MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp2pm2mplem4 Structured version   Visualization version   GIF version

Theorem mp2pm2mplem4 21958
Description: Lemma 4 for mp2pm2mp 21960. (Contributed by AV, 12-Oct-2019.) (Revised by AV, 5-Dec-2019.)
Hypotheses
Ref Expression
mp2pm2mp.a 𝐴 = (𝑁 Mat 𝑅)
mp2pm2mp.q 𝑄 = (Poly1𝐴)
mp2pm2mp.l 𝐿 = (Base‘𝑄)
mp2pm2mp.m · = ( ·𝑠𝑃)
mp2pm2mp.e 𝐸 = (.g‘(mulGrp‘𝑃))
mp2pm2mp.y 𝑌 = (var1𝑅)
mp2pm2mp.i 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
mp2pm2mplem2.p 𝑃 = (Poly1𝑅)
Assertion
Ref Expression
mp2pm2mplem4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝐾) = ((coe1𝑂)‘𝐾))
Distinct variable groups:   𝐸,𝑝   𝐿,𝑝   𝑖,𝑁,𝑗,𝑝   𝑖,𝑂,𝑗,𝑝,𝑘   𝑃,𝑝   𝑅,𝑝   𝑌,𝑝   · ,𝑝   𝑘,𝐿   𝑃,𝑖,𝑗,𝑘   𝑅,𝑘   · ,𝑘   𝑖,𝐸,𝑗   𝑖,𝐾,𝑗   𝑖,𝐿,𝑗   𝑘,𝑁   𝑅,𝑖,𝑗   𝑖,𝑌,𝑗   · ,𝑖,𝑗   𝐴,𝑖,𝑗,𝑘   𝑘,𝐸   𝑘,𝐾   𝑘,𝑌
Allowed substitution hints:   𝐴(𝑝)   𝑄(𝑖,𝑗,𝑘,𝑝)   𝐼(𝑖,𝑗,𝑘,𝑝)   𝐾(𝑝)

Proof of Theorem mp2pm2mplem4
Dummy variables 𝑎 𝑏 𝑠 𝑥 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mp2pm2mp.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 mp2pm2mp.q . . 3 𝑄 = (Poly1𝐴)
3 mp2pm2mp.l . . 3 𝐿 = (Base‘𝑄)
4 mp2pm2mp.m . . 3 · = ( ·𝑠𝑃)
5 mp2pm2mp.e . . 3 𝐸 = (.g‘(mulGrp‘𝑃))
6 mp2pm2mp.y . . 3 𝑌 = (var1𝑅)
7 mp2pm2mp.i . . 3 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
8 mp2pm2mplem2.p . . 3 𝑃 = (Poly1𝑅)
91, 2, 3, 4, 5, 6, 7, 8mp2pm2mplem3 21957 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾)))
10 eqid 2738 . . . . . . . . 9 (Base‘𝑃) = (Base‘𝑃)
11 eqid 2738 . . . . . . . . 9 (0g𝑃) = (0g𝑃)
128ply1ring 21419 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
13123ad2ant2 1133 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑃 ∈ Ring)
14 ringcmn 19820 . . . . . . . . . . . 12 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
1513, 14syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑃 ∈ CMnd)
1615ad3antrrr 727 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → 𝑃 ∈ CMnd)
17163ad2ant1 1132 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → 𝑃 ∈ CMnd)
18 simpl2 1191 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → 𝑅 ∈ Ring)
1918ad2antrr 723 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → 𝑅 ∈ Ring)
20193ad2ant1 1132 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
2120adantr 481 . . . . . . . . . . 11 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
22 eqid 2738 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
23 eqid 2738 . . . . . . . . . . . 12 (Base‘𝐴) = (Base‘𝐴)
24 simpl2 1191 . . . . . . . . . . . 12 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑖𝑁)
25 simpl3 1192 . . . . . . . . . . . 12 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑗𝑁)
26 simpl3 1192 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → 𝑂𝐿)
2726ad2antrr 723 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → 𝑂𝐿)
28273ad2ant1 1132 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → 𝑂𝐿)
29 eqid 2738 . . . . . . . . . . . . . 14 (coe1𝑂) = (coe1𝑂)
3029, 3, 2, 23coe1fvalcl 21383 . . . . . . . . . . . . 13 ((𝑂𝐿𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
3128, 30sylan 580 . . . . . . . . . . . 12 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
321, 22, 23, 24, 25, 31matecld 21575 . . . . . . . . . . 11 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
33 simpr 485 . . . . . . . . . . 11 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
34 eqid 2738 . . . . . . . . . . . 12 (mulGrp‘𝑃) = (mulGrp‘𝑃)
3522, 8, 6, 4, 34, 5, 10ply1tmcl 21443 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅) ∧ 𝑘 ∈ ℕ0) → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃))
3621, 32, 33, 35syl3anc 1370 . . . . . . . . . 10 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃))
3736ralrimiva 3103 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ∀𝑘 ∈ ℕ0 ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃))
38 simp1lr 1236 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → 𝑠 ∈ ℕ0)
39 oveq 7281 . . . . . . . . . . . . . . . . 17 (((coe1𝑂)‘𝑥) = (0g𝐴) → (𝑖((coe1𝑂)‘𝑥)𝑗) = (𝑖(0g𝐴)𝑗))
4039oveq1d 7290 . . . . . . . . . . . . . . . 16 (((coe1𝑂)‘𝑥) = (0g𝐴) → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = ((𝑖(0g𝐴)𝑗) · (𝑥𝐸𝑌)))
41 3simpa 1147 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
4241ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
43 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . 23 (0g𝑅) = (0g𝑅)
441, 43mat0op 21568 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑎𝑁, 𝑏𝑁 ↦ (0g𝑅)))
4542, 44syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (0g𝐴) = (𝑎𝑁, 𝑏𝑁 ↦ (0g𝑅)))
46 eqidd 2739 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 = 𝑖𝑏 = 𝑗)) → (0g𝑅) = (0g𝑅))
47 simprl 768 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
48 simprr 770 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
49 fvexd 6789 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (0g𝑅) ∈ V)
5045, 46, 47, 48, 49ovmpod 7425 . . . . . . . . . . . . . . . . . . . 20 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(0g𝐴)𝑗) = (0g𝑅))
5150adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → (𝑖(0g𝐴)𝑗) = (0g𝑅))
5251oveq1d 7290 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → ((𝑖(0g𝐴)𝑗) · (𝑥𝐸𝑌)) = ((0g𝑅) · (𝑥𝐸𝑌)))
5318ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → 𝑅 ∈ Ring)
548ply1sca 21424 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
5553, 54syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → 𝑅 = (Scalar‘𝑃))
5655fveq2d 6778 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
5756oveq1d 7290 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → ((0g𝑅) · (𝑥𝐸𝑌)) = ((0g‘(Scalar‘𝑃)) · (𝑥𝐸𝑌)))
588ply1lmod 21423 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
59583ad2ant2 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑃 ∈ LMod)
6059ad4antr 729 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → 𝑃 ∈ LMod)
61 simpr 485 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
628, 6, 34, 5, 10ply1moncl 21442 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ 𝑥 ∈ ℕ0) → (𝑥𝐸𝑌) ∈ (Base‘𝑃))
6353, 61, 62syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → (𝑥𝐸𝑌) ∈ (Base‘𝑃))
64 eqid 2738 . . . . . . . . . . . . . . . . . . . 20 (Scalar‘𝑃) = (Scalar‘𝑃)
65 eqid 2738 . . . . . . . . . . . . . . . . . . . 20 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝑃))
6610, 64, 4, 65, 11lmod0vs 20156 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ LMod ∧ (𝑥𝐸𝑌) ∈ (Base‘𝑃)) → ((0g‘(Scalar‘𝑃)) · (𝑥𝐸𝑌)) = (0g𝑃))
6760, 63, 66syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → ((0g‘(Scalar‘𝑃)) · (𝑥𝐸𝑌)) = (0g𝑃))
6852, 57, 673eqtrd 2782 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → ((𝑖(0g𝐴)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))
6968adantr 481 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) → ((𝑖(0g𝐴)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))
7040, 69sylan9eqr 2800 . . . . . . . . . . . . . . 15 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑂)‘𝑥) = (0g𝐴)) → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))
7170exp31 420 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥 → (((coe1𝑂)‘𝑥) = (0g𝐴) → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))))
7271a2d 29 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝑠 < 𝑥 → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))))
7372ralimdva 3108 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))))
7473impancom 452 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → ((𝑖𝑁𝑗𝑁) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))))
75743impib 1115 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃)))
76 breq2 5078 . . . . . . . . . . . 12 (𝑘 = 𝑥 → (𝑠 < 𝑘𝑠 < 𝑥))
77 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑘 = 𝑥 → ((coe1𝑂)‘𝑘) = ((coe1𝑂)‘𝑥))
7877oveqd 7292 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → (𝑖((coe1𝑂)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝑥)𝑗))
79 oveq1 7282 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → (𝑘𝐸𝑌) = (𝑥𝐸𝑌))
8078, 79oveq12d 7293 . . . . . . . . . . . . 13 (𝑘 = 𝑥 → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)))
8180eqeq1d 2740 . . . . . . . . . . . 12 (𝑘 = 𝑥 → (((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = (0g𝑃) ↔ ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃)))
8276, 81imbi12d 345 . . . . . . . . . . 11 (𝑘 = 𝑥 → ((𝑠 < 𝑘 → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = (0g𝑃)) ↔ (𝑠 < 𝑥 → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))))
8382cbvralvw 3383 . . . . . . . . . 10 (∀𝑘 ∈ ℕ0 (𝑠 < 𝑘 → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = (0g𝑃)) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃)))
8475, 83sylibr 233 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ∀𝑘 ∈ ℕ0 (𝑠 < 𝑘 → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = (0g𝑃)))
8510, 11, 17, 37, 38, 84gsummptnn0fz 19587 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))
8685fveq2d 6778 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → (coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) = (coe1‘(𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
8786fveq1d 6776 . . . . . 6 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾) = ((coe1‘(𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾))
88 simpllr 773 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → 𝐾 ∈ ℕ0)
89883ad2ant1 1132 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → 𝐾 ∈ ℕ0)
9036expcom 414 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃)))
91 elfznn0 13349 . . . . . . . . 9 (𝑘 ∈ (0...𝑠) → 𝑘 ∈ ℕ0)
9290, 91syl11 33 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → (𝑘 ∈ (0...𝑠) → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃)))
9392ralrimiv 3102 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ∀𝑘 ∈ (0...𝑠)((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃))
94 fzfid 13693 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → (0...𝑠) ∈ Fin)
958, 10, 20, 89, 93, 94coe1fzgsumd 21473 . . . . . 6 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾))))
9687, 95eqtrd 2778 . . . . 5 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾))))
9796mpoeq3dva 7352 . . . 4 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾)) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾)))))
98183ad2ant1 1132 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
9998adantr 481 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → 𝑅 ∈ Ring)
100 simpl2 1191 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → 𝑖𝑁)
101 simpl3 1192 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → 𝑗𝑁)
102263ad2ant1 1132 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑂𝐿)
103102, 91, 30syl2an 596 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
1041, 22, 23, 100, 101, 103matecld 21575 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
10591adantl 482 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → 𝑘 ∈ ℕ0)
10643, 22, 8, 6, 4, 34, 5coe1tm 21444 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅) ∧ 𝑘 ∈ ℕ0) → (coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))
10799, 104, 105, 106syl3anc 1370 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → (coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))
108 eqeq1 2742 . . . . . . . . . . 11 (𝑙 = 𝐾 → (𝑙 = 𝑘𝐾 = 𝑘))
109108ifbid 4482 . . . . . . . . . 10 (𝑙 = 𝐾 → if(𝑙 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) = if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))
110109adantl 482 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) ∧ 𝑙 = 𝐾) → if(𝑙 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) = if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))
111 simpl1r 1224 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → 𝐾 ∈ ℕ0)
112 ovex 7308 . . . . . . . . . . 11 (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ V
113 fvex 6787 . . . . . . . . . . 11 (0g𝑅) ∈ V
114112, 113ifex 4509 . . . . . . . . . 10 if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) ∈ V
115114a1i 11 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) ∈ V)
116107, 110, 111, 115fvmptd 6882 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾) = if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))
117116mpteq2dva 5174 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾)) = (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))
118117oveq2d 7291 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾))) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))))
119118mpoeq3dva 7352 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾)))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))))
120119ad2antrr 723 . . . 4 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾)))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))))
121 breq2 5078 . . . . . . . . . . . . . 14 (𝑥 = 𝐾 → (𝑠 < 𝑥𝑠 < 𝐾))
122 fveqeq2 6783 . . . . . . . . . . . . . 14 (𝑥 = 𝐾 → (((coe1𝑂)‘𝑥) = (0g𝐴) ↔ ((coe1𝑂)‘𝐾) = (0g𝐴)))
123121, 122imbi12d 345 . . . . . . . . . . . . 13 (𝑥 = 𝐾 → ((𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) ↔ (𝑠 < 𝐾 → ((coe1𝑂)‘𝐾) = (0g𝐴))))
124123rspcva 3559 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑠 < 𝐾 → ((coe1𝑂)‘𝐾) = (0g𝐴)))
1251, 43mat0op 21568 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
126125eqcomd 2744 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)) = (0g𝐴))
1271263adant3 1131 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)) = (0g𝐴))
128127ad3antlr 728 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)) = (0g𝐴))
129 elfz2nn0 13347 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 ∈ (0...𝑠) ↔ (𝑘 ∈ ℕ0𝑠 ∈ ℕ0𝑘𝑠))
130 nn0re 12242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
131130ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → 𝑘 ∈ ℝ)
132 nn0re 12242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑠 ∈ ℕ0𝑠 ∈ ℝ)
133132ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → 𝑠 ∈ ℝ)
134 nn0re 12242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
135134adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℝ)
136 lelttr 11065 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑘 ∈ ℝ ∧ 𝑠 ∈ ℝ ∧ 𝐾 ∈ ℝ) → ((𝑘𝑠𝑠 < 𝐾) → 𝑘 < 𝐾))
137131, 133, 135, 136syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → ((𝑘𝑠𝑠 < 𝐾) → 𝑘 < 𝐾))
138 animorr 976 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 < 𝐾) → (𝐾 < 𝑘𝑘 < 𝐾))
139 df-ne 2944 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐾𝑘 ↔ ¬ 𝐾 = 𝑘)
140130adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) → 𝑘 ∈ ℝ)
141 lttri2 11057 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐾 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐾𝑘 ↔ (𝐾 < 𝑘𝑘 < 𝐾)))
142134, 140, 141syl2anr 597 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → (𝐾𝑘 ↔ (𝐾 < 𝑘𝑘 < 𝐾)))
143142adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 < 𝐾) → (𝐾𝑘 ↔ (𝐾 < 𝑘𝑘 < 𝐾)))
144139, 143bitr3id 285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 < 𝐾) → (¬ 𝐾 = 𝑘 ↔ (𝐾 < 𝑘𝑘 < 𝐾)))
145138, 144mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 < 𝐾) → ¬ 𝐾 = 𝑘)
146145ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → (𝑘 < 𝐾 → ¬ 𝐾 = 𝑘))
147137, 146syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → ((𝑘𝑠𝑠 < 𝐾) → ¬ 𝐾 = 𝑘))
148147exp4b 431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) → (𝐾 ∈ ℕ0 → (𝑘𝑠 → (𝑠 < 𝐾 → ¬ 𝐾 = 𝑘))))
149148com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) → (𝑠 < 𝐾 → (𝑘𝑠 → (𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘))))
150149expimpd 454 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑘 ∈ ℕ0 → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝑘𝑠 → (𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘))))
151150com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 ∈ ℕ0 → (𝑘𝑠 → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘))))
152151imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑘 ∈ ℕ0𝑘𝑠) → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘)))
1531523adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0𝑘𝑠) → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘)))
154129, 153sylbi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 ∈ (0...𝑠) → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘)))
155154com13 88 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐾 ∈ ℕ0 → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝑘 ∈ (0...𝑠) → ¬ 𝐾 = 𝑘)))
156155adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝑘 ∈ (0...𝑠) → ¬ 𝐾 = 𝑘)))
157156imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) → (𝑘 ∈ (0...𝑠) → ¬ 𝐾 = 𝑘))
158157adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑘 ∈ (0...𝑠) → ¬ 𝐾 = 𝑘))
1591583ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) → (𝑘 ∈ (0...𝑠) → ¬ 𝐾 = 𝑘))
160159imp 407 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → ¬ 𝐾 = 𝑘)
161160iffalsed 4470 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) = (0g𝑅))
162161mpteq2dva 5174 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) → (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))) = (𝑘 ∈ (0...𝑠) ↦ (0g𝑅)))
163162oveq2d 7291 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (0g𝑅))))
164 ringmnd 19793 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
1651643ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑅 ∈ Mnd)
166 ovex 7308 . . . . . . . . . . . . . . . . . . . . . . 23 (0...𝑠) ∈ V
16743gsumz 18474 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ Mnd ∧ (0...𝑠) ∈ V) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (0g𝑅))) = (0g𝑅))
168165, 166, 167sylancl 586 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (0g𝑅))) = (0g𝑅))
169168ad3antlr 728 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (0g𝑅))) = (0g𝑅))
1701693ad2ant1 1132 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (0g𝑅))) = (0g𝑅))
171163, 170eqtrd 2778 . . . . . . . . . . . . . . . . . . 19 (((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))) = (0g𝑅))
172171mpoeq3dva 7352 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
173 simpr 485 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) → ((coe1𝑂)‘𝐾) = (0g𝐴))
174128, 172, 1733eqtr4d 2788 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))
175174ex 413 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) → (((coe1𝑂)‘𝐾) = (0g𝐴) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))
176175expr 457 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ 𝑠 ∈ ℕ0) → (𝑠 < 𝐾 → (((coe1𝑂)‘𝐾) = (0g𝐴) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))))
177176a2d 29 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ 𝑠 ∈ ℕ0) → ((𝑠 < 𝐾 → ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))))
178177exp31 420 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑠 ∈ ℕ0 → ((𝑠 < 𝐾 → ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))))))
179178com14 96 . . . . . . . . . . . 12 ((𝑠 < 𝐾 → ((coe1𝑂)‘𝐾) = (0g𝐴)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑠 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))))))
180124, 179syl 17 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑠 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))))))
181180ex 413 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑠 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))))))
182181com25 99 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝐾 ∈ ℕ0 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑠 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))))))
183182pm2.43i 52 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑠 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))))))
184183impcom 408 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑠 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))))
185184imp31 418 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))
186185com12 32 . . . . 5 (𝑠 < 𝐾 → (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))
187165ad3antrrr 727 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → 𝑅 ∈ Mnd)
188187adantl 482 . . . . . . . . . 10 ((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) → 𝑅 ∈ Mnd)
1891883ad2ant1 1132 . . . . . . . . 9 (((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Mnd)
190 ovexd 7310 . . . . . . . . 9 (((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) → (0...𝑠) ∈ V)
191 lenlt 11053 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (𝐾𝑠 ↔ ¬ 𝑠 < 𝐾))
192134, 132, 191syl2an 596 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) → (𝐾𝑠 ↔ ¬ 𝑠 < 𝐾))
193 simpll 764 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾𝑠) → 𝐾 ∈ ℕ0)
194 simplr 766 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾𝑠) → 𝑠 ∈ ℕ0)
195 simpr 485 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾𝑠) → 𝐾𝑠)
196 elfz2nn0 13347 . . . . . . . . . . . . . . 15 (𝐾 ∈ (0...𝑠) ↔ (𝐾 ∈ ℕ0𝑠 ∈ ℕ0𝐾𝑠))
197193, 194, 195, 196syl3anbrc 1342 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾𝑠) → 𝐾 ∈ (0...𝑠))
198197ex 413 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) → (𝐾𝑠𝐾 ∈ (0...𝑠)))
199192, 198sylbird 259 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) → (¬ 𝑠 < 𝐾𝐾 ∈ (0...𝑠)))
200199ad4ant23 750 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (¬ 𝑠 < 𝐾𝐾 ∈ (0...𝑠)))
201200impcom 408 . . . . . . . . . 10 ((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) → 𝐾 ∈ (0...𝑠))
2022013ad2ant1 1132 . . . . . . . . 9 (((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) → 𝐾 ∈ (0...𝑠))
203 eqcom 2745 . . . . . . . . . . 11 (𝐾 = 𝑘𝑘 = 𝐾)
204 ifbi 4481 . . . . . . . . . . 11 ((𝐾 = 𝑘𝑘 = 𝐾) → if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) = if(𝑘 = 𝐾, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))
205203, 204ax-mp 5 . . . . . . . . . 10 if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) = if(𝑘 = 𝐾, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))
206205mpteq2i 5179 . . . . . . . . 9 (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))) = (𝑘 ∈ (0...𝑠) ↦ if(𝑘 = 𝐾, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))
207 simpl2 1191 . . . . . . . . . . . 12 ((((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑖𝑁)
208 simpl3 1192 . . . . . . . . . . . 12 ((((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑗𝑁)
20927adantl 482 . . . . . . . . . . . . . 14 ((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) → 𝑂𝐿)
2102093ad2ant1 1132 . . . . . . . . . . . . 13 (((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) → 𝑂𝐿)
211210, 30sylan 580 . . . . . . . . . . . 12 ((((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
2121, 22, 23, 207, 208, 211matecld 21575 . . . . . . . . . . 11 ((((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
21391, 212sylan2 593 . . . . . . . . . 10 ((((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
214213ralrimiva 3103 . . . . . . . . 9 (((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) → ∀𝑘 ∈ (0...𝑠)(𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
21543, 189, 190, 202, 206, 214gsummpt1n0 19566 . . . . . . . 8 (((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))) = 𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗))
216215mpoeq3dva 7352 . . . . . . 7 ((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = (𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)))
217 csbov 7318 . . . . . . . . . . . . . . 15 𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗) = (𝑖𝐾 / 𝑘((coe1𝑂)‘𝑘)𝑗)
218 csbfv 6819 . . . . . . . . . . . . . . . . 17 𝐾 / 𝑘((coe1𝑂)‘𝑘) = ((coe1𝑂)‘𝐾)
219218a1i 11 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℕ0𝐾 / 𝑘((coe1𝑂)‘𝑘) = ((coe1𝑂)‘𝐾))
220219oveqd 7292 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℕ0 → (𝑖𝐾 / 𝑘((coe1𝑂)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝐾)𝑗))
221217, 220eqtrid 2790 . . . . . . . . . . . . . 14 (𝐾 ∈ ℕ0𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝐾)𝑗))
222221ad2antlr 724 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → 𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝐾)𝑗))
223222mpoeq3dv 7354 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → (𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑖((coe1𝑂)‘𝐾)𝑗)))
224 oveq12 7284 . . . . . . . . . . . . 13 ((𝑖 = 𝑎𝑗 = 𝑏) → (𝑖((coe1𝑂)‘𝐾)𝑗) = (𝑎((coe1𝑂)‘𝐾)𝑏))
225224adantl 482 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) ∧ (𝑖 = 𝑎𝑗 = 𝑏)) → (𝑖((coe1𝑂)‘𝐾)𝑗) = (𝑎((coe1𝑂)‘𝐾)𝑏))
226 simprl 768 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → 𝑎𝑁)
227 simprr 770 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → 𝑏𝑁)
228 ovexd 7310 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎((coe1𝑂)‘𝐾)𝑏) ∈ V)
229223, 225, 226, 227, 228ovmpod 7425 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎(𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗))𝑏) = (𝑎((coe1𝑂)‘𝐾)𝑏))
230229ralrimivva 3123 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ∀𝑎𝑁𝑏𝑁 (𝑎(𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗))𝑏) = (𝑎((coe1𝑂)‘𝐾)𝑏))
231 simpl1 1190 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ Fin)
232218oveqi 7288 . . . . . . . . . . . . . 14 (𝑖𝐾 / 𝑘((coe1𝑂)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝐾)𝑗)
233217, 232eqtri 2766 . . . . . . . . . . . . 13 𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝐾)𝑗)
234 simp2 1136 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
235 simp3 1137 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
23629, 3, 2, 23coe1fvalcl 21383 . . . . . . . . . . . . . . . 16 ((𝑂𝐿𝐾 ∈ ℕ0) → ((coe1𝑂)‘𝐾) ∈ (Base‘𝐴))
2372363ad2antl3 1186 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((coe1𝑂)‘𝐾) ∈ (Base‘𝐴))
2382373ad2ant1 1132 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1𝑂)‘𝐾) ∈ (Base‘𝐴))
2391, 22, 23, 234, 235, 238matecld 21575 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖((coe1𝑂)‘𝐾)𝑗) ∈ (Base‘𝑅))
240233, 239eqeltrid 2843 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
2411, 22, 23, 231, 18, 240matbas2d 21572 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) ∈ (Base‘𝐴))
2421, 23eqmat 21573 . . . . . . . . . . 11 (((𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) ∈ (Base‘𝐴) ∧ ((coe1𝑂)‘𝐾) ∈ (Base‘𝐴)) → ((𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) = ((coe1𝑂)‘𝐾) ↔ ∀𝑎𝑁𝑏𝑁 (𝑎(𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗))𝑏) = (𝑎((coe1𝑂)‘𝐾)𝑏)))
243241, 237, 242syl2anc 584 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) = ((coe1𝑂)‘𝐾) ↔ ∀𝑎𝑁𝑏𝑁 (𝑎(𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗))𝑏) = (𝑎((coe1𝑂)‘𝐾)𝑏)))
244230, 243mpbird 256 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) = ((coe1𝑂)‘𝐾))
245244ad2antrr 723 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) = ((coe1𝑂)‘𝐾))
246245adantl 482 . . . . . . 7 ((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) → (𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) = ((coe1𝑂)‘𝐾))
247216, 246eqtrd 2778 . . . . . 6 ((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))
248247ex 413 . . . . 5 𝑠 < 𝐾 → (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))
249186, 248pm2.61i 182 . . . 4 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))
25097, 120, 2493eqtrd 2782 . . 3 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾)) = ((coe1𝑂)‘𝐾))
251 eqid 2738 . . . . . 6 (0g𝐴) = (0g𝐴)
25229, 3, 2, 251coe1sfi 21384 . . . . 5 (𝑂𝐿 → (coe1𝑂) finSupp (0g𝐴))
25326, 252syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (coe1𝑂) finSupp (0g𝐴))
25429, 3, 2, 251, 23coe1fsupp 21385 . . . . . 6 (𝑂𝐿 → (coe1𝑂) ∈ {𝑥 ∈ ((Base‘𝐴) ↑m0) ∣ 𝑥 finSupp (0g𝐴)})
255 elrabi 3618 . . . . . 6 ((coe1𝑂) ∈ {𝑥 ∈ ((Base‘𝐴) ↑m0) ∣ 𝑥 finSupp (0g𝐴)} → (coe1𝑂) ∈ ((Base‘𝐴) ↑m0))
25626, 254, 2553syl 18 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (coe1𝑂) ∈ ((Base‘𝐴) ↑m0))
257 fvex 6787 . . . . 5 (0g𝐴) ∈ V
258 fsuppmapnn0ub 13715 . . . . 5 (((coe1𝑂) ∈ ((Base‘𝐴) ↑m0) ∧ (0g𝐴) ∈ V) → ((coe1𝑂) finSupp (0g𝐴) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))))
259256, 257, 258sylancl 586 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((coe1𝑂) finSupp (0g𝐴) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))))
260253, 259mpd 15 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))
261250, 260r19.29a 3218 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾)) = ((coe1𝑂)‘𝐾))
2629, 261eqtrd 2778 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝐾) = ((coe1𝑂)‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  csb 3832  ifcif 4459   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cmpo 7277  m cmap 8615  Fincfn 8733   finSupp cfsupp 9128  cr 10870  0cc0 10871   < clt 11009  cle 11010  0cn0 12233  ...cfz 13239  Basecbs 16912  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150   Σg cgsu 17151  Mndcmnd 18385  .gcmg 18700  CMndccmn 19386  mulGrpcmgp 19720  Ringcrg 19783  LModclmod 20123  var1cv1 21347  Poly1cpl1 21348  coe1cco1 21349   Mat cmat 21554   decompPMat cdecpmat 21911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-subrg 20022  df-lmod 20125  df-lss 20194  df-sra 20434  df-rgmod 20435  df-dsmm 20939  df-frlm 20954  df-psr 21112  df-mvr 21113  df-mpl 21114  df-opsr 21116  df-psr1 21351  df-vr1 21352  df-ply1 21353  df-coe1 21354  df-mat 21555  df-decpmat 21912
This theorem is referenced by:  mp2pm2mplem5  21959  mp2pm2mp  21960
  Copyright terms: Public domain W3C validator