MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcolg Structured version   Visualization version   GIF version

Theorem tgcolg 26599
Description: We choose the notation (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) instead of "colinear" in order to avoid defining an additional symbol for colinearity because LineG is a common structure slot for other axiomatizations of geometry. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
Assertion
Ref Expression
tgcolg (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))

Proof of Theorem tgcolg
StepHypRef Expression
1 animorr 979 . . 3 ((𝜑𝑋 = 𝑌) → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
2 tglngval.p . . . . . 6 𝑃 = (Base‘𝐺)
3 eqid 2736 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
4 tglngval.i . . . . . 6 𝐼 = (Itv‘𝐺)
5 tglngval.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
65adantr 484 . . . . . 6 ((𝜑𝑋 = 𝑌) → 𝐺 ∈ TarskiG)
7 tgcolg.z . . . . . . 7 (𝜑𝑍𝑃)
87adantr 484 . . . . . 6 ((𝜑𝑋 = 𝑌) → 𝑍𝑃)
9 tglngval.x . . . . . . 7 (𝜑𝑋𝑃)
109adantr 484 . . . . . 6 ((𝜑𝑋 = 𝑌) → 𝑋𝑃)
112, 3, 4, 6, 8, 10tgbtwntriv2 26532 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝑋 ∈ (𝑍𝐼𝑋))
12 simpr 488 . . . . . 6 ((𝜑𝑋 = 𝑌) → 𝑋 = 𝑌)
1312oveq2d 7207 . . . . 5 ((𝜑𝑋 = 𝑌) → (𝑍𝐼𝑋) = (𝑍𝐼𝑌))
1411, 13eleqtrd 2833 . . . 4 ((𝜑𝑋 = 𝑌) → 𝑋 ∈ (𝑍𝐼𝑌))
15143mix2d 1339 . . 3 ((𝜑𝑋 = 𝑌) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))
161, 152thd 268 . 2 ((𝜑𝑋 = 𝑌) → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
17 simpr 488 . . . . . 6 ((𝜑𝑋𝑌) → 𝑋𝑌)
1817neneqd 2937 . . . . 5 ((𝜑𝑋𝑌) → ¬ 𝑋 = 𝑌)
19 biorf 937 . . . . 5 𝑋 = 𝑌 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑋 = 𝑌𝑍 ∈ (𝑋𝐿𝑌))))
2018, 19syl 17 . . . 4 ((𝜑𝑋𝑌) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑋 = 𝑌𝑍 ∈ (𝑋𝐿𝑌))))
21 orcom 870 . . . 4 ((𝑋 = 𝑌𝑍 ∈ (𝑋𝐿𝑌)) ↔ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
2220, 21bitrdi 290 . . 3 ((𝜑𝑋𝑌) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)))
23 tglngval.l . . . 4 𝐿 = (LineG‘𝐺)
245adantr 484 . . . 4 ((𝜑𝑋𝑌) → 𝐺 ∈ TarskiG)
259adantr 484 . . . 4 ((𝜑𝑋𝑌) → 𝑋𝑃)
26 tglngval.y . . . . 5 (𝜑𝑌𝑃)
2726adantr 484 . . . 4 ((𝜑𝑋𝑌) → 𝑌𝑃)
287adantr 484 . . . 4 ((𝜑𝑋𝑌) → 𝑍𝑃)
292, 23, 4, 24, 25, 27, 17, 28tgellng 26598 . . 3 ((𝜑𝑋𝑌) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
3022, 29bitr3d 284 . 2 ((𝜑𝑋𝑌) → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
3116, 30pm2.61dane 3019 1 (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  w3o 1088   = wceq 1543  wcel 2112  wne 2932  cfv 6358  (class class class)co 7191  Basecbs 16666  distcds 16758  TarskiGcstrkg 26475  Itvcitv 26481  LineGclng 26482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-iota 6316  df-fun 6360  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-trkgc 26493  df-trkgcb 26495  df-trkg 26498
This theorem is referenced by:  btwncolg1  26600  btwncolg2  26601  btwncolg3  26602  colcom  26603  colrot1  26604  lnxfr  26611  lnext  26612  tgfscgr  26613  tglowdim2l  26695  outpasch  26800
  Copyright terms: Public domain W3C validator