![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgcolg | Structured version Visualization version GIF version |
Description: We choose the notation (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) instead of "colinear" in order to avoid defining an additional symbol for colinearity because LineG is a common structure slot for other axiomatizations of geometry. (Contributed by Thierry Arnoux, 25-May-2019.) |
Ref | Expression |
---|---|
tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
tgcolg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
Ref | Expression |
---|---|
tgcolg | ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | animorr 980 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) | |
2 | tglngval.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
3 | eqid 2735 | . . . . . 6 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
4 | tglngval.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | tglngval.g | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝐺 ∈ TarskiG) |
7 | tgcolg.z | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑍 ∈ 𝑃) |
9 | tglngval.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ 𝑃) |
11 | 2, 3, 4, 6, 8, 10 | tgbtwntriv2 28510 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ (𝑍𝐼𝑋)) |
12 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
13 | 12 | oveq2d 7447 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑍𝐼𝑋) = (𝑍𝐼𝑌)) |
14 | 11, 13 | eleqtrd 2841 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ (𝑍𝐼𝑌)) |
15 | 14 | 3mix2d 1336 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) |
16 | 1, 15 | 2thd 265 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
17 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ≠ 𝑌) | |
18 | 17 | neneqd 2943 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ¬ 𝑋 = 𝑌) |
19 | biorf 936 | . . . . 5 ⊢ (¬ 𝑋 = 𝑌 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑋 = 𝑌 ∨ 𝑍 ∈ (𝑋𝐿𝑌)))) | |
20 | 18, 19 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑋 = 𝑌 ∨ 𝑍 ∈ (𝑋𝐿𝑌)))) |
21 | orcom 870 | . . . 4 ⊢ ((𝑋 = 𝑌 ∨ 𝑍 ∈ (𝑋𝐿𝑌)) ↔ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) | |
22 | 20, 21 | bitrdi 287 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))) |
23 | tglngval.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
24 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐺 ∈ TarskiG) |
25 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ 𝑃) |
26 | tglngval.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
27 | 26 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ 𝑃) |
28 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑍 ∈ 𝑃) |
29 | 2, 23, 4, 24, 25, 27, 17, 28 | tgellng 28576 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
30 | 22, 29 | bitr3d 281 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
31 | 16, 30 | pm2.61dane 3027 | 1 ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 distcds 17307 TarskiGcstrkg 28450 Itvcitv 28456 LineGclng 28457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-trkgc 28471 df-trkgcb 28473 df-trkg 28476 |
This theorem is referenced by: btwncolg1 28578 btwncolg2 28579 btwncolg3 28580 colcom 28581 colrot1 28582 lnxfr 28589 lnext 28590 tgfscgr 28591 tglowdim2l 28673 outpasch 28778 |
Copyright terms: Public domain | W3C validator |