MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcolg Structured version   Visualization version   GIF version

Theorem tgcolg 28580
Description: We choose the notation (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) instead of "colinear" in order to avoid defining an additional symbol for colinearity because LineG is a common structure slot for other axiomatizations of geometry. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
Assertion
Ref Expression
tgcolg (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))

Proof of Theorem tgcolg
StepHypRef Expression
1 animorr 979 . . 3 ((𝜑𝑋 = 𝑌) → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
2 tglngval.p . . . . . 6 𝑃 = (Base‘𝐺)
3 eqid 2740 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
4 tglngval.i . . . . . 6 𝐼 = (Itv‘𝐺)
5 tglngval.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
65adantr 480 . . . . . 6 ((𝜑𝑋 = 𝑌) → 𝐺 ∈ TarskiG)
7 tgcolg.z . . . . . . 7 (𝜑𝑍𝑃)
87adantr 480 . . . . . 6 ((𝜑𝑋 = 𝑌) → 𝑍𝑃)
9 tglngval.x . . . . . . 7 (𝜑𝑋𝑃)
109adantr 480 . . . . . 6 ((𝜑𝑋 = 𝑌) → 𝑋𝑃)
112, 3, 4, 6, 8, 10tgbtwntriv2 28513 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝑋 ∈ (𝑍𝐼𝑋))
12 simpr 484 . . . . . 6 ((𝜑𝑋 = 𝑌) → 𝑋 = 𝑌)
1312oveq2d 7464 . . . . 5 ((𝜑𝑋 = 𝑌) → (𝑍𝐼𝑋) = (𝑍𝐼𝑌))
1411, 13eleqtrd 2846 . . . 4 ((𝜑𝑋 = 𝑌) → 𝑋 ∈ (𝑍𝐼𝑌))
15143mix2d 1337 . . 3 ((𝜑𝑋 = 𝑌) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))
161, 152thd 265 . 2 ((𝜑𝑋 = 𝑌) → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
17 simpr 484 . . . . . 6 ((𝜑𝑋𝑌) → 𝑋𝑌)
1817neneqd 2951 . . . . 5 ((𝜑𝑋𝑌) → ¬ 𝑋 = 𝑌)
19 biorf 935 . . . . 5 𝑋 = 𝑌 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑋 = 𝑌𝑍 ∈ (𝑋𝐿𝑌))))
2018, 19syl 17 . . . 4 ((𝜑𝑋𝑌) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑋 = 𝑌𝑍 ∈ (𝑋𝐿𝑌))))
21 orcom 869 . . . 4 ((𝑋 = 𝑌𝑍 ∈ (𝑋𝐿𝑌)) ↔ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
2220, 21bitrdi 287 . . 3 ((𝜑𝑋𝑌) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)))
23 tglngval.l . . . 4 𝐿 = (LineG‘𝐺)
245adantr 480 . . . 4 ((𝜑𝑋𝑌) → 𝐺 ∈ TarskiG)
259adantr 480 . . . 4 ((𝜑𝑋𝑌) → 𝑋𝑃)
26 tglngval.y . . . . 5 (𝜑𝑌𝑃)
2726adantr 480 . . . 4 ((𝜑𝑋𝑌) → 𝑌𝑃)
287adantr 480 . . . 4 ((𝜑𝑋𝑌) → 𝑍𝑃)
292, 23, 4, 24, 25, 27, 17, 28tgellng 28579 . . 3 ((𝜑𝑋𝑌) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
3022, 29bitr3d 281 . 2 ((𝜑𝑋𝑌) → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
3116, 30pm2.61dane 3035 1 (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3o 1086   = wceq 1537  wcel 2108  wne 2946  cfv 6573  (class class class)co 7448  Basecbs 17258  distcds 17320  TarskiGcstrkg 28453  Itvcitv 28459  LineGclng 28460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-trkgc 28474  df-trkgcb 28476  df-trkg 28479
This theorem is referenced by:  btwncolg1  28581  btwncolg2  28582  btwncolg3  28583  colcom  28584  colrot1  28585  lnxfr  28592  lnext  28593  tgfscgr  28594  tglowdim2l  28676  outpasch  28781
  Copyright terms: Public domain W3C validator