| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgcolg | Structured version Visualization version GIF version | ||
| Description: We choose the notation (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) instead of "colinear" in order to avoid defining an additional symbol for colinearity because LineG is a common structure slot for other axiomatizations of geometry. (Contributed by Thierry Arnoux, 25-May-2019.) |
| Ref | Expression |
|---|---|
| tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
| tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| tgcolg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| tgcolg | ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | animorr 980 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) | |
| 2 | tglngval.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | eqid 2729 | . . . . . 6 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 4 | tglngval.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | tglngval.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝐺 ∈ TarskiG) |
| 7 | tgcolg.z | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
| 8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑍 ∈ 𝑃) |
| 9 | tglngval.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ 𝑃) |
| 11 | 2, 3, 4, 6, 8, 10 | tgbtwntriv2 28414 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ (𝑍𝐼𝑋)) |
| 12 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
| 13 | 12 | oveq2d 7403 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑍𝐼𝑋) = (𝑍𝐼𝑌)) |
| 14 | 11, 13 | eleqtrd 2830 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ (𝑍𝐼𝑌)) |
| 15 | 14 | 3mix2d 1338 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) |
| 16 | 1, 15 | 2thd 265 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
| 17 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ≠ 𝑌) | |
| 18 | 17 | neneqd 2930 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ¬ 𝑋 = 𝑌) |
| 19 | biorf 936 | . . . . 5 ⊢ (¬ 𝑋 = 𝑌 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑋 = 𝑌 ∨ 𝑍 ∈ (𝑋𝐿𝑌)))) | |
| 20 | 18, 19 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑋 = 𝑌 ∨ 𝑍 ∈ (𝑋𝐿𝑌)))) |
| 21 | orcom 870 | . . . 4 ⊢ ((𝑋 = 𝑌 ∨ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) | |
| 22 | 20, 21 | bitrdi 287 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))) |
| 23 | tglngval.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
| 24 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐺 ∈ TarskiG) |
| 25 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ 𝑃) |
| 26 | tglngval.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 27 | 26 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ 𝑃) |
| 28 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑍 ∈ 𝑃) |
| 29 | 2, 23, 4, 24, 25, 27, 17, 28 | tgellng 28480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
| 30 | 22, 29 | bitr3d 281 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
| 31 | 16, 30 | pm2.61dane 3012 | 1 ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 distcds 17229 TarskiGcstrkg 28354 Itvcitv 28360 LineGclng 28361 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-trkgc 28375 df-trkgcb 28377 df-trkg 28380 |
| This theorem is referenced by: btwncolg1 28482 btwncolg2 28483 btwncolg3 28484 colcom 28485 colrot1 28486 lnxfr 28493 lnext 28494 tgfscgr 28495 tglowdim2l 28577 outpasch 28682 |
| Copyright terms: Public domain | W3C validator |