MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcolg Structured version   Visualization version   GIF version

Theorem tgcolg 28538
Description: We choose the notation (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) instead of "colinear" in order to avoid defining an additional symbol for colinearity because LineG is a common structure slot for other axiomatizations of geometry. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
Assertion
Ref Expression
tgcolg (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))

Proof of Theorem tgcolg
StepHypRef Expression
1 animorr 980 . . 3 ((𝜑𝑋 = 𝑌) → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
2 tglngval.p . . . . . 6 𝑃 = (Base‘𝐺)
3 eqid 2736 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
4 tglngval.i . . . . . 6 𝐼 = (Itv‘𝐺)
5 tglngval.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
65adantr 480 . . . . . 6 ((𝜑𝑋 = 𝑌) → 𝐺 ∈ TarskiG)
7 tgcolg.z . . . . . . 7 (𝜑𝑍𝑃)
87adantr 480 . . . . . 6 ((𝜑𝑋 = 𝑌) → 𝑍𝑃)
9 tglngval.x . . . . . . 7 (𝜑𝑋𝑃)
109adantr 480 . . . . . 6 ((𝜑𝑋 = 𝑌) → 𝑋𝑃)
112, 3, 4, 6, 8, 10tgbtwntriv2 28471 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝑋 ∈ (𝑍𝐼𝑋))
12 simpr 484 . . . . . 6 ((𝜑𝑋 = 𝑌) → 𝑋 = 𝑌)
1312oveq2d 7426 . . . . 5 ((𝜑𝑋 = 𝑌) → (𝑍𝐼𝑋) = (𝑍𝐼𝑌))
1411, 13eleqtrd 2837 . . . 4 ((𝜑𝑋 = 𝑌) → 𝑋 ∈ (𝑍𝐼𝑌))
15143mix2d 1338 . . 3 ((𝜑𝑋 = 𝑌) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))
161, 152thd 265 . 2 ((𝜑𝑋 = 𝑌) → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
17 simpr 484 . . . . . 6 ((𝜑𝑋𝑌) → 𝑋𝑌)
1817neneqd 2938 . . . . 5 ((𝜑𝑋𝑌) → ¬ 𝑋 = 𝑌)
19 biorf 936 . . . . 5 𝑋 = 𝑌 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑋 = 𝑌𝑍 ∈ (𝑋𝐿𝑌))))
2018, 19syl 17 . . . 4 ((𝜑𝑋𝑌) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑋 = 𝑌𝑍 ∈ (𝑋𝐿𝑌))))
21 orcom 870 . . . 4 ((𝑋 = 𝑌𝑍 ∈ (𝑋𝐿𝑌)) ↔ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
2220, 21bitrdi 287 . . 3 ((𝜑𝑋𝑌) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)))
23 tglngval.l . . . 4 𝐿 = (LineG‘𝐺)
245adantr 480 . . . 4 ((𝜑𝑋𝑌) → 𝐺 ∈ TarskiG)
259adantr 480 . . . 4 ((𝜑𝑋𝑌) → 𝑋𝑃)
26 tglngval.y . . . . 5 (𝜑𝑌𝑃)
2726adantr 480 . . . 4 ((𝜑𝑋𝑌) → 𝑌𝑃)
287adantr 480 . . . 4 ((𝜑𝑋𝑌) → 𝑍𝑃)
292, 23, 4, 24, 25, 27, 17, 28tgellng 28537 . . 3 ((𝜑𝑋𝑌) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
3022, 29bitr3d 281 . 2 ((𝜑𝑋𝑌) → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
3116, 30pm2.61dane 3020 1 (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109  wne 2933  cfv 6536  (class class class)co 7410  Basecbs 17233  distcds 17285  TarskiGcstrkg 28411  Itvcitv 28417  LineGclng 28418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-trkgc 28432  df-trkgcb 28434  df-trkg 28437
This theorem is referenced by:  btwncolg1  28539  btwncolg2  28540  btwncolg3  28541  colcom  28542  colrot1  28543  lnxfr  28550  lnext  28551  tgfscgr  28552  tglowdim2l  28634  outpasch  28739
  Copyright terms: Public domain W3C validator