlt 11233 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (𝐾𝑠 ↔ ¬ 𝑠 < 𝐾))
192134, 132, 191syl2an 596 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) → (𝐾𝑠 ↔ ¬ 𝑠 < 𝐾))
193 simpll 765 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾𝑠) → 𝐾 ∈ ℕ0)
194 simplr 767 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾𝑠) → 𝑠 ∈ ℕ0)
195 simpr 485 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾𝑠) → 𝐾𝑠)
196 elfz2nn0 13532 . . . . . . . . . . . . . . 15 (𝐾 ∈ (0...𝑠) ↔ (𝐾 ∈ ℕ0𝑠 ∈ ℕ0𝐾𝑠))
197193, 194, 195, 196syl3anbrc 1343 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾𝑠) → 𝐾 ∈ (0...𝑠))
198197ex 413 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) → (𝐾𝑠𝐾 ∈ (0...𝑠)))
199192, 198sylbird 259 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) → (¬ 𝑠 < 𝐾𝐾 ∈ (0...𝑠)))
200199ad4ant23 751 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (¬ 𝑠 < 𝐾𝐾 ∈ (0...𝑠)))
201200impcom 408 . . . . . . . . . 10 ((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) → 𝐾 ∈ (0...𝑠))
2022013ad2ant1 1133 . . . . . . . . 9 (((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) → 𝐾 ∈ (0...𝑠))
203 eqcom 2743 . . . . . . . . . . 11 (𝐾 = 𝑘𝑘 = 𝐾)
204 ifbi 4508 . . . . . . . . . . 11 ((𝐾 = 𝑘𝑘 = 𝐾) → if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) = if(𝑘 = 𝐾, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))
205203, 204ax-mp 5 . . . . . . . . . 10 if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) = if(𝑘 = 𝐾, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))
206205mpteq2i 5210 . . . . . . . . 9 (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))) = (𝑘 ∈ (0...𝑠) ↦ if(𝑘 = 𝐾, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))
207 simpl2 1192 . . . . . . . . . . . 12 ((((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑖𝑁)
208 simpl3 1193 . . . . . . . . . . . 12 ((((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑗𝑁)
20927adantl 482 . . . . . . . . . . . . . 14 ((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) → 𝑂𝐿)
2102093ad2ant1 1133 . . . . . . . . . . . . 13 (((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) → 𝑂𝐿)
211210, 30sylan 580 . . . . . . . . . . . 12 ((((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
2121, 22, 23, 207, 208, 211matecld 21775 . . . . . . . . . . 11 ((((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
21391, 212sylan2 593 . . . . . . . . . 10 ((((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
214213ralrimiva 3143 . . . . . . . . 9 (((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) → ∀𝑘 ∈ (0...𝑠)(𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
21543, 189, 190, 202, 206, 214gsummpt1n0 19742 . . . . . . . 8 (((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))) = 𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗))
216215mpoeq3dva 7434 . . . . . . 7 ((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = (𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)))
217 csbov 7400 . . . . . . . . . . . . . . 15 𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗) = (𝑖𝐾 / 𝑘((coe1𝑂)‘𝑘)𝑗)
218 csbfv 6892 . . . . . . . . . . . . . . . . 17 𝐾 / 𝑘((coe1𝑂)‘𝑘) = ((coe1𝑂)‘𝐾)
219218a1i 11 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℕ0𝐾 / 𝑘((coe1𝑂)‘𝑘) = ((coe1𝑂)‘𝐾))
220219oveqd 7374 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℕ0 → (𝑖𝐾 / 𝑘((coe1𝑂)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝐾)𝑗))
221217, 220eqtrid 2788 . . . . . . . . . . . . . 14 (𝐾 ∈ ℕ0𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝐾)𝑗))
222221ad2antlr 725 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → 𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝐾)𝑗))
223222mpoeq3dv 7436 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → (𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑖((coe1𝑂)‘𝐾)𝑗)))
224 oveq12 7366 . . . . . . . . . . . . 13 ((𝑖 = 𝑎𝑗 = 𝑏) → (𝑖((coe1𝑂)‘𝐾)𝑗) = (𝑎((coe1𝑂)‘𝐾)𝑏))
225224adantl 482 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) ∧ (𝑖 = 𝑎𝑗 = 𝑏)) → (𝑖((coe1𝑂)‘𝐾)𝑗) = (𝑎((coe1𝑂)‘𝐾)𝑏))
226 simprl 769 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → 𝑎𝑁)
227 simprr 771 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → 𝑏𝑁)
228 ovexd 7392 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎((coe1𝑂)‘𝐾)𝑏) ∈ V)
229223, 225, 226, 227, 228ovmpod 7507 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎(𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗))𝑏) = (𝑎((coe1𝑂)‘𝐾)𝑏))
230229ralrimivva 3197 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ∀𝑎𝑁𝑏𝑁 (𝑎(𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗))𝑏) = (𝑎((coe1𝑂)‘𝐾)𝑏))
231 simpl1 1191 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ Fin)
232218oveqi 7370 . . . . . . . . . . . . . 14 (𝑖𝐾 / 𝑘((coe1𝑂)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝐾)𝑗)
233217, 232eqtri 2764 . . . . . . . . . . . . 13 𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝐾)𝑗)
234 simp2 1137 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
235 simp3 1138 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
23629, 3, 2, 23coe1fvalcl 21583 . . . . . . . . . . . . . . . 16 ((𝑂𝐿𝐾 ∈ ℕ0) → ((coe1𝑂)‘𝐾) ∈ (Base‘𝐴))
2372363ad2antl3 1187 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((coe1𝑂)‘𝐾) ∈ (Base‘𝐴))
2382373ad2ant1 1133 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1𝑂)‘𝐾) ∈ (Base‘𝐴))
2391, 22, 23, 234, 235, 238matecld 21775 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖((coe1𝑂)‘𝐾)𝑗) ∈ (Base‘𝑅))
240233, 239eqeltrid 2842 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
2411, 22, 23, 231, 18, 240matbas2d 21772 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) ∈ (Base‘𝐴))
2421, 23eqmat 21773 . . . . . . . . . . 11 (((𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) ∈ (Base‘𝐴) ∧ ((coe1𝑂)‘𝐾) ∈ (Base‘𝐴)) → ((𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) = ((coe1𝑂)‘𝐾) ↔ ∀𝑎𝑁𝑏𝑁 (𝑎(𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗))𝑏) = (𝑎((coe1𝑂)‘𝐾)𝑏)))
243241, 237, 242syl2anc 584 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) = ((coe1𝑂)‘𝐾) ↔ ∀𝑎𝑁𝑏𝑁 (𝑎(𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗))𝑏) = (𝑎((coe1𝑂)‘𝐾)𝑏)))
244230, 243mpbird 256 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) = ((coe1𝑂)‘𝐾))
245244ad2antrr 724 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) = ((coe1𝑂)‘𝐾))
246245adantl 482 . . . . . . 7 ((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) → (𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) = ((coe1𝑂)‘𝐾))
247216, 246eqtrd 2776 . . . . . 6 ((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))
248247ex 413 . . . . 5 𝑠 < 𝐾 → (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))
249186, 248pm2.61i 182 . . . 4 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))
25097, 120, 2493eqtrd 2780 . . 3 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾)) = ((coe1𝑂)‘𝐾))
251 eqid 2736 . . . . . 6 (0g𝐴) = (0g𝐴)
25229, 3, 2, 251coe1sfi 21584 . . . . 5 (𝑂𝐿 → (coe1𝑂) finSupp (0g𝐴))
25326, 252syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (coe1𝑂) finSupp (0g𝐴))
25429, 3, 2, 251, 23coe1fsupp 21585 . . . . . 6 (𝑂𝐿 → (coe1𝑂) ∈ {𝑥 ∈ ((Base‘𝐴) ↑m0) ∣ 𝑥 finSupp (0g𝐴)})
255 elrabi 3639 . . . . . 6 ((coe1𝑂) ∈ {𝑥 ∈ ((Base‘𝐴) ↑m0) ∣ 𝑥 finSupp (0g𝐴)} → (coe1𝑂) ∈ ((Base‘𝐴) ↑m0))
25626, 254, 2553syl 18 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (coe1𝑂) ∈ ((Base‘𝐴) ↑m0))
257 fvex 6855 . . . . 5 (0g𝐴) ∈ V
258 fsuppmapnn0ub 13900 . . . . 5 (((coe1𝑂) ∈ ((Base‘𝐴) ↑m0) ∧ (0g𝐴) ∈ V) → ((coe1𝑂) finSupp (0g𝐴) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))))
259256, 257, 258sylancl 586 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((coe1𝑂) finSupp (0g𝐴) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))))
260253, 259mpd 15 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))
261250, 260r19.29a 3159 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾)) = ((coe1𝑂)‘𝐾))
2629, 261eqtrd 2776 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝐾) = ((coe1𝑂)‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  csb 3855  ifcif 4486   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cmpo 7359  m cmap 8765  Fincfn 8883   finSupp cfsupp 9305  cr 11050  0cc0 11051   < clt 11189  cle 11190  0cn0 12413  ...cfz 13424  Basecbs 17083  Scalarcsca 17136   ·𝑠 cvsca 17137  0gc0g 17321   Σg cgsu 17322  Mndcmnd 18556  .gcmg 18872  CMndccmn 19562  mulGrpcmgp 19896  Ringcrg 19964  LModclmod 20322  var1cv1 21547  Poly1cpl1 21548  coe1cco1 21549   Mat cmat 21754   decompPMat cdecpmat 22111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-ot 4595  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-subrg 20220  df-lmod 20324  df-lss 20393  df-sra 20633  df-rgmod 20634  df-dsmm 21138  df-frlm 21153  df-psr 21311  df-mvr 21312  df-mpl 21313  df-opsr 21315  df-psr1 21551  df-vr1 21552  df-ply1 21553  df-coe1 21554  df-mat 21755  df-decpmat 22112
This theorem is referenced by:  mp2pm2mplem5  22159  mp2pm2mp  22160
  Copyright terms: Public domain W3C validator