| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgcolg | Structured version Visualization version GIF version | ||
| Description: We choose the notation (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) instead of "colinear" in order to avoid defining an additional symbol for colinearity because LineG is a common structure slot for other axiomatizations of geometry. (Contributed by Thierry Arnoux, 25-May-2019.) |
| Ref | Expression |
|---|---|
| tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
| tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| tgcolg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| tgcolg | ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | animorr 980 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) | |
| 2 | tglngval.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | eqid 2731 | . . . . . 6 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 4 | tglngval.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | tglngval.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝐺 ∈ TarskiG) |
| 7 | tgcolg.z | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
| 8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑍 ∈ 𝑃) |
| 9 | tglngval.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ 𝑃) |
| 11 | 2, 3, 4, 6, 8, 10 | tgbtwntriv2 28465 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ (𝑍𝐼𝑋)) |
| 12 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
| 13 | 12 | oveq2d 7362 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑍𝐼𝑋) = (𝑍𝐼𝑌)) |
| 14 | 11, 13 | eleqtrd 2833 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ (𝑍𝐼𝑌)) |
| 15 | 14 | 3mix2d 1338 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) |
| 16 | 1, 15 | 2thd 265 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
| 17 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ≠ 𝑌) | |
| 18 | 17 | neneqd 2933 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ¬ 𝑋 = 𝑌) |
| 19 | biorf 936 | . . . . 5 ⊢ (¬ 𝑋 = 𝑌 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑋 = 𝑌 ∨ 𝑍 ∈ (𝑋𝐿𝑌)))) | |
| 20 | 18, 19 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑋 = 𝑌 ∨ 𝑍 ∈ (𝑋𝐿𝑌)))) |
| 21 | orcom 870 | . . . 4 ⊢ ((𝑋 = 𝑌 ∨ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) | |
| 22 | 20, 21 | bitrdi 287 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))) |
| 23 | tglngval.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
| 24 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐺 ∈ TarskiG) |
| 25 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ 𝑃) |
| 26 | tglngval.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 27 | 26 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ 𝑃) |
| 28 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑍 ∈ 𝑃) |
| 29 | 2, 23, 4, 24, 25, 27, 17, 28 | tgellng 28531 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
| 30 | 22, 29 | bitr3d 281 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
| 31 | 16, 30 | pm2.61dane 3015 | 1 ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 distcds 17170 TarskiGcstrkg 28405 Itvcitv 28411 LineGclng 28412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-trkgc 28426 df-trkgcb 28428 df-trkg 28431 |
| This theorem is referenced by: btwncolg1 28533 btwncolg2 28534 btwncolg3 28535 colcom 28536 colrot1 28537 lnxfr 28544 lnext 28545 tgfscgr 28546 tglowdim2l 28628 outpasch 28733 |
| Copyright terms: Public domain | W3C validator |