MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp2pm2mplem4 Structured version   Visualization version   GIF version

Theorem mp2pm2mplem4 21414
Description: Lemma 4 for mp2pm2mp 21416. (Contributed by AV, 12-Oct-2019.) (Revised by AV, 5-Dec-2019.)
Hypotheses
Ref Expression
mp2pm2mp.a 𝐴 = (𝑁 Mat 𝑅)
mp2pm2mp.q 𝑄 = (Poly1𝐴)
mp2pm2mp.l 𝐿 = (Base‘𝑄)
mp2pm2mp.m · = ( ·𝑠𝑃)
mp2pm2mp.e 𝐸 = (.g‘(mulGrp‘𝑃))
mp2pm2mp.y 𝑌 = (var1𝑅)
mp2pm2mp.i 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
mp2pm2mplem2.p 𝑃 = (Poly1𝑅)
Assertion
Ref Expression
mp2pm2mplem4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝐾) = ((coe1𝑂)‘𝐾))
Distinct variable groups:   𝐸,𝑝   𝐿,𝑝   𝑖,𝑁,𝑗,𝑝   𝑖,𝑂,𝑗,𝑝,𝑘   𝑃,𝑝   𝑅,𝑝   𝑌,𝑝   · ,𝑝   𝑘,𝐿   𝑃,𝑖,𝑗,𝑘   𝑅,𝑘   · ,𝑘   𝑖,𝐸,𝑗   𝑖,𝐾,𝑗   𝑖,𝐿,𝑗   𝑘,𝑁   𝑅,𝑖,𝑗   𝑖,𝑌,𝑗   · ,𝑖,𝑗   𝐴,𝑖,𝑗,𝑘   𝑘,𝐸   𝑘,𝐾   𝑘,𝑌
Allowed substitution hints:   𝐴(𝑝)   𝑄(𝑖,𝑗,𝑘,𝑝)   𝐼(𝑖,𝑗,𝑘,𝑝)   𝐾(𝑝)

Proof of Theorem mp2pm2mplem4
Dummy variables 𝑎 𝑏 𝑠 𝑥 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mp2pm2mp.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 mp2pm2mp.q . . 3 𝑄 = (Poly1𝐴)
3 mp2pm2mp.l . . 3 𝐿 = (Base‘𝑄)
4 mp2pm2mp.m . . 3 · = ( ·𝑠𝑃)
5 mp2pm2mp.e . . 3 𝐸 = (.g‘(mulGrp‘𝑃))
6 mp2pm2mp.y . . 3 𝑌 = (var1𝑅)
7 mp2pm2mp.i . . 3 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
8 mp2pm2mplem2.p . . 3 𝑃 = (Poly1𝑅)
91, 2, 3, 4, 5, 6, 7, 8mp2pm2mplem3 21413 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾)))
10 eqid 2798 . . . . . . . . 9 (Base‘𝑃) = (Base‘𝑃)
11 eqid 2798 . . . . . . . . 9 (0g𝑃) = (0g𝑃)
128ply1ring 20877 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
13123ad2ant2 1131 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑃 ∈ Ring)
14 ringcmn 19327 . . . . . . . . . . . 12 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
1513, 14syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑃 ∈ CMnd)
1615ad3antrrr 729 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → 𝑃 ∈ CMnd)
17163ad2ant1 1130 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → 𝑃 ∈ CMnd)
18 simpl2 1189 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → 𝑅 ∈ Ring)
1918ad2antrr 725 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → 𝑅 ∈ Ring)
20193ad2ant1 1130 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
2120adantr 484 . . . . . . . . . . 11 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
22 eqid 2798 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
23 eqid 2798 . . . . . . . . . . . 12 (Base‘𝐴) = (Base‘𝐴)
24 simpl2 1189 . . . . . . . . . . . 12 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑖𝑁)
25 simpl3 1190 . . . . . . . . . . . 12 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑗𝑁)
26 simpl3 1190 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → 𝑂𝐿)
2726ad2antrr 725 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → 𝑂𝐿)
28273ad2ant1 1130 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → 𝑂𝐿)
29 eqid 2798 . . . . . . . . . . . . . 14 (coe1𝑂) = (coe1𝑂)
3029, 3, 2, 23coe1fvalcl 20841 . . . . . . . . . . . . 13 ((𝑂𝐿𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
3128, 30sylan 583 . . . . . . . . . . . 12 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
321, 22, 23, 24, 25, 31matecld 21031 . . . . . . . . . . 11 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
33 simpr 488 . . . . . . . . . . 11 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
34 eqid 2798 . . . . . . . . . . . 12 (mulGrp‘𝑃) = (mulGrp‘𝑃)
3522, 8, 6, 4, 34, 5, 10ply1tmcl 20901 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅) ∧ 𝑘 ∈ ℕ0) → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃))
3621, 32, 33, 35syl3anc 1368 . . . . . . . . . 10 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃))
3736ralrimiva 3149 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ∀𝑘 ∈ ℕ0 ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃))
38 simp1lr 1234 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → 𝑠 ∈ ℕ0)
39 oveq 7141 . . . . . . . . . . . . . . . . 17 (((coe1𝑂)‘𝑥) = (0g𝐴) → (𝑖((coe1𝑂)‘𝑥)𝑗) = (𝑖(0g𝐴)𝑗))
4039oveq1d 7150 . . . . . . . . . . . . . . . 16 (((coe1𝑂)‘𝑥) = (0g𝐴) → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = ((𝑖(0g𝐴)𝑗) · (𝑥𝐸𝑌)))
41 3simpa 1145 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
4241ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
43 eqid 2798 . . . . . . . . . . . . . . . . . . . . . . 23 (0g𝑅) = (0g𝑅)
441, 43mat0op 21024 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑎𝑁, 𝑏𝑁 ↦ (0g𝑅)))
4542, 44syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (0g𝐴) = (𝑎𝑁, 𝑏𝑁 ↦ (0g𝑅)))
46 eqidd 2799 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑎 = 𝑖𝑏 = 𝑗)) → (0g𝑅) = (0g𝑅))
47 simprl 770 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
48 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
49 fvexd 6660 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (0g𝑅) ∈ V)
5045, 46, 47, 48, 49ovmpod 7281 . . . . . . . . . . . . . . . . . . . 20 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(0g𝐴)𝑗) = (0g𝑅))
5150adantr 484 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → (𝑖(0g𝐴)𝑗) = (0g𝑅))
5251oveq1d 7150 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → ((𝑖(0g𝐴)𝑗) · (𝑥𝐸𝑌)) = ((0g𝑅) · (𝑥𝐸𝑌)))
5318ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → 𝑅 ∈ Ring)
548ply1sca 20882 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
5553, 54syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → 𝑅 = (Scalar‘𝑃))
5655fveq2d 6649 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
5756oveq1d 7150 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → ((0g𝑅) · (𝑥𝐸𝑌)) = ((0g‘(Scalar‘𝑃)) · (𝑥𝐸𝑌)))
588ply1lmod 20881 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
59583ad2ant2 1131 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑃 ∈ LMod)
6059ad4antr 731 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → 𝑃 ∈ LMod)
61 simpr 488 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
628, 6, 34, 5, 10ply1moncl 20900 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Ring ∧ 𝑥 ∈ ℕ0) → (𝑥𝐸𝑌) ∈ (Base‘𝑃))
6353, 61, 62syl2anc 587 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → (𝑥𝐸𝑌) ∈ (Base‘𝑃))
64 eqid 2798 . . . . . . . . . . . . . . . . . . . 20 (Scalar‘𝑃) = (Scalar‘𝑃)
65 eqid 2798 . . . . . . . . . . . . . . . . . . . 20 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝑃))
6610, 64, 4, 65, 11lmod0vs 19660 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ LMod ∧ (𝑥𝐸𝑌) ∈ (Base‘𝑃)) → ((0g‘(Scalar‘𝑃)) · (𝑥𝐸𝑌)) = (0g𝑃))
6760, 63, 66syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → ((0g‘(Scalar‘𝑃)) · (𝑥𝐸𝑌)) = (0g𝑃))
6852, 57, 673eqtrd 2837 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → ((𝑖(0g𝐴)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))
6968adantr 484 . . . . . . . . . . . . . . . 16 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) → ((𝑖(0g𝐴)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))
7040, 69sylan9eqr 2855 . . . . . . . . . . . . . . 15 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑂)‘𝑥) = (0g𝐴)) → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))
7170exp31 423 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥 → (((coe1𝑂)‘𝑥) = (0g𝐴) → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))))
7271a2d 29 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝑠 < 𝑥 → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))))
7372ralimdva 3144 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))))
7473impancom 455 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → ((𝑖𝑁𝑗𝑁) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))))
75743impib 1113 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃)))
76 breq2 5034 . . . . . . . . . . . 12 (𝑘 = 𝑥 → (𝑠 < 𝑘𝑠 < 𝑥))
77 fveq2 6645 . . . . . . . . . . . . . . 15 (𝑘 = 𝑥 → ((coe1𝑂)‘𝑘) = ((coe1𝑂)‘𝑥))
7877oveqd 7152 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → (𝑖((coe1𝑂)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝑥)𝑗))
79 oveq1 7142 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → (𝑘𝐸𝑌) = (𝑥𝐸𝑌))
8078, 79oveq12d 7153 . . . . . . . . . . . . 13 (𝑘 = 𝑥 → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)))
8180eqeq1d 2800 . . . . . . . . . . . 12 (𝑘 = 𝑥 → (((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = (0g𝑃) ↔ ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃)))
8276, 81imbi12d 348 . . . . . . . . . . 11 (𝑘 = 𝑥 → ((𝑠 < 𝑘 → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = (0g𝑃)) ↔ (𝑠 < 𝑥 → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃))))
8382cbvralvw 3396 . . . . . . . . . 10 (∀𝑘 ∈ ℕ0 (𝑠 < 𝑘 → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = (0g𝑃)) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝑖((coe1𝑂)‘𝑥)𝑗) · (𝑥𝐸𝑌)) = (0g𝑃)))
8475, 83sylibr 237 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ∀𝑘 ∈ ℕ0 (𝑠 < 𝑘 → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = (0g𝑃)))
8510, 11, 17, 37, 38, 84gsummptnn0fz 19099 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))
8685fveq2d 6649 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → (coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) = (coe1‘(𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
8786fveq1d 6647 . . . . . 6 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾) = ((coe1‘(𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾))
88 simpllr 775 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → 𝐾 ∈ ℕ0)
89883ad2ant1 1130 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → 𝐾 ∈ ℕ0)
9036expcom 417 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃)))
91 elfznn0 12995 . . . . . . . . 9 (𝑘 ∈ (0...𝑠) → 𝑘 ∈ ℕ0)
9290, 91syl11 33 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → (𝑘 ∈ (0...𝑠) → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃)))
9392ralrimiv 3148 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ∀𝑘 ∈ (0...𝑠)((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃))
94 fzfid 13336 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → (0...𝑠) ∈ Fin)
958, 10, 20, 89, 93, 94coe1fzgsumd 20931 . . . . . 6 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑃 Σg (𝑘 ∈ (0...𝑠) ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾))))
9687, 95eqtrd 2833 . . . . 5 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾))))
9796mpoeq3dva 7210 . . . 4 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾)) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾)))))
98183ad2ant1 1130 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
9998adantr 484 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → 𝑅 ∈ Ring)
100 simpl2 1189 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → 𝑖𝑁)
101 simpl3 1190 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → 𝑗𝑁)
102263ad2ant1 1130 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑂𝐿)
103102, 91, 30syl2an 598 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
1041, 22, 23, 100, 101, 103matecld 21031 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
10591adantl 485 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → 𝑘 ∈ ℕ0)
10643, 22, 8, 6, 4, 34, 5coe1tm 20902 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅) ∧ 𝑘 ∈ ℕ0) → (coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))
10799, 104, 105, 106syl3anc 1368 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → (coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))
108 eqeq1 2802 . . . . . . . . . . 11 (𝑙 = 𝐾 → (𝑙 = 𝑘𝐾 = 𝑘))
109108ifbid 4447 . . . . . . . . . 10 (𝑙 = 𝐾 → if(𝑙 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) = if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))
110109adantl 485 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) ∧ 𝑙 = 𝐾) → if(𝑙 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) = if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))
111 simpl1r 1222 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → 𝐾 ∈ ℕ0)
112 ovex 7168 . . . . . . . . . . 11 (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ V
113 fvex 6658 . . . . . . . . . . 11 (0g𝑅) ∈ V
114112, 113ifex 4473 . . . . . . . . . 10 if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) ∈ V
115114a1i 11 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) ∈ V)
116107, 110, 111, 115fvmptd 6752 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾) = if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))
117116mpteq2dva 5125 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾)) = (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))
118117oveq2d 7151 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾))) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))))
119118mpoeq3dva 7210 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾)))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))))
120119ad2antrr 725 . . . 4 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ ((coe1‘((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))‘𝐾)))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))))
121 breq2 5034 . . . . . . . . . . . . . 14 (𝑥 = 𝐾 → (𝑠 < 𝑥𝑠 < 𝐾))
122 fveqeq2 6654 . . . . . . . . . . . . . 14 (𝑥 = 𝐾 → (((coe1𝑂)‘𝑥) = (0g𝐴) ↔ ((coe1𝑂)‘𝐾) = (0g𝐴)))
123121, 122imbi12d 348 . . . . . . . . . . . . 13 (𝑥 = 𝐾 → ((𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) ↔ (𝑠 < 𝐾 → ((coe1𝑂)‘𝐾) = (0g𝐴))))
124123rspcva 3569 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑠 < 𝐾 → ((coe1𝑂)‘𝐾) = (0g𝐴)))
1251, 43mat0op 21024 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
126125eqcomd 2804 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)) = (0g𝐴))
1271263adant3 1129 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)) = (0g𝐴))
128127ad3antlr 730 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)) = (0g𝐴))
129 elfz2nn0 12993 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑘 ∈ (0...𝑠) ↔ (𝑘 ∈ ℕ0𝑠 ∈ ℕ0𝑘𝑠))
130 nn0re 11894 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
131130ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → 𝑘 ∈ ℝ)
132 nn0re 11894 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑠 ∈ ℕ0𝑠 ∈ ℝ)
133132ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → 𝑠 ∈ ℝ)
134 nn0re 11894 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
135134adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℝ)
136 lelttr 10720 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑘 ∈ ℝ ∧ 𝑠 ∈ ℝ ∧ 𝐾 ∈ ℝ) → ((𝑘𝑠𝑠 < 𝐾) → 𝑘 < 𝐾))
137131, 133, 135, 136syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → ((𝑘𝑠𝑠 < 𝐾) → 𝑘 < 𝐾))
138 animorr 976 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 < 𝐾) → (𝐾 < 𝑘𝑘 < 𝐾))
139 df-ne 2988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐾𝑘 ↔ ¬ 𝐾 = 𝑘)
140130adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) → 𝑘 ∈ ℝ)
141 lttri2 10712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐾 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝐾𝑘 ↔ (𝐾 < 𝑘𝑘 < 𝐾)))
142134, 140, 141syl2anr 599 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → (𝐾𝑘 ↔ (𝐾 < 𝑘𝑘 < 𝐾)))
143142adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 < 𝐾) → (𝐾𝑘 ↔ (𝐾 < 𝑘𝑘 < 𝐾)))
144139, 143bitr3id 288 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 < 𝐾) → (¬ 𝐾 = 𝑘 ↔ (𝐾 < 𝑘𝑘 < 𝐾)))
145138, 144mpbird 260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ 𝑘 < 𝐾) → ¬ 𝐾 = 𝑘)
146145ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → (𝑘 < 𝐾 → ¬ 𝐾 = 𝑘))
147137, 146syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → ((𝑘𝑠𝑠 < 𝐾) → ¬ 𝐾 = 𝑘))
148147exp4b 434 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) → (𝐾 ∈ ℕ0 → (𝑘𝑠 → (𝑠 < 𝐾 → ¬ 𝐾 = 𝑘))))
149148com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0) → (𝑠 < 𝐾 → (𝑘𝑠 → (𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘))))
150149expimpd 457 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑘 ∈ ℕ0 → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝑘𝑠 → (𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘))))
151150com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 ∈ ℕ0 → (𝑘𝑠 → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘))))
152151imp 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑘 ∈ ℕ0𝑘𝑠) → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘)))
1531523adant2 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑘 ∈ ℕ0𝑠 ∈ ℕ0𝑘𝑠) → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘)))
154129, 153sylbi 220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 ∈ (0...𝑠) → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘)))
155154com13 88 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐾 ∈ ℕ0 → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝑘 ∈ (0...𝑠) → ¬ 𝐾 = 𝑘)))
156155adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) → ((𝑠 ∈ ℕ0𝑠 < 𝐾) → (𝑘 ∈ (0...𝑠) → ¬ 𝐾 = 𝑘)))
157156imp 410 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) → (𝑘 ∈ (0...𝑠) → ¬ 𝐾 = 𝑘))
158157adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑘 ∈ (0...𝑠) → ¬ 𝐾 = 𝑘))
1591583ad2ant1 1130 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) → (𝑘 ∈ (0...𝑠) → ¬ 𝐾 = 𝑘))
160159imp 410 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → ¬ 𝐾 = 𝑘)
161160iffalsed 4436 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) = (0g𝑅))
162161mpteq2dva 5125 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) → (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))) = (𝑘 ∈ (0...𝑠) ↦ (0g𝑅)))
163162oveq2d 7151 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))) = (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (0g𝑅))))
164 ringmnd 19300 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
1651643ad2ant2 1131 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑅 ∈ Mnd)
166 ovex 7168 . . . . . . . . . . . . . . . . . . . . . . 23 (0...𝑠) ∈ V
16743gsumz 17992 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ Mnd ∧ (0...𝑠) ∈ V) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (0g𝑅))) = (0g𝑅))
168165, 166, 167sylancl 589 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (0g𝑅))) = (0g𝑅))
169168ad3antlr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (0g𝑅))) = (0g𝑅))
1701693ad2ant1 1130 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ (0g𝑅))) = (0g𝑅))
171163, 170eqtrd 2833 . . . . . . . . . . . . . . . . . . 19 (((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))) = (0g𝑅))
172171mpoeq3dva 7210 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
173 simpr 488 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) → ((coe1𝑂)‘𝐾) = (0g𝐴))
174128, 172, 1733eqtr4d 2843 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) ∧ ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))
175174ex 416 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ (𝑠 ∈ ℕ0𝑠 < 𝐾)) → (((coe1𝑂)‘𝐾) = (0g𝐴) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))
176175expr 460 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ 𝑠 ∈ ℕ0) → (𝑠 < 𝐾 → (((coe1𝑂)‘𝐾) = (0g𝐴) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))))
177176a2d 29 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0 ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿)) ∧ 𝑠 ∈ ℕ0) → ((𝑠 < 𝐾 → ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))))
178177exp31 423 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑠 ∈ ℕ0 → ((𝑠 < 𝐾 → ((coe1𝑂)‘𝐾) = (0g𝐴)) → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))))))
179178com14 96 . . . . . . . . . . . 12 ((𝑠 < 𝐾 → ((coe1𝑂)‘𝐾) = (0g𝐴)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑠 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))))))
180124, 179syl 17 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑠 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))))))
181180ex 416 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑠 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))))))
182181com25 99 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝐾 ∈ ℕ0 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑠 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))))))
183182pm2.43i 52 . . . . . . . 8 (𝐾 ∈ ℕ0 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑠 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))))))
184183impcom 411 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑠 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))))
185184imp31 421 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑠 < 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))
186185com12 32 . . . . 5 (𝑠 < 𝐾 → (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))
187165ad3antrrr 729 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → 𝑅 ∈ Mnd)
188187adantl 485 . . . . . . . . . 10 ((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) → 𝑅 ∈ Mnd)
1891883ad2ant1 1130 . . . . . . . . 9 (((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Mnd)
190 ovexd 7170 . . . . . . . . 9 (((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) → (0...𝑠) ∈ V)
191 lenlt 10708 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℝ ∧ 𝑠 ∈ ℝ) → (𝐾𝑠 ↔ ¬ 𝑠 < 𝐾))
192134, 132, 191syl2an 598 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) → (𝐾𝑠 ↔ ¬ 𝑠 < 𝐾))
193 simpll 766 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾𝑠) → 𝐾 ∈ ℕ0)
194 simplr 768 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾𝑠) → 𝑠 ∈ ℕ0)
195 simpr 488 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾𝑠) → 𝐾𝑠)
196 elfz2nn0 12993 . . . . . . . . . . . . . . 15 (𝐾 ∈ (0...𝑠) ↔ (𝐾 ∈ ℕ0𝑠 ∈ ℕ0𝐾𝑠))
197193, 194, 195, 196syl3anbrc 1340 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) ∧ 𝐾𝑠) → 𝐾 ∈ (0...𝑠))
198197ex 416 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) → (𝐾𝑠𝐾 ∈ (0...𝑠)))
199192, 198sylbird 263 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑠 ∈ ℕ0) → (¬ 𝑠 < 𝐾𝐾 ∈ (0...𝑠)))
200199ad4ant23 752 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (¬ 𝑠 < 𝐾𝐾 ∈ (0...𝑠)))
201200impcom 411 . . . . . . . . . 10 ((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) → 𝐾 ∈ (0...𝑠))
2022013ad2ant1 1130 . . . . . . . . 9 (((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) → 𝐾 ∈ (0...𝑠))
203 eqcom 2805 . . . . . . . . . . 11 (𝐾 = 𝑘𝑘 = 𝐾)
204 ifbi 4446 . . . . . . . . . . 11 ((𝐾 = 𝑘𝑘 = 𝐾) → if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) = if(𝑘 = 𝐾, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))
205203, 204ax-mp 5 . . . . . . . . . 10 if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)) = if(𝑘 = 𝐾, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))
206205mpteq2i 5122 . . . . . . . . 9 (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))) = (𝑘 ∈ (0...𝑠) ↦ if(𝑘 = 𝐾, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))
207 simpl2 1189 . . . . . . . . . . . 12 ((((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑖𝑁)
208 simpl3 1190 . . . . . . . . . . . 12 ((((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑗𝑁)
20927adantl 485 . . . . . . . . . . . . . 14 ((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) → 𝑂𝐿)
2102093ad2ant1 1130 . . . . . . . . . . . . 13 (((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) → 𝑂𝐿)
211210, 30sylan 583 . . . . . . . . . . . 12 ((((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
2121, 22, 23, 207, 208, 211matecld 21031 . . . . . . . . . . 11 ((((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
21391, 212sylan2 595 . . . . . . . . . 10 ((((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ (0...𝑠)) → (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
214213ralrimiva 3149 . . . . . . . . 9 (((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) → ∀𝑘 ∈ (0...𝑠)(𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
21543, 189, 190, 202, 206, 214gsummpt1n0 19078 . . . . . . . 8 (((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅)))) = 𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗))
216215mpoeq3dva 7210 . . . . . . 7 ((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = (𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)))
217 csbov 7178 . . . . . . . . . . . . . . 15 𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗) = (𝑖𝐾 / 𝑘((coe1𝑂)‘𝑘)𝑗)
218 csbfv 6690 . . . . . . . . . . . . . . . . 17 𝐾 / 𝑘((coe1𝑂)‘𝑘) = ((coe1𝑂)‘𝐾)
219218a1i 11 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℕ0𝐾 / 𝑘((coe1𝑂)‘𝑘) = ((coe1𝑂)‘𝐾))
220219oveqd 7152 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℕ0 → (𝑖𝐾 / 𝑘((coe1𝑂)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝐾)𝑗))
221217, 220syl5eq 2845 . . . . . . . . . . . . . 14 (𝐾 ∈ ℕ0𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝐾)𝑗))
222221ad2antlr 726 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → 𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝐾)𝑗))
223222mpoeq3dv 7212 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → (𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑖((coe1𝑂)‘𝐾)𝑗)))
224 oveq12 7144 . . . . . . . . . . . . 13 ((𝑖 = 𝑎𝑗 = 𝑏) → (𝑖((coe1𝑂)‘𝐾)𝑗) = (𝑎((coe1𝑂)‘𝐾)𝑏))
225224adantl 485 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) ∧ (𝑖 = 𝑎𝑗 = 𝑏)) → (𝑖((coe1𝑂)‘𝐾)𝑗) = (𝑎((coe1𝑂)‘𝐾)𝑏))
226 simprl 770 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → 𝑎𝑁)
227 simprr 772 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → 𝑏𝑁)
228 ovexd 7170 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎((coe1𝑂)‘𝐾)𝑏) ∈ V)
229223, 225, 226, 227, 228ovmpod 7281 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ (𝑎𝑁𝑏𝑁)) → (𝑎(𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗))𝑏) = (𝑎((coe1𝑂)‘𝐾)𝑏))
230229ralrimivva 3156 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ∀𝑎𝑁𝑏𝑁 (𝑎(𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗))𝑏) = (𝑎((coe1𝑂)‘𝐾)𝑏))
231 simpl1 1188 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ Fin)
232218oveqi 7148 . . . . . . . . . . . . . 14 (𝑖𝐾 / 𝑘((coe1𝑂)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝐾)𝑗)
233217, 232eqtri 2821 . . . . . . . . . . . . 13 𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝐾)𝑗)
234 simp2 1134 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
235 simp3 1135 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
23629, 3, 2, 23coe1fvalcl 20841 . . . . . . . . . . . . . . . 16 ((𝑂𝐿𝐾 ∈ ℕ0) → ((coe1𝑂)‘𝐾) ∈ (Base‘𝐴))
2372363ad2antl3 1184 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((coe1𝑂)‘𝐾) ∈ (Base‘𝐴))
2382373ad2ant1 1130 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → ((coe1𝑂)‘𝐾) ∈ (Base‘𝐴))
2391, 22, 23, 234, 235, 238matecld 21031 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → (𝑖((coe1𝑂)‘𝐾)𝑗) ∈ (Base‘𝑅))
240233, 239eqeltrid 2894 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑖𝑁𝑗𝑁) → 𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
2411, 22, 23, 231, 18, 240matbas2d 21028 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) ∈ (Base‘𝐴))
2421, 23eqmat 21029 . . . . . . . . . . 11 (((𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) ∈ (Base‘𝐴) ∧ ((coe1𝑂)‘𝐾) ∈ (Base‘𝐴)) → ((𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) = ((coe1𝑂)‘𝐾) ↔ ∀𝑎𝑁𝑏𝑁 (𝑎(𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗))𝑏) = (𝑎((coe1𝑂)‘𝐾)𝑏)))
243241, 237, 242syl2anc 587 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) = ((coe1𝑂)‘𝐾) ↔ ∀𝑎𝑁𝑏𝑁 (𝑎(𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗))𝑏) = (𝑎((coe1𝑂)‘𝐾)𝑏)))
244230, 243mpbird 260 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) = ((coe1𝑂)‘𝐾))
245244ad2antrr 725 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) = ((coe1𝑂)‘𝐾))
246245adantl 485 . . . . . . 7 ((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) → (𝑖𝑁, 𝑗𝑁𝐾 / 𝑘(𝑖((coe1𝑂)‘𝑘)𝑗)) = ((coe1𝑂)‘𝐾))
247216, 246eqtrd 2833 . . . . . 6 ((¬ 𝑠 < 𝐾 ∧ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))
248247ex 416 . . . . 5 𝑠 < 𝐾 → (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾)))
249186, 248pm2.61i 185 . . . 4 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑘 ∈ (0...𝑠) ↦ if(𝐾 = 𝑘, (𝑖((coe1𝑂)‘𝑘)𝑗), (0g𝑅))))) = ((coe1𝑂)‘𝐾))
25097, 120, 2493eqtrd 2837 . . 3 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾)) = ((coe1𝑂)‘𝐾))
251 eqid 2798 . . . . . 6 (0g𝐴) = (0g𝐴)
25229, 3, 2, 251coe1sfi 20842 . . . . 5 (𝑂𝐿 → (coe1𝑂) finSupp (0g𝐴))
25326, 252syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (coe1𝑂) finSupp (0g𝐴))
25429, 3, 2, 251, 23coe1fsupp 20843 . . . . . 6 (𝑂𝐿 → (coe1𝑂) ∈ {𝑥 ∈ ((Base‘𝐴) ↑m0) ∣ 𝑥 finSupp (0g𝐴)})
255 elrabi 3623 . . . . . 6 ((coe1𝑂) ∈ {𝑥 ∈ ((Base‘𝐴) ↑m0) ∣ 𝑥 finSupp (0g𝐴)} → (coe1𝑂) ∈ ((Base‘𝐴) ↑m0))
25626, 254, 2553syl 18 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (coe1𝑂) ∈ ((Base‘𝐴) ↑m0))
257 fvex 6658 . . . . 5 (0g𝐴) ∈ V
258 fsuppmapnn0ub 13358 . . . . 5 (((coe1𝑂) ∈ ((Base‘𝐴) ↑m0) ∧ (0g𝐴) ∈ V) → ((coe1𝑂) finSupp (0g𝐴) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))))
259256, 257, 258sylancl 589 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((coe1𝑂) finSupp (0g𝐴) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))))
260253, 259mpd 15 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))
261250, 260r19.29a 3248 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))‘𝐾)) = ((coe1𝑂)‘𝐾))
2629, 261eqtrd 2833 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐾 ∈ ℕ0) → ((𝐼𝑂) decompPMat 𝐾) = ((coe1𝑂)‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  csb 3828  ifcif 4425   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135  cmpo 7137  m cmap 8389  Fincfn 8492   finSupp cfsupp 8817  cr 10525  0cc0 10526   < clt 10664  cle 10665  0cn0 11885  ...cfz 12885  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705   Σg cgsu 16706  Mndcmnd 17903  .gcmg 18216  CMndccmn 18898  mulGrpcmgp 19232  Ringcrg 19290  LModclmod 19627  var1cv1 20805  Poly1cpl1 20806  coe1cco1 20807   Mat cmat 21012   decompPMat cdecpmat 21367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-subrg 19526  df-lmod 19629  df-lss 19697  df-sra 19937  df-rgmod 19938  df-dsmm 20421  df-frlm 20436  df-psr 20594  df-mvr 20595  df-mpl 20596  df-opsr 20598  df-psr1 20809  df-vr1 20810  df-ply1 20811  df-coe1 20812  df-mat 21013  df-decpmat 21368
This theorem is referenced by:  mp2pm2mplem5  21415  mp2pm2mp  21416
  Copyright terms: Public domain W3C validator